
EFFICIENT LANGUAGE MODEL LOOKAHEAD THROUGH POLYMORPHIC
LINGUISTIC CONTEXT ASSIGNMENT

Hagen Soltau, Florian Metze, Christian F¨ugen, and Alex Waibel

Interactive Systems Laboratories
University of Karlsruhe (Germany), Carnegie Mellon University (USA)

fsoltaujmetzejfuegenjwaibelg@ira.uka.de

ABSTRACT

In this study, we examine how fast decoding of conversational
speech with large vocabularies profits from efficient use of linguis-
tic information, i.e. language models and grammars. Based on a
re-entrant single pronunciation prefix tree, we use the concept of
linguistic context polymorphism to achieve an early incorporation
of language model information. This approach allows us to use all
available language model information in a one-pass decoder, using
the same engine to decode with statistical n-gram language mod-
els as well as context free grammars or re-scoring of lattices in an
efficient way.
We compare this approach to our previous decoder, which needed
three passes to incorporate all available information. The re-
sults on a very large vocabulary task show that the search can be
speeded up by almost a factor of three, without introducing ad-
ditional search errors. On all examined tasks, we observed sig-
nificant improvements by using an exact language model looka-
head over usual bigram lookahead strategies, even for very hard
tasks with unmatched conditions, without introducing extra mem-
ory overhead.

1. INTRODUCTION

Recent work on search strategies for automatic speech recognition
(ASR) has been directed towards single-pass decoding, even for
large vocabulary tasks [8, 3, 5]. The reasoning behind this ap-
proach is the potential advantage of applying all available knowl-
edge sources as early as possible, which should make it possible
to use tighter pruning thresholds, leading to a more precise beam
search and therefore to more efficient decoding. Also, a one-pass
decoding strategy is usually advantageous with respect to real-time
requirements of many of today’s online ASR applications, in par-
ticular if there is need to pass partial hypotheses on to subsequent
modules, i.e translation.

However, a careful organization of the search space is neces-
sary in order to integrate cross-word acoustic models and long-
span language models (LM) in one search pass. These methods
contribute significantly to a recognizer’s performance and must
therefore be retained when implementing a one-pass search strat-
egy. Moreover, one must keep in mind that the early integration of
mismatched language model data, e.g. on unseen domains, might
be more detrimental than if the full language model was applied in
a delayed way only.

In this paper, we describe the results of our comparison be-
tween a multi-pass search strategy and a one-pass search strategy
on different tasks for the Janus ASR system. The results show

that the proposed concept of polymorphic linguistic context as-
signment applied to a re-entrant pronunciation prefix tree is partic-
ularly effective for decoding with very large vocabularies. Smaller
systems improve, too, albeit not as much as larger systems, which
are receiving a lot of attention in the context of unrestricted tasks
such as meeting recognition [4].

The first section of this paper outlines different strategies em-
ployed for time-synchronous beam search in speech recognition.
We describe in detail both multi-pass and single-pass decoding
schemes. The next section covers a number of tasks and systems1,
that we tested our two decoders on. These experiments are de-
scribed in the following and summarized in the last section.

2. DECODING STRATEGIES

The two decoding strategies treated in this paper base on a lexicon
organized as a pronunciation prefix tree (PPT), where the search
tree is traversed in a time synchronous way. A simple PPT is
shown in figure 1. At each time frame, the active roots, nodes
and leafs are expanded into their children and then pruned. When
reaching the end of a PPT (the leafs) it becomes necessary to ex-
tend the search to the following word candidates. This can be done
either by creating a copy of the tree or by re-entering the tree and
keeping track of the word history.

R D

W EY

AH

LB

OA

T

IE

Fig. 1. A simple pronunciation prefix tree (PPT) for a system using
context-independent acoustic models.

The main differences between the two search strategies con-
cern the access of linguistic information during the search and the
recombination of different hypotheses to efficiently use linguis-
tic constrains. These are given by the language model history in
the case of statistical n-grams or state transitions for context-free
grammars.

2.1. Multi-Pass Decoding with delayed LM information

This approach uses a fast first search pass, which uses linguistic
information only in an approximate way to constrain the search

1By this term, we mean a set of acoustic and language models



space sufficiently to allow for the application of more expensive
search algorithms in subsequent passes.

The critical part in this approach, which is used in the stan-
dard Janus decoder, is the path recombination at the tree leafs. On
entering a new tree root, only the best local predecessor word will
be connected to the starting root node. Since the word identity
is not yet known, the language model cannot be applied at this
stage and the best predecessor will be determined without the lan-
guage model information. To avoid unrecoverable search errors,
wide beams have to be used and word segmentation will also be
affected, since the correct starting point for a word depends on the
predecessor word, which will be ignored here.

The language model is applied at the tree leafs, where the word
identity is known. However, since only the local best predecessor
is kept in memory, one can only correctly apply a bigram-LM. For
higher-order language models, the back-pointer table would have
to be traced back in order to get the linguistic state (“poor-man’s
trigrams”). The second and third search pass are therefore used
to correct the errors described above. To avoid additional acoustic
score computations in the latter search passes, the acoustic scores
from the first pass can be cached, which can require a significant
amount of memory. In summary, the search strategy implemented
in our old decoder is as follows:

1. search on tree-organized pronunciation lexicon

� aggressive path recombination at word ends

� use linguistic information only approximative

� Unigram Language Model Lookahead

� generate a list of starting words for each frame

2. search on flat-organized pronunciation lexicon

� fix the word segmentation from the first pass

3. A-Star lattice re-scoring

� full use of language model

2.2. One-Pass Decoding based on linguistic polymorphism

To be able to include all available information sources in one pass,
it is necessary to delay the inclusion of the full language model in-
formation until the word identity is known in the leafs of the tree.
Then however, it is also possible to determine the best predecessor
words, or the linguistic state, as we call it. One way to achieve this
is the tree-copying process as described in [7, 8, 9, 3]. The idea
is to create a separate copy of the PPT for each surviving linguis-
tic state after path recombination. Since the number of different
linguistic states (= tree copies) can be a few hundred for a long-
span language model, efficient pruning criteria must be applied
to fit computing and memory constraints. The search is therefore
guided by a language model lookahead which distributes the lan-
guage model probabilities over the PPT to allow a more efficient
beam search.

In the following we describe an alternative approach to the
tree copying process which allow a more efficient handling of the
linguistic states. The underlying idea is to establish a linguistic
polymorphism for each node of the PPT similar to the concept
described in [1, 5]. The search space is then based on one single
pronunciation prefix tree only:

� one copy of the tree with dynamically allocated instances
of nodes

� early path recombination

� full language model lookahead

� approach allows easy decoding along context-free gram-
mars

In each node of the PPT, we keep a list of linguistic morphed
instances. Each instance stores his own backpointer and scores for
each state of the underlying Hidden Markov Model (HMM) with
respect to the linguistic state of this instance. Since the linguistic
state is now known, we can apply the complete language model
information for these scores, given the possible successor words
for that node in the PPT. The LM scores will be updated on de-
mand based on the compressed PPT. In figure 2, we have attached
linguistic morphed instances to the example PPT of figure 1.

lct= "a new"
lct= "little late"
lct= "much more"

lct= "bullets over"

B
lct= "bullets over"
lct= "a new"

R

AH

lct= "bullets over"
lct= "a new"

lct= "little late"

lct= "much more"

EY

IE
lct= "much more"

Fig. 2. linguistic morphed instances within the PPT framework.
(LCT= linguistic context)

The advantage of this search space organization is that we can
apply a beam and topN pruning strategy for the list of instances in a
very easy way. This allows us to overcome the subtree dominance
problem [1] for the tree-copying approach. If there are two in-
stances of a node where the linguistic state of one instance cause a
worse LM score for the best possible successor word compared to
the LM score for the worst possible successor given the linguistic
state of the other instance, the instance can already be eliminated.
Additionally, we perform the path recombination (which is usually
done at the word ends) as soon as the word becomes unique, which
is usually a few phones before reaching the leaf. This is particu-
larly useful in combination with the use of cross-word models. It
is important to keep the number of instances in the leafs as small
as possible to reduce the computational effort due to the fan-out of
the right context models.
This search space organization offers also advantages in terms of
memory usage. Only a very small tree skeleton will be created per-
manently. The main memory is required by the instances, which
will be allocated dynamically on demand. Since the number of
instances per node decreases very rapidly with the tree level, the
search space can be handled very flexible and scalable.
To run the decoder with arbitrary linguistic knowledge sources
such as statistical n-grams, context free grammars, or word graphs,
we use an abstract interface between the decoder and the linguistic
knowledge sources. The interface consists of few functions to ma-
nipulate the linguistic state. The decoder itself works independent
from the actual linguistic knowledge source.

2.3. Language Model Lookahead

To exploit the language model information as early as possible,
the best probability over all successor words with respect to the
node of the PPT and the linguistic state of a instance is needed.
The computation of that score base on a compressed pronunciation



prefix tree, where the original PPT is pruned to a small tree depth.
The compressed tree skeleton is stored in a stack, offering the ad-
vantage of a iterative procedure to compute the lookahead scores.
To exonerate the language model cache, we store the lookahead
score additionally in the node instances, which saves a significant
number of lm calls.

2.4. Cross-Word Modeling

To use cross-word models for the tree roots, we apply the same
concept that we used to handle different linguistic contexts here
now at the HMM state level for different left phonetic contexts.
However, we do not keep a list of different state instances but only
the local best left phonetic context. The integration of cross-word
models at the tree leafs needs more computational effort, since
we have to compute the scores for each possible right phonetic
context. The number of different right phonetic context instances
can be reduced by using a dual map between the phonetic context
and the unique acoustic models. Depending on the phones set and
the context decision tree, the fan-out can be reduced by a factor of
more than two on average. Another reduction of the fan out can
be achieved by using the early path recombination as described
above.

3. EXPERIMENTAL SETUP

The experiments described in this work were conducted on three
tasks, using two different ASR systems for both English and Ger-
man.

The first task is the final test-set of the German Verbmobil-
II project (“GSST”); it features conversational speech on a limited
domain under relatively clean acoustic conditions. The second task
is read speech from the Broadcast News (BN) corpus; it consists
of clean, read speech from a very large domain. The third task is
a subset of the Meeting data set [4], which was recorded at infor-
mal group meetings, containing very colloquial speech recorded
through lapel microphones. Decoding runs on the meeting data
can be seen as a ’stress’ test, since the acoustic and language mod-
els, trained on BN and ESST, don’t match the test conditions, so
that wide beam thresholds are needed to avoid search errors.

Database VM-II BN Meeting

Speaking style convers. read colloquial
Train speech data 62h 100h
LM corpus 670k 141m
Vocabulary 10k 40k
Test speech data 65min 20min 55min

Table 1. Systems used in the comparison experiments.

The acoustic and language models we used to decode this data
were taken from a preliminary ISL system for the final 2000 VM
evaluation [12] without semi-tied covariances and feature space
adaptation in the case of the German data and from a system
trained on Broadcast News and English Verbmobil-II (“ESST”)
acoustics and a collection of text sources2 in the case of the “Read
BN” and “Meeting” tasks. All language models used in these ex-
periments are standard Trigram LMs with a Kneser/Ney Backing

2BN, ESST, Crossfire, Newshour, WSJ.

off scheme. For the German system, we use 3300 context depen-
dent acoustic models with 167k gaussians and 4000 models with
132k gaussians for the English system. A summary of the system
characteristics is shown in table 1 and 2. The number of lm nodes
in table 2 refer to the number of nodes of the compressed PPT,
needed to compute the lookahead scores.

System/ PPT # roots # nodes # leafs # lm nodes

GSST 679 36651 11355 5109
BN/Meeting 1159 103114 45095 18482

Table 2. search tree size (# = number of)

4. RESULTS

Our results are shown in table 3. All timings were obtained on a
standard PC with a Intel PIII/600 processor. No speed-ups such as
the Bucket Box Intersection Algorithm[6] or a phonetic fast match
were used. The slightly improved error rates for the English sys-
tem (0.6% for read BN and 0.4% for the Meeting task) are a result
of a different handling of single phone words which are more im-
portant for English than for German. The speed-up depends on the
vocabulary size and matched domain conditions. On the readBN
task, with matched train and test conditions, the new decoder runs
in a third of the time that the old decoder needed. But even for the
meeting task, we got a a speed-up of two. Systems with relatively
small vocabularies also profit from the polymorphic linguistic con-
text assignment, but not as much as very large systems.

Task VM-II read BN Meeting
Decoder 3-p 1-p 3-p 1-p 3-p 1-p

RTF 6.8 4.0 12.2 4.2 44 22
WER (%) 26.9 26.9 14.7 14.1 43.7 43.3

Table 3. Comparison experiments between the two Janus de-
coders. (RTF = real time factor, 3-p = three pass decoder, 1-p =
one pass, single prefix tree decoder)

In a second series of experiments we analyzed the effect of the
lookahead complexity. Since there is an overhead in computing
the lookahead scores for more complex language models, it’s not
obvious that the full use of the language model reduces the overall
computational costs. In [9] a bigram language model is therefore
used for computing the lookahead scores for a one-pass decoder
using tree copies. However, the results in table 4 show, that the
full incorporation of the language model for the lookahead tree is
even useful for very hard tasks with weak language models as in
the meeting scenario. In case of matched conditions, we found a
speed-up of up to 26% by using the full lookahead.

In our implementation there is no extra memory required for
more complex language model lookaheads. We used50 cache
trees for the GSST system, and100 trees for the BN/Meeting sys-
tem for both bigram and trigram lookaheads. Using this configu-
ration, the lm cache costs100 � (45095 + 18482) � 2 = 12:7 MB
for the meeting system3, and1:6 MB for the GSST system.

3One tree has 18482 nodes and 45095 leafs. Each score needs 2 bytes.
The lm scores, stored in the instances, cost approximately 89kB.



Task VM-II read BN Meeting
Lookahead 2 3 2 3 2 3

RTF 5.1 4.0 5.7 4.2 26 22
WER (%) 27.0 26.9 14.2 14.1 43.5 43.3

Table 4. Comparison experiments between different language
model lookaheads using the new decoder (RTF = real time factor,
2 = bigram LA, 3 = trigram LA)

To give us more insight on the computational resources needed
by each component we extracted profiling information on the
readBN task with bigram and trigram lookaheads. As shown in
table 5, the computational effort to compute the lookahead tree did
not increase for the trigram lookahead due to sharper pruning ca-
pabilities. Also, the cpu usage for the language model operations
is very small, although the lm has more than7 million bigrams and
5 million trigrams.

Component Bigram-LA Trigram-LA

acoustic score calc. 3.4 2.6
search 1.6 1.1
language model 0.3 0.1
lookahead tree 0.4 0.4
total 5.7 4.2

Table 5. computational effort using different language model
lookaheads (numbers are real time factors)

Besides the real time factors, the number of active instances is
also interesting to get a impression about the active search space.
One can see, that the average number of instances is very moder-
ate. Even for a very complex meeting task with unmatched acous-
tic and language models, the number of instances drops very rap-
idally. The small number of instances allows us to avoid any ap-
proximations for the language model range for the lookahead.

Task # roots # nodes # leafs

GSST 231 (3.5) 253 (2.2) 19 (1.7)
read BN 274 (2.6) 298 (1.7) 17 (1.4)
Meeting 845 (8.6) 5037 (2.9) 219 (1.9)

Table 6. active search space (# = average number of models (in-
stances) per 10ms)

5. SUMMARY

In this work, we have compared two different decoding strategies
in the same environment on different tasks. Our results show that
the early integration of full language model information is indeed
helpful with respect to overall decoding effort on tasks with rel-
atively low complexity. The greatest speed-up, close to a factor
of three, was achieved on the “Read BN” task with a 40k vocab-
ulary and clean acoustics. On the “GSST” task with a 10k vocab-
ulary and spontaneous speech, the one-pass decoder runs in 60%
of the time of the multi-pass decoder. On difficult tasks such as

“Meeting”, the one-pass search strategy still allows for savings in
time and memory. However, the greatest speed-up is achieved on
matched domain conditions.
As the importance of language models increases with their early
integration in the search process, future work will be directed to-
wards on-line language model and vocabulary adaptation as well
as the combination of language models and grammars for efficient
decoding.

6. REFERENCES

[1] F. Alleva, X. Huang, and M.-Y. Hwang. Improvements of the
pronunciation prefix tree search organization. InProceedings
of the ICASSP, Atlanta, USA, 1996.

[2] G. Antoniol, F. Brugnara, M. Cettolo, and M. Federico. Lan-
guage model representations for beam search decoding. In
Proceedings of the ICASSP, Detroit, USA, 1995.

[3] X. Aubert. One pass cross word decoding for large vocab-
ularies based on a lexical tree search organization. InPro-
ceedings of the Eurospeech, Budapest, Hungary, 1999.

[4] Alex Waibel et.al. Advances in meeting recogniton. InPro-
ceedings of the First International Conference on Human
Language Technology Conference (HLT 2001), San Diego,
USA, 2001.

[5] M. Finke, D. Koll, J. Fritsch, and A. Waibel. Modeling and
efficient decoding of large vocabulary conversational speech.
In Proceedings of the Eurospeech, Budapest, Hungary, 1999.

[6] J. Fritsch and I. Rogina. The bucket box intersection (BBI)
algorithm for fast approximative evaluation of diagonal mix-
ture gaussians. InProceedings of the ICASSP, Atlanta, USA,
1996.

[7] H. Ney, R. Haeb-Umbach, B.-H. Tran, and M. Oerder.
Improvements in beam search for 10000-word continuous
speech recognition. In Proceedingsof the ICASSP, San Fran-
cisco, USA, 1992.

[8] J. Odell. The Use of Context in Large Vocabulary Speech
Recognition. PhD thesis, University of Cambridge, United
Kingdom, 1995.

[9] S. Ortmanns, A. Eiden, and H. Ney. Improved lexical tree
search for large vocabulary speech recognition. In Proceed-
ings of the ICASSP, Seattle, USA,1998.

[10] M. Ravishankar.Efficient Algorithms for Speech Recogni-
tion. PhD thesis, Carnegie Mellon University, USA, 1996.

[11] H. Soltau, F.Metze, C. F¨ugen, and A. Waibel. A one pass de-
coder based on polymorphic linguistic context assignment.
In Proceedings of the Automatic Speech and Recognition
Workshop (ASRU), Trento, Italy, 2001.

[12] H. Soltau, T. Schaaf, F.Metze, and A. Waibel. The ISL
evaluation system for Verbmobil-II. InProceedings of the
ICASSP, Salt Lake City, USA, 2001.

[13] M. Woszcyna and M. Finke. Minimizing search errors due
to delayed bigrams in real-time speech recognition systems.
In Proceedings of the ICASSP, Atlanta, USA, 1996.


