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ABSTRACT 

In spoken dialogue systems, hyperarticulation occur 
as an effect to recover previous recognition errors. It 
is commonly observed that users of automatic speech 
recognition systems apply similar recovery strategies as in 
human-human interactions. Previous studies have shown 
that current speech recognizers don’t cover hyperarticu- 
lated speech well. As an effect of higher word error rates 
at hyperarticulated speech, humans try to reinforce this 
speaking style which results in even more recognition er- 
rors. In this study, we investigate the use of articula- 
tory features to compensate hyperarticulated effects. ‘The 
underlying idea is, that acoustic models for articulatory 
features are more robust against variations in the speak- 
ing style compared to pure phone models. We present a 
streaming architecture which integrates articulatory fea- 
tures in a standard HMM based system. Using this ap- 
proach, we achieved an error reduction of 25.1% for hyper- 
articulated speech and even 8.9% for normal speech with- 
out any use of hyperarticulated training data. 

1. INTRODUCTION 

‘The usability of spoken dialogue and dictation systems 
strongly depends on the fact that an user can feed any 
information into the system faster using speech technol 
ogy instead of typing. One critical issue in building in- 
telligent human computer interfaces is failure tolerance. 
However current state of the art speech recognizer will 
always exhibit some errors. In case of recognition er- 
rors, an user will switch to other modalities (handwriting, 
gestures, typing) or just try to repeat the misrecognized 
phrase. As a consequence, the advantages of speech in- 
terfaces will be greatly reduced through the time needed 
for error correction [12]. 

To develop user friendly speech interfaces, it is im- 
portant to examine, how users react to recognition errors. 
When humans use recognition technology it is commonly 
observed, that they follow similar recovery strategies as 
in interaction with humans. These strategies are typi- 
cally attempts at speaking more dearly and accented in 
an effort to disambiguate the original mistake. In [7] an 
user study is presented, in which the reactions on word 
errors were examined. ‘They observed that the duration 
of utterances increase, both speech segments and number 
and duration of pauses. Word repetitions were spoken 
more clearly than in the original spoken utterance. ‘The 

question that arise is if such an user reaction helps the 
system to find the correct word hypothesis. In [10] we 
showed that the recognition rates are significantly worse 
at hyperarticulation contrary to the users intention. 
Hyperarticulated speech exhibits differences in speaking 
rate, pitch contour, or formant frequencies in order to 
stress a certain part of the utterance. ‘To model these 
changes in the acoustic space, we examined in [11, 2] how 
to integrate dynamic questions about the speaking style in 
a context decision tree. We achieved an error reduction 
of 9% by using these speaking mode dependent acous- 
tic models. ‘The model splits related to hyperarticulation 
were clearly phone dependent, e.g. consonants seems to 
exhibit more significant changes compared to vowels. On 
the other hand, we investigated whether these effects can 
be compensated by phone substitutions, e.g. confusions 
of the nasal sounds /m/ and /n/ can be stressed at hy- 
perarticulation. However, the training of hyperarticula- 
tion pronunciations using decision trees didn’t work well, 
which indicate that different sounds are produced under 
these conditions, which don’t match to any of the pre- 
trained phoneme models. 
Motivated by these previous results, we investigate in this 
study how hyperarticulated effects can be modeled by ar- 
ticulatory features. In the next sections, we give details 
how we extracted articulatory features and describe the 
system architecture which integrate theses models in a 
standard HMM system using streams. 

2. ACOUSTIC MODELS SUPPORTED BY 

ARTICULATORY FEATURES 

‘The assumption for using articulatory features (AF) to 
compensate hyperarticulated effects is that people don’t 
substitute a whole phone in order to contrast a previ- 
ous recognition error. For example, the nasal sounds 
/m/ and /n/ can be described as +voiced,+nasal,+labial 
and +voiced,+nasal,+velar respectively. As a conse- 
quence, the hyperarticulated speech might exhibit dif- 
ferences according to the place of articulation in order 
to disambiguate such a recognition error but doesn’t ex- 
hibit changes according to the voice and nasal attributes. 
Acoustic models based on articulatory features would 
therefore allow a more precise modeling of hyperarticu- 
lated effects. As a first step, we included articulatory 
features into a pure phone based HMM system by using 
multiple streams to compute acoustic scores as described



in [8, 5]. 

2.1. Extraction of articulatory features 

By mapping the phonemes to bundles of articulatory fea- 
tures [6], we generated time segmentations for the features 
based on viterbi alignments using the phone based HMM 
system. To avoid incorrect or unprecise alignments, we 
used only the time segmentations aligned to the middle 
state of the three state HMMs, since the viterbi paths 
don’t exhibit sharp phone boundaries usually. ‘These con- 
verted training data were then used to train a GMM for 
each of the binary articulatory features, Additionally, an 
anti-model was trained for each articulatory model using 
all data which do not belong to that articulatory feature. 
An example of the extracted features is shown in figures 
1 and 2 where the difference of the likelihood of the frica- 
tive and plosive models and anti-models are plotted over 
the time. The figures contain the curves for the word 
doubts, once spoken normally and once hyperarticulated. 
‘The hyperarticulation occured in order to disambiguate 
doubts from doubt which is clearly represented in the fig- 
ure, While the fricative attribute becomes stressed under 
hyperarticulation, the plosive feature is suppressed to dis- 
tinguish from the previous /t/ sound. 
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Figure 1: curve of the fricative likelihood for the word 
doubts, spoken normally and hyperarticulated 
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Figure 2: curve of the plosive likelihood for the word 
doubts, spoken normally and hyperarticulated 

2.2. System Architecture 

Starting from a standard context dependent phone based 
HMM recognizer, we attach for each phone model the 
corresponding GMMs for the articulatory features. For 
example, a HMM state belonging to /m/ has the associ- 
ated models for +voiced,+nasal,+labial and anti-models 
for -unvoiced,-velar etc. ‘These bundles of models will be 
combined using an exponential weighting of the result- 
ing likelihoods, e.g. the acoustic log-likelihood of such a 
bundle will be computed as the weighted sum of the log- 
likelihoods from their underlying articulatory attributes 
and phones. During decoding, a word will be treated as 
a sequence of such bundles of phone and articulator mod- 
els. This architecture is illustrated in figure 3, where two 
articulatory features were integrated to model the sound 
/e/ for the word hello. Please note that during decoding 
each state of the HMM is associated to the corresponding 
AF model although the AF models were trained only at 
the middle states. 

hello = /h/ /e/ /I/ /o/ 

a 
phone level 

HMM level ob om ee 

stream combination Ew(i) * Lei) 

—_— ~- 

‘\ 
p.d.f.’s \ \ 

em +vowel -round 

Figure 3: streaming architecture, example for the cascade 
of models to build the word Hello 

An advantage of that approach is, that already exist- 
ing phone based HMM systems can be enriched by the AF 
models without a retraining of the whole system. How- 
ever, we cannot exploit the asynchrony between different 
articulatory features since the AF and phone models are 
rather tight coupled in the stream architecture. 

3. EXPERIMENTAL SETUP 

3.1. HMM baseline system 

‘The baseline system with a 40k vocabulary is trained 
on different corpora such as broadcast data and english 
Verbmobil (ESST) data to transcribe colloquial speech 
recorded at informal group meetings [1]. ‘The acoustic 
models base on 4000 polyphone states with a total of 
132k gaussians. Several state of the art normalization and 
adaptation techniques are used to cover speaking style and 
channel variations. The front-end consists of melfiltered 
cepstral coefficients with a context window of 7 frames 
followed by a LDA transform to reduce the dimension to 
40 and a single semi-tied full covariance. Speaker incre- 
mental cepstral mean and variance normalization is used 
to reduce channel variations.



3.2. Training of the AF models 

‘The AF classifier base on gaussian mixture models using 
the same front end as used for the baseline system. ‘The 
models are trained on the ESST data only using the time 
boundaries of the center states from the phone alignments. 
Each binary AF classifier has 48 diagonal gaussians. ‘The 
number of additional parameters to extract the AFs is 
only a small fraction compared to the phone models. 

3.3. Hyperarticulated data 

We have collected an English database with normal and 
hyperarticulated isolated speech. In order to induce 
hyperarticulated speech realisticly we analyzed typical er- 
rors of our current LVCSR system at first and generated a 
list of frequent confusions. ‘The recording scenario consists 
of two sessions. In the first session data were recorded 
with normal speaking style. We selected 50 word pairs 
for each speaker. Each word pair consists of a word and 
the corresponding confuseable word (as per error analy- 
sis). We presented the 2 x 50 words independent of each 
other in the first section without any instructions. In 
the second session, we tried to induce hyperarticulated 
speech. We simulated recognition errors and presented 
phrases like “Word A was confused with Word B. Please 
repeat Word A” up to three times for each word pair. 
‘The decision if the system accepts or rejects the input 
was chosen randomly but similar to real error rates. ‘To 
avoid monotonous spoken utterances from bored subjects 
we set the probability for two attempts to 20% and for 
three attempts to 10% only. Since we assumed that op- 
posite features are used to disambiguate two words A vs. 
B and B vs. A, respectively we presented each word pair 
in reverse order also. For each speaker we collected 100 
normally spoken words in the first session and approxi- 
mately 120 hyperarticulated words in the second session 
with this strategy. In total, we've got recordings from 45 
subjects. For testing purposes, 11 speaker were excluded. 

4, EXPERIMENTS 

4.1. Classification of articulatory features 

‘The results of the AF classifier are shown in table 1 and 
2 according to place and manner of articulation. Due 
to the way we collected the hyperarticulated data, the 
results base on the same set of speakers and words for 
both speaking styles. 

AF Speaking Style 
normal | hyper 

plosive 92% | 80% 
nasal B8%_| 83% 
Tricalive 35% | 95% 
approximant | 88% | 80% 
stop d1% | 88% 

‘Table 1: classification accuracy per frame for manner of 
articulatory attributes for each speaking style 

However, due to expected variations in the pronunci- 
ation of hyperarticulated speech, we have a “moving tar- 
get” problem for the AF references. The results in table 1 
for the manner of articulation features don’t exhibit large 
differences across the speaking style. But the situation 
is completely different if we take a look of the place of 
articulation features. In particular, the models for the 
interdental and palatal attributes seems to fit better for 
hyperarticulated speech. 

AF Speaking Style 
normal | hyper 

Tabial 87% | S% 
Dilabial 30% | S% 
interdental | 76% | 92% 
alveolar 69% _| 08% 
palatal 79% | 92% 
velar 32% _| S% 

Table 2: classification accuracy per frame for place of 
articulatory attributes for each speaking style 

Since the reference base on phone alignments, worse 
classification results don’t imply necessarily that the clas- 
sifier works badly. But what we can conclude is that dif- 
ferences occur at certain articulatory features for hyper 
articulated speech and some features are more robust 
against variations in the speaking style '. 

4.2. Decoding Experiments 

Some initial experiments are summarized in table 3, where 
we started with the meeting recognizer and adapted then 
the transition and acoustic models in order to reduce the 
speaking rate? and channel mismatch using the normally 
spoken part of the training data. 

system Speaking Style 
normal | hyper 

‘baseline 33.4% 49.2% 

+ trained transition models || 32.7% | 40.3% 
+ adapted acoustic models’ 18.9% 29.9% 

‘Table 3: initial experiments for normal and hyperarticu- 
lated speech (results in word error rates) 

Results obtained by using the adapted models will 
serve as the baseline for the AF system. Hyperarticu- 
lation cause a drastic error increase of more than 58% 
compared to the normally spoken utterances. Interesting 
is also that the re-training of the transition model has 
much more influence of the hyperarticulation part, which 
indicate a stronger mismatch in the phone durations. 

For the system using AF streams we picked the most 
robust features, mainly concerning manner of articulation: 

''The variation of the articulation features might also de- 
pend on the type of disambiguation in context of error repairs. 

?The meeting system is trained on spontaneous data while 
this data is isolated speech.



System Speaking Style 
normal | hyper 
18.9% 29.9% 

17.2% 22.4% 

‘adapted acoustic models 
+ articulatory features 

‘Table 4: HMM models supported by streams of articula- 
tory features (results in word error rates) 

plosive, fricative, lateral, approximant, stop, consonantal. 
‘The results in table 4 are very encouraging, We got an 
error reduction of 7.5% absolute for the hyperarticulated 
speaking style. Additionally, these models don’t hurt nor- 
mal speech, in opposite there is also an error reduction of 
1.7% absolute, which demonstrate the potential of artic- 
ulatory features. 

4.3. Specialized models 

Ina further series of experiments, we investigated the use 
of hyperarticulated training data by generating special 
ized models for normal and hyperarticulated speech by 
computing MLLR regression classes. During decoding, 
the approriate set of acoustic models will be chosen based 
on a likelihood criterion. If we don’t use the AF streams, 
we got an improvement from 29.9% to 27.9% on hyperar- 
ticulated data. Using the AF streams, the gain of using 
hyperarticulated training data is only 0.5% (from 22.4% 
to 21.9%). 

system Speaking Style 
normal | hyper 
18.5% 27.9% 

16.7% | 21.9% 

specialized models 
+ articulatory features 

‘Table 5: specialized acoustic models for hyperarticulated 
speech (results in word error rates) 

5. CONCLUSIONS 

We investigated the integration of articulatory features in 
state of the art phone based HMM recognizer in order to 
compensate hyperarticulated effects. The results indicate 
that the extraction of articulated features using gaussian 
mixture models is robust against speaking style variations 
for features according to manner of articulation. Features 
related to the place of articulation exhibit differences at 
hyperarticulation, in particular the models for interden- 
tal and palatal, which are trained on spontaneous speech, 
seems to fit better for hyperarticulated speech. We ob- 
served a drastic error increase of more than 58% under 
hyperarticulation for the pure phone based system. By 
incorporating streams of articulatory features, we reduced 
the error rate from 29.9% to 22.4% for hyperarticulated 
speech while improving the recognition of normal speech 
as well (from 18.9% to 17.2%). 

In the future, we will focus on more sophisticated 
models which will also capture the asynchrony of articu- 
latory features and examine how hyperarticulated effects 

can be modeled by a kind of trajectory variation in an 
articulatory feature space. 
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