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ABSTRACT

Far-field speaker identification is very challenging since
varying recording conditions often result in unmatching
training and test situations. Although the widely used
Gaussian Mixture Models (GMM) approach achieves
reasonable good results when training and testing condi-
tions match, its performance degrades dramatically under
non-matching conditions. In this paper we propose a new
approach for far-field speaker identification: the usage of
multilingual phone strings derived from recognizers in
eight different languages. The experiments are carried out
on a database of 30 speakers recorded with eight different
microphone distances. The results show that the multi-
lingual phone string approach is robust against non-
matching conditions and significantly outperforms the
GMMs. On 10-second test chunks, the average closed-set
identification performance achieves 96.7% on variable
distance data.

1. INTRODUCTION

Speaker recognition is the process of automatically recog-
nizing a speaker by machines using the speaker’s voice. It
can operate in two modes: identifying a parti-cular speaker
or verifying a speaker’s claimed identity [1]. Furthermore,
speaker recognition can be subdivided into closed-set and
open-set problems [2], depending on whether the set of
speakers is known or not. It can also be text-dependent or
text-independent. In this paper closed-set text-independent
speaker identification is considered.

The techniques developed for text-independent speaker
identification include Nearest Neighbor, Vector Quanti-
zation, discriminative Neural Networks and Gaussian
Mixture Models [3]. Nowadays, the latter is the most
widely and successfully used method for speaker
identification. However, for the use of speaker identifica-
tion in real world applications, some challenging pro-
blems needed to be solved. Among them is the robust
identification of speakers in far field. Although GMM has
been applied successfully to closed-speaking microphone
scenarios under matching training and testing conditions,

its performance degrades dramatically under unmatching
conditions. In this paper, we propose a new approach,
which is based on the idea of using multilingual phone
strings as input feature for speaker identification. By using
phone strings, we expect to model the pronunciation
idiosyncrasy of a speaker. The phone strings are decoded
applying phone recognizers from eight different langua-
ges. By using multiple languages for decoding, we expect
to obtain more robust and language independent speaker
identification. Two variations of this approach are
compared to the traditional acoustic feature GMM. Results
are given for matching and unmatching conditions using
data recorded on variable distances. The remaining paper
is organized as follows: the next section describes the
database used for carrying out all experiments. After a
brief repetition of GMMs in section 3, the multilingual
phone string approach is introduced in section 4. Section 5
gives an overview of the experiments and results before
section 6 summarizes and concludes the paper.

2. DATABASE DESCRIPTION

Real-world applications are expected to work under un-
matching circumstances, i.e. the testing conditions e.g. in
terms of microphone distances might be quite different
from what had been seen during training. Therefore,
methods for robust speaker identification under various
distances needed to be explored. For this purpose a
database containing speech recorded from various
microphone distances had been collected at the Interactive
Systems Laboratories. The database contains 30 speakers
in total. From each speaker five sessions had been
recorded where the speaker sits at a table in an office
environment, reading an article, which is different for each
session. Each session is recorded using eight microphones
in parallel: one closed-speaking microphone (Sennheizer
headset), one Lapel microphone worn by the speaker, and
six other Lapel microphones. The latter six are attached to
microphone stands sitting on the table, at distances of 1
foot, 2 feet, 4 feet, 5 feet, 6 feet and 8 feet to the speaker,
respectively. Tables and graphs shown in this paper use
“Dis 0” to represent closed-speaking microphone distance
data, and “Dis n” (n>0) to refer to the n-feet distance data.



The data of the first four sessions, together 7 minutes of
spoken speech (about 5000 phones) are used for training
the multilingual phone string approach, whereas only one
minute of the first session was used as training data for the
GMM approach. Testing was carried out on the remaining
fifth session adding up to one minute of spoken speech
(about 1000 phones). The GMM approach was tested
only on 10-second chunks, whereas the phone string
approach was also tested on longer and shorter chunks.

3. GAUSSIAN MIXTURE MODELS APPROACH

The GMM approach has been widely studied and used in
speaker recognition tasks [3]. A multi-variate GMM
density, ( )λxP
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number of mixture of components. 13-dimension LPC
cepstra are used as speaker’s feature vectors and are
clustered into 32 centers using K-means. These centers are
used to initialize the Gaussian mixture centers. We use
EM algorithm to produce the most likely estimates of
mean vectors, covariance matrices and mixture weights. In
the recognition stage, the unknown speaker is identified as
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number of feature vectors in the training speech andjλ is
the GMM of speaker j.

Test \ Train Dis 0 Dis 1 Dis 2 Dis 6
Dis 0 100 43.3 30 26.7
Dis 1 56.7 90 76.7 40
Dis 2 56.7 63.3 93.3 53.3
Dis 6 40 30 60 83.3

Table 1: SID rate (% correct)

Table 1 shows the GMM Speaker IDentification Rate
in percentage correct for matching and non-matching
distance conditions in training and testing. Under matching
conditions (numbers are given in bold) the GMM appro-
ach achieves reasonable good results, however under non-
matching conditions the performance degrades dramati-
cally. We conclude from these results that the GMM
approach lacks robustness in the case where the models
are tested on distances, which are not covered from the
training data.

4. MULTILINGUAL PHONE STRING APPROACH

Phone recognition and n-gram modeling has been
successfully used for language identification [4,5] in the
past, whereas its application to speaker identification is

introduced very recently [6]. In this paper we extend the
approach proposed in [6] to tackle the non-matching
distance and channel conditions. Furthermore, we intro-
duce two different methods based on the multilingual
phone string approach and compare these to the GMM
approach.

The basic idea of the multilingual phone string
approach is to take phone strings decoded by phone
recognizers of several different languages as features
instead of using the conventional acoustic feature vectors.
Throughout this experiments we applied phone
recognizers of eight different languages. By using
information derived from phone strings, we expect to
cover speaker dependent idiosyncrasy of pronunciation.
We expect features derived from the pronunciation
idiosyncrasy to be more robust against non-matching
conditions than acoustic features. Furthermore we aim to
increase the robustness by providing supplementary
information from eight different languages.

4.1. Phone Recognizer in eight Languages

The experiments are based on phone recognition engines
built in the eight languages: Mandarin Chinese (CH),
Croatian (KR), German (DE), French (FR), Japanese (JA),
Portuguese (PO), Spanish (SP), and Turkish (TU). For
each language, the acoustic model consists of a 3-state
HMM per phone with a mixture of 128 Gaussian
components per state. The Gaussians are on 13 Mel-scale
cepstral coefficients with first and second order
derivatives, power, and zero crossing rate. After cepstral
mean subtraction a linear discriminant analysis reduces the
input vector to 32 dimensions. All engines are trained and
evaluated in the framework of theGlobalPhoneproject,
which provides 15 to 20 hours word-level transcribed
training data per language [7]. Table 2 shows the number
of phones per language and the resulting Phone Error
Rates on each language. See [7] for further details.

Language Phones PER Language Phones PER
CH 137 48.8 KR 41 41.1
DE 43 46.1 PO 46 45.0
FR 38 46.7 SP 40 33.0
JA 31 32.6 TU 29 42.8

Table 2: Phone error rate (PER %) for eight languages

4.2 Phone Language Model Training

For the following experiments we trained Phone
Language Models (PLM) for each training speaker as
showed in figure 1 for speaker J. The label L1 PR in
figure 1 refers to the phone recognizer of language No.1,
and L8 PR refers to the phone recognizer of language
No.8. The training data of speaker J is decoded by the
phone recognizers of each language to produces sequences



of phone strings. The n-gram phone language model PLM
L1 for speaker J is created from the phone sequence of all
training utterances spoken by speaker J decoded by the
phone recognizer of language L1.

We present two multilingual phone string approaches
named SID-MPLM and SID-SPMPLM, respectively.
Both will be explained in detail in the following sub-
sections. These approaches have the above described
phone language model training step in common. The
difference between SID-MPLM and SID-SPMPLM is how
the PLM of each speaker is applied.

4.3. SID-MPLM

The PLM of each speaker, which was trained as explained
in figure 1, is now used to determine the identity of a
speaker. Figure 2 shows for the SID-MPLM (Speaker
IDentification using Multilingual Phone Language Model)
approach how the incoming test speech of an unknown
speaker is processed by the PLM of speaker J.

Firstly, the phone recognizers of eight languages decode
the test speech and produce eight phone strings, one per
language. Secondly, these phone strings are fed into the
speakers’ PLM of the corresponding language to calculate
the perplexities. This process results in eight perplexities
(one per language) for each speaker. In the third step these
eight perplexities are interpolated to build a final
perplexity for each speaker. The training speaker, which
produces the lowest perplexity, is identified as the test
speaker. In our experiments we used trigram PLMs and
equal weight linear interpolation.

4.4. SID-SPMPLM

In the SID-MPLM approach, both training and test data
are decoded using equal distribution phone language
model. The speakers PLM is then used to compute the
perplexity of test data. The idea for the SID-SPMPLM
approach is to use the speaker-dependent PLM directly to
decode the test speech. The underlying assumption is, that
a speaker achieves a lower decoding distance score on a
matching PLM than for a non-matching PLM. In other
words, the training step in the SID-SPMPLM approach is
identical to the one in the SID-MPLM approach, but the
testing step differs: for the SID-SPMPLM approach the
test data is decoded multiple times using one speaker-
dependent PLM each time. Thus in our experiments, test
data will be decoded 30 times for each language, each time
with one speaker’s PLM. We use an equal weight linear
interpolation scheme to combine the decoding scores from
all languages. The speaker to which the PLM belongs,
which produces the lowest interpolated decoding distance
score, is hypothesized.

5. EXPERIMENTS AND RESULTS

5.1. SID-MPLM performance

Table 3: SID Rate with different test length at Dis 0
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Figure 2: SID Rate with different test length (seconds)

Table 3 shows the identification accuracy of SID-
MPLM approach with decreasing test utterance length
when both testing and training distance is Dis0. As the

Language 60s 40s 10s 5s 3s
CH 100 100 56.7 40 26.7
DE 80 76.7 50 33.3 26.7
FR 70 56.7 46.7 16.7 13.3
JA 30 30 36.7 26.7 16.7
KR 40 33.3 30 26.7 36.7
PO 76.7 66.7 33.3 20 10
SP 70 56.7 30 20 16.7
TU 53.3 50 30 16.7 20

Int. of all LM 96.7 96.7 96.7 93.3 80

Figure 2: Block Diagram of SID-MPLM
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test utterance becomes shorter, the combination of all
languages becomes more important. Figure 2 shows the
identification accuracy of combining all languages at
different distances. These are the results under matched
conditions (Dis n-n manes both training data and test data
are from distance n feet). On 10 seconds test, the
performance is comparable to GMM.

5.2. SID-SPMPLM results

Language (% correct) Language (% correct)
CH 53.3 KR 26.7
DE 40 PO 30
FR 23.3 SP 26.7
JA 26.7 TU 36.7

Int. of all LM 60
Table 4: SID rate (% correct) of SID-SPMPLM

SID_SPMPLM is more expensive than SID-MPLM. But
the performance is not as good. One reason is that
speaker’s PLM is not fully trained. We train the speaker’s
PLM using around 8-minute speech. This amount of data
is not enough for training a good PLM. So we will also try
this idea on Switch Board data on a small set of speakers.

5.3. Matched Condition

Language Dis0-0 Dis1-1 Dis2-2 Dis6-6
Int. of all LM 96.7 90 96.7 83.3
Table 5: SID rate (% correct) of SID-MPLM under

matched conditions
Test-train distance Dis1-1 Dis1-2 Dis1-0

Int. of all LM 90 80 50
Table 6: SID rate (% correct) of SID-MPLM under

unmatched conditions
Test distance Dis1 Dis2 Dis6
Int. of all LM 96.7 96.7 83.3

Table 7: SID rate of SID-MPLM under unmatched
conditions with combination of PLM at all distances
From table 5, we can see the performance is good

under matched conditions. However under unmatched
conditions, if we only use the phone model of unmatched
distance, the performance degrades as it is showed in table
6. But if we combine all phone models at difference
distances, we can make up the loss as shown in table 7.

6. CONCLUSIONS

In this paper we described two speaker identification
approaches using phone strings decoded by multiple
language phone recognizers and evaluated them on
variable distance data. The experiments results show that
the SID-MPLM approach is robust under unmatched
conditions and outperforms GMM. The reason behind the

multilingual phone string idea is that we expect phone
strings can capture the pronunciation idiosyncrasy of
speakers. And this feature will be robust over different
conditions. The experiments results indicate that phone
string is an appropriate feature for speakers. And by using
multilingual phone strings we obtain robustness and
language independence. Furthermore we think speaker’s
pronunciation idiosyncrasy will be more dominant in
spontaneous speech. Thus multilingual phone strings will
capture this feature more efficiently in spontaneous
speech. So next step we will try these two approaches on
spontaneous data.
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