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ABSTRACT 

In this work, we combine maximum mutual information-based pa- 
rameter estimation with speaker-adapted training (SAT). As will 
be shown, this can be achieved by performing unsupervised pa- 
rameter estimation on the test data, a distinct advantage for many 
recognition tasks involving conversational speech. We also pro- 
pose an approximation to the maximum likelihood and maximum 
mutual information SAT re-estimation formulae that greatly re- 
duces the amount of disk space required to conduct training on cor- 
pora such as Broadcast News, which contains speech from thou- 
sands of speakers. We present the results of a set of speech recog- 
nition experiments on three test sets: the English Spontaneous 
Scheduling Task corpus, Broadcast News, and a new corpus of 
Meeting Room data collected at the Interactive Systems Laborato- 
ries of the Carnegie Mellon University. 

1, INTRODUCTION 

Since the publications of [1, 2] linear transform techniques have 
become extremely popular for performing speaker adaptation on 
continuous density hidden Markov models (HMMs). A good sum- 
mary of many of the refinements of linear regression-based speaker 
adaptation is given by Gales [3]. Other work [4] proposes a set 
of linear transforms that are specified by very few free parame- 
ters, and hence able to be robustly estimated with little speaker- 
dependent enrollment data. Regardless of the precise formula- 
tion of the linear transform, these techniques, until very recently, 
have been based on maximum likelihood (ML) parameter estima- 
tion. This is also true of the technique Speaker-Adapted Train- 
ing (SAT) (5), in which transform parameters are estimated for all 
speakers in a training set, and then used during the re-estimation 
of the speaker-independent means and variances. 

Gopalakrishnan et al [6] first proposed a practical technique 
for performing maximum mutual information (MMI) training of 
hidden Markov models, and commented on the fact that MMI- is 
superior to ML-based parameter estimation given that the amount 
of available training data is always limited, and that the HMM is 
not the actual model of speech production. Gopalakrishnan’s de- 
velopment was subsequently extended by Normandin [7] to the 
case of continuous density HMMs. While these initial works were 
of theoretical interest, for several years it was believed that the 
marginal performance gains that could be obtained with MMI did 
not justify the increase in computational effort it entailed with re- 
spect to ML training. This changed when Woodiand [8] discovered 
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that these gains could be greatly increased by scaling all acoustic 
log-likelihoods during training. Since the publication of [8], MMI 
training has enjoyed a spate of renewed interest and a concomi- 
tant flury of publications, including (9] in which an MMI crite- 
rion is used for estimating linear regression parameters, and [10] 
in which different update formulae are proposed for the standard 
MML-based mean and covariance re-estimation. Also noteworthy 
is the recent work by Gunawardana [11] which sets forth a much 
simplified derivation of Normandin’s original continuous density 
re-estimation formulae, one which does not require the discrete 
density approximations Normandin used. 

In this work, we take the next logical step of combining MMI- 
based parameter estimation with SAT. As will be shown, this can 
be achieved by performing unsupervised parameter estimation on 
the test data, a distinct advantage for many recognition tasks in- 
volving conversational speech. We also propose an approximation 
to the basic SAT re-estimation formulae that greatly reduces the 
amount of disk space required to conduct training. We present 
the results of three sets of speech recognition experiments con- 
ducted on the English Spontaneous Scheduling Task corpus, the 
1998 Broadcast News evaluation set, as well as a new corpus of 
Meeting Room data collected at the Interactive Systems Laborato- 
ties of the Carnegie Mellon University. 

The balance of this work is organized as follows. In Sec- 
tion 2 we briefly describe the basic SAT mean and covariance re- 
estimation formula for ML-based training, and introduce a novel 
way to reduce the amount of hard disk space required to conduct 
this training. We then present re-estimation formulae for perform- 
ing SAT under an MMI criterion. In Section 3 we present the re- 
sults of our initial sets of experiments. Finally, in Section 4 we 
summarize our efforts, and present plans for further work. 

2. MAXIMUM MUTUAL INFORMATION ESTIMATION 

The re-estimation formula used in maximum likelihood speaker- 
adapted trairiing (ML-SAT) have appeared previously in the liter- 
ature [5]. We summarize them here only as an aid for our subse- 
quent discussion. Assume we wish to estimate the k‘* mean px 
and diagonal covariance matrix Dg of a continuous density hidden 
Markov model. Let ¢ be an index over all speakers in the training 
set, and let <{*) denote the ¢' observation from speaker s. Also 
let cf) denote the posterior probability that 2{* was drawn from 
the k* Gaussian in the HMM whose parameters we wish to re- 
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estimate. Let us define the quantities 

=D 
t 

of) = Docket? 
t 

= rate” 
7 

which are typically accumulated during forward-backward train- 
ing. The ML re-estimation formula for jz is then given by 

Sy 
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where 
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and A‘) is the matrix of maximum likelihood linear regression 
(MLLR) parameters [2] for speaker s. Moreover, the n‘* diago- 
nal covariance component of the k** Gaussian can be re-estimated 
from 

aha = 2 (of) 208 Pe 

where fi{*) is the n‘* component of at’) = A )p,. 
A typical implementation of SAT requires writing out the quan- 

tities cl), of), and 9(*?, in addition to A*), for every speaker in 
the training set. A moments thought will reveal, however, that Mx 
can be accumulated from only {A‘)} and {c{*?}. Moreover, the 
sum ve can be accumulated for all speakers and written to disk just 
once, of else just once for each processor used in parallel forward- 
backward training, after which these partial sums can be added to- 
gether. For a training corpus with several thousand speakers such 
as Broadcast News (BN), this results in a tremendous savings in 
the disk space required for SAT, as first noted in [12]. Although 
the sum in (4) requires that the newly-updated mean j1 be used 
in calculating fi{*, experience has proven that the re-estimation 
works just as well if the prior value of ys is used instead, in which 
case the partial sums in (4) can also be written out just once for 
each parallel processor. This novel, and useful, approximation has 
been dubbed fast’ speaker-adapted training (FSAT). 

The re-estimation formulae for maximum mutual information 
speaker-adapted training (MMI-SAT) are quite similar to their max- 
imum likelihood counterparts. For the sake of brevity, we only 
outline their derivation here. Let 2), n*), and w°) respectively 
denote observation, state and word sequences associated with an 
utterance of speaker s. Define mutual information as 
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Also define the auxiliary function 
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where A° denotes the current set of parameter values, and 

cf) = p(n|w, 20; A, A°) — p(n2; A, A 

Gunawardana [11] shows that maximizing Q(A|A°) with respect 
to A, is sufficient to ensure I(W, O; A) > 1(W,0;A°). 

Letus set Ax = {ux, Di}, whereupon it is straightforward to 
show that 

QUAIA?) = $7 Qu(Ael A) 
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where 
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and =a is a convergence constant, and we must redefine 
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Next observe that the acoustic log-likelihood for the k** Gaussian 
can be expressed as 

log p(2|Ax) = 

=} flog adsl + (2- AM un)? Dee - AM u)] 
Substituting (6) into (5), taking the derivative with respect to je 
and equating the result to zero, we find that the new value of 15 
can be calculated from (1) as before, provided that we define 
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where p12 is the current value of the k** mean. It remains only to 

choose a value for d{*”; good results have been obtained with 

a? = BY p(nf" 

for E = 1.0 or 2.0 as recommended in (8). Setting E > 1.0 
also ensures that My is positive definite, which is necessary if 
bk = M;" vs is to be an optimal solution. Similar calculations 
reveal that the diagonal variance components can be obtained from 
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where 2 is the nt component of f2 = Ay? and of, 
the current value of the variance. We ean make the same FSAT 
approximation as before in accumulating the terms (4) and (7) have 
in common, which has proven to work well in practice.



3. SPEECH RECOGNITION EXPERIMENTS 

The speech experiments described below were conducted with the 
Janus Recognition Toolkit (JRTk), which is developed and main- 
tained jointly at Universitit Karlsruhe, in Karlsruhe, Germany and 
at the Camegie Mellon University in Pittsburgh, Pennsylvania, USA. 

ESST Experiments 

For our first set of recognition experiments, training was conducted 
‘on the English Spontaneous Scheduling Task (ESST) corpus, which 
contains approximately 35 hours of speech contributed by 242 
speakers. For these experiments, we used a relatively small base- 
line model with eight (8) Gaussians for each of 2,340 codebooks, 
giving a total of $35 Gaussians per hour of training speech, which 
is well within the optimal range reported in [8]. These initial ex- 
periments were intended to establish the effectiveness of our algo- 
rithms on a tractably-sized training set, to provide for fast experi- 
mental tumaround. 

All speech data was digitally sampled at a rate of 16 kHz. The 
speech features used for all experiments were obtained by estimat- 
ing 13 cepstral components, along with their first and second dif- 
ferences, then performing linear discriminant analysis to obtain a 
final feature of length 32. Features were calculated every 10 ms us- 
ing a 16 ms sliding window. Speaker-dependent frequency-domain 
vocal tract length normalization (VTLN) was used in calculating 
all speech feaures for both training and test. 

Unsupervised speaker adaptation for all test conditions requir- 
ing it, was performed on the errorful test set transcriptions obtained 
with the baseline recognizer. MLLR parameter estimation was 
conducted by iterating twice over the test set. In all cases, only 
a single transformation was used. 

Before beginning conventional MMI training, it was first nec- 
‘essary to write word lattices for all utterances in the training set [13]; 
this was accomplished with the baseline HMM, an 18,000 word 
vocabulary covering the training set, and a bigram language model 
trained on the ESST corpus. As suggested in [8], the acoustic log- 
likelihood scores calculated during MMI training were scaled by 
a factor of 1/15, before being combined with the unscaled log- 
likelihood returned by a unigram language model in order to 
culate the posterior probability of any word appearing in the recog- 
nition lattice. Once the posterior probability of a given word in the 
lattice was known, the best state sequence based on fixed start and 
end times was calculated, and the statistics required for parameter 
re-estimation were accumulated for only those states lying on this 
Viterbi path. 

ML-based speaker-adapted training was begun with the base- 
line conventional ML model described above and continued for 
three iterations over the training set. The final MLE-SAT acous- 
tic model and speaker-dependent MLLR parameters were used as 
the starting point for MMI-SAT. The mean and variance param- 
‘eters were updated during MMI-SAT as described in Section 2 
using word lattices written with the adapted MLE-SAT acoustic 
model; the MLLR parameters for the training set speakers were 
‘not re-estimated during MMI-SAT. The same approach was used 
for unsupervised parameter estimation on the test set: speaker- 
dependent MLLR parameters were estimated with the MLE-SAT 
acoustic model, and then used with both the MLE-SAT and MMI- 
SAT acoustic models for lattice rescoring. 

‘Shown in Figure | are the results of our initial experiments on 
the ESST test set, which contains 22,889 total words. The result 

labelled “MMI” was obtained with an conventional MMI-trained 
system without any speaker adaptation apart from VTLN. The 
“MLE with MLLR" result was obtained by using unsupervised 
MLLR adaptation on the MLE baseline model; the “MMI with 
MLLR” result was obtained by using unsupervised MLLR adap- 
tation on the MMI model. The “MLE-SAT” result was obtained 
by performing MLLR adaptation on the MLE-SATrained model. 
Finally, the result labelled “MMI-SAT” was obtained by using the 
adaptation parameters estimated with the MLE-SATrained acous- 
tic model to transform the means of the MMI-SATrained acoustic 
model. 

System % Word Error Rate 
MLE Baseline 29:38 

MMI 2747 
MLE with MLR 25.53 
MMI with MLLR 25.54 

MLE-SAT 24.60 
MMI-SAT 23.65, 

Fig. 1. Word error rates obtained with the small system on the 
ESST test set. 

From these results, it is clear that the performance gain ob- 
tained using conventional MMI- instead of MLE-training does not 
carry over to the case when MLLR adapation is used, a fact that is 
rather surprising in light of what has been reported previously (8). 
This gain does, however, carry over when an MMI-SATrained sys- 
tem is transformed with the MLLR parameters estimated with the 
MLE-SAT model. 

‘On the small training set, we were also able to compare sys- 
tem performance after various numbers of training iterations and 
with various values of the constant Z. These results are shown in 
Figure 2, from which it is clear that optimal performance with con- 

System % Word Error Rate 
Training Iteration 
T1273 

MLE Baseline 29.38 
MMI, E 2793 [2733 | 27.89 
MMI, 28.32 | 27.66 | 2747 

MMUSAT, B= 1.0 || 24.09 | 23.87 | 23.65 
MMESAT, E=2.0 || 24.14 | 23.86 | 23.85 

Fig. 2. Comparison of system performance versus number of train- 
ing iterations. 

ventional MMI training is obtained after two iterations, whereas 
MML-SAT requires three or more iterations. Moreover, a conver- 
gence value of E = 1.0 is adequate, a larger value only slows 
convergence. 

Broadcast News and Meeting Room Experiments 
In a second set of experiments, HMM training was conducted on a 
combined training set consisting of the Broadcast News (BN) cor- 
pus, which totals approximately 64 hours of speech, along with the 
ESST set, The complete training set contains speech contributed 
by 2,989 speakers. Two test sets were used to determine system 
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performans the first was that set used for the 1998 Broadcast 
‘News evaluation which contains 15,310 words; the second Meet- 
ing Room (MR) test set was collected at the Interactive Systems 
Laboratories (ISL) of the Carnegie Mellon University. The MR 
test set contains 11,214 words spoken in discussions of various re- 
search projects currently underway at ISL. The speech therein is 
conversational and entirely spontaneous. Although the entire MR 
corpus is English, many of the speaker are non-native. As such, 
it makes for a very challenging automatic recognition task [14]. 
For these experiments, our baseline recognizer was comprised of 
4,144 continuous density codebooks, each of which contained 16 
Gaussians, for a total of 670 Gaussians per hour of training speech. 

For the systems trained on the combined BN-ESST set, we 
used the same feature extraction as before, save that the final fea- 
ture length after LDA analysis was 40 instead of 32. 

Once more three iterations of MLE-SAT were conducted on 
the training set. Using the FSAT approximation described in Sec- 
tion 2, less than 700 Mb of hard disk space was required to store all 
speaker-dependent forward-backward statistics needed for mean 
and covariance re-estimation. 

Shown in Figure 3 are the results of our initial speech recogni- 
tion experiments on the BN and MR test sets. To generate these re- 
sults, we first did a complete decoding with the baseline MLE sys- 
tem, simultaneously writing both word lattices and errorful tran- 
scripts. The word lattices were then rescored with the appropriate 
acoustic models and, where necessary, adaptation parameters to 
generate the subsequent results. Apart from this, the labels for 
the several results have the same meanings as those in Figure 1. 
In these experiments, it was found that best performance was ob- 
tained after two iterations of MMI-SATraining. 

‘System ‘% Word Error Rate 
BN MR 

MLE Baseline | 23.6 | 43.3 
MMI 26 | 446 

MLE with MLLR [20.8 43.6 
MLE-SAT 19.9 422 
MMI-SAT 18.9 40.2 

Fig. 3. Word error rate results on the 1998 Broadcast News eval- 
uation set (BN) and the Interactive Systems Laboratories Meeting 
Room set (MR). 

4, CONCLUSIONS 

We have presented a practical technique for performing SAT on a 
continuous density hidden Markov model using an MMI criterion. 
In a set of experiments on three large vocabulary speech recogni- 
tion tasks, we have demonstrated the effectiveness of MMI-SAT in 
reducing word error rate with respect to that obtained with MLE- 
SAT. 

Further work is needed to refine the techniques presented here: 
The time required to conduct system training is fairly large, but 
could be greatly reduced through a more efficient implementation 
of the lattice forward-backward routines. Moreoever, it is possible 
that larger performance gains could be obtained by using multi- 
ple MLLR transforms for each speaker instead of the global trans- 
forms used for all experiments presented here, or by using a dif- 

ferent linear transform for speaker adaptation. Al of these issues 
are topics for further research. 
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