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Abstract 

For safe and efficient human-robot interaction, hu- 
man friendly robots must have the perceptive capabili- 
ties to localize their users and to capture their commu- 
nicative cues such as gestures or gaze direction. In this 
paper we present our ongoing work on building such 
perceptive components for a humanoid robot. First, 
we describe an attention system for the robot. Such 
a system is necessary to focus the robot’s limited re- 
sources to the most important regions in the scene. We 
use a microphone array to accoustically track a user. 
We describe the design of the system, provide details 
of the used algorithms and present experimental re- 
sults. For visual tracking of the user, a stereo camera 
is used. We track a user's face, hand and forearm loca- 
tions in 3D by combining color and range information 
obtained from the stereo camera. An important cue 
for human-robot interaction is the user's focus of at- 
tention expressed by gaze direction. Here we present 
our approach to estimate a user's head pose from facial 
images using neural networks. 

1 Introduction 

In order to build collaborative human-friendly 
robots which are able to respond appropriately to their 
users’ needs and to assure user safety, we need to equip 
these robots with the perceptive capabilities to cap- 
ture all the necessary information about their users 
and the context: in which they act. As an equivalent 
counterpart to the human's eyes and ears, robots use 
cameras and microphones as sensors for visual and 
acoustical perception. 

Acoustically, the goal is to create an acoustic map of 
the robot's sound environment. For the acoustic scene 
analysis three main tasks have to be processed: local- 
ization, separation and classification of sound sources 
present in the acoustic scene. The main focus lies 
on the speech signal and its enhancement to guaran- 
tee a trouble-free speech-based interaction with hu- 
mans through the audio channel. But also background 
sound signals are analyzed as they can be important 
indicators of salient objects and events or dangerous 
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situations. 
Visually, locating and capturing the user and his 

actions are of main interest. The robot should be able 
to detect and track persons that are nearby, it should 
be able to recognize their faces, monitor their gestures 
and body posture as well as their gaze. 

Fusing acoustical and visual information is not only 
helpful for user tracking purposes but is also necessary 
for a complete analysis of the robot’s environment. 
Therefore, the robot must be equipped with an atten- 
tion system, detecting salient events and pointing out 
dangerous situations. 

This paper is organized as follows: In Section 2 an 
attention system is presented dealing with an efficient 
analysis of the environment and the detection of dan- 
gerous situations to assure the user’s safety. Section 
3 describes our system to acoustically track a person 
with a microphone array. In Section 4 we describe our 
approach to track a person's face, hands and forearms 
in 3D using stereo vision. In Section 5 we discuss 
our approach to detect. a person’s focus of attention 
and provide details about our neural network based 
method to head pose estimation. Finally, some con- 
clusions are drawn and an outlook on future work is 
given. 

2 Attention System 
A humanoid robot must be able to cooperate ef- 

ficiently and safely with humans in an unconstrained 
environment. Therefore, the objectives of an attention 

system are to allow to learn efficiently about a new 
environment and to react to important events. Fur- 

thermore, the robot should not only present no danger 
to humans itself, but also be able to detect dangerous 
situations. 

2.1 Efficiency and Data Reduction 

It is computational prohibitive for a robot to pro- 
cess every region in every captured image to the high- 
est. cognitive levels, like object: recognition and action 
planning. It has to bundle its limited resources on re- 

gions likely to contain important objects and events. 
‘As the human brain faces the same problem and per-



forms remarkably well on this task, it is sensible to use 

it as a starting point. 
In the preattentive part of the human visual sys- 

tem several topographical feature maps like intensity, 
opponent-color, orientation, depth and movement are 
extracted in parallel over the complete visual field. 
These maps pass through a hierarchical structure with 
higher levels consisting of smaller maps and consis- 
tently larger receptive fields per pixel [1], [2]. 
On the one hand, this hierarchy provides scale in- 

variance and, on the other hand, it calculates center- 

surround differences, which indicate salient objects, 
and performs the fusion into a single saliency map, 
which is used to determine the next point to focus 

attention on. Although skin color and faces are no 
features in the human system, it might be a good idea 
to include them into an artificial system as humans 

are of particular importance to the 
2.2 Safety 

As the capabilities of digital signal processing sys- 
tems are still rather limited compared with those of 
humans, simple special mechanisms should be intro- 
duced to identify dangerous situations. To this end, 

a detector for objects moving at high velocity is pre- 
sented in the followings. They not only represent an 
impending danger themselves naturally, but a quick 
movement of the user may also indicate a dangerous 
situation, which the robot has missed to realize itself. 

Thus the objective is to find a computationally in- 
expensive algorithm that is nevertheless able to detect 

fast. moving objects reliably. Our approach is based 
on optical flow images as such images are likely to be 
needed for other tasks anyway. 
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Figure 1: Averaged Velocity Histogram 

Fig. 1 shows a typical distribution of velocity values 
in an optical flow image calculated using the algorithm 
in [3] averaged over 30 images. It can be approximated 
by a superposition of two independent exponential dis- 
tributions. One for the static background and another 
one for the moving object. The former having a small 
decaying constant and the latter having a decaying 

constant proportional to the velocity and size of the 
moving object. 

It can be seen that it is rather difficult to distinguish 
between a small object moving at high velocity and a 
large object moving at low velocity, a waving hand and 
a walking human respectively. At least two sampling 
points, one below and one above the intersection, need 
to be used. 
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Figure 2: Standard Deviation of Velocity Histogram 

The situation is aggravated further as the standard 
deviation of the velocity distribution is of the same 
order of magnitude as the velocity itself and thus the 
SNR is rather low, as can be seen in Fig. 2. To improve 
the SNR an integration operation, i. e. areas instead 
of points, should be used. 

Their lower and upper bounds have to be chosen ac- 
cording to what velocities are regarded as indicating 
danger, and the capturing conditions. Furthermore, 
their choice is a trade-off between errors due to low 
SNRs and errors due to small relative differences be- 
tween the different scenarios, i. e. small and large inte- 
gration intervals respectively. On the other hand, the 
threshold values are a trade-off between false alarm 
and error rate. 

\ 
Figure 3: Detected object moving at high velocity 

If a velocity image is found to contain an object 
moving at high velocity, thresholding and morpholog- 
ical operations are applied to highlight this object, as 
can be seen in Fig. 3.



3 Acoustic Tracking 
The technique of choice of most recent acoustic 

localization systems using microphone arrays is a 
two-step procedure. First, the time delay of arrival 
(TDOA) of speech signals in a pair of spatially sepa- 
rated microphones is estimated. In a second step the 
estimated TDOAs of different microphone pairs are 
used in combination with the microphone array ge- 
ometry to localize the sound source. 

Signal Model 
For a given pair of spatially separated microphones 

Mj and My, the recorded sensor signals «;(t) and 2, (t) 
for a signal s(t), emanated from a remote sound source 
in a reverberant and noisy environment, can be mod- 
eled mathematically as 

ai) = hi(i)*s(t) +n,(2) 
a(t) = hy(t—ry)*a+nj(t), — ) 

where 7); represents the relative signal delay of inter- 
est, * signifies the convolution operator, h(t) is the 
acoustic impulse response between the sound source 
and the i” microphone and the additive term nj(t) 
summarizes the channel noise in the microphone sys- 
tem as well as environmental noise for the i!” sensor. 
This noise n;(¢) is assumed to be uncorrelated with 
s(t). 

TDOA Estimation with GCC Method 
The most popular approach for determining the 

TDOAs is called the Generalized Cross-Correlation 
(GCC) method [4]. The relative time delay 7; is esti- 
mated as the time lag with the global maximum peak 
in the GCC function R\?) (r) 

fj = argmax Ri) (7). (2) 

This GCC function R?)(r) is defined as 

poo 

APG) =f vyIKW)X; Wee. (8) 

The weighting function qij(w) intends to decrease 
noise and reverberation influences and tries to empha- 
size the GCC value at the true TDOA value 7);. For 
real environments the Phase Transform (PHAT) tech- 
nique [4] has shown best performance. This PHAT 
weighting function is defined as 

(4) 

Confidence Criteria for TDOA estimates 
For outlier detection for TDOA estimates, two con- 

fidence criteria can be used: the value of the maximum 

peak and the ratio between the 1*" and the 2” peak in 
the GCC function [5]. These criteria allow a reliabil- 
ity scoring of individual estimates and can be used to 
reject erroneous measurements. In combination with 
data association and clustering techniques the TDOA 
estimates are sufficiently accurate so that the follow- 
ing localization algorithm can produce robust sound 
position estimates. 

Localization Algorithm 
To come from the TDOAs and the microphone ar- 

ray geometry to the source position, the exact: local- 
ization necessitates solving a set of non-linear equa- 
tions, which can be computationally demanding. To 
accelerate the sound source position determination, 
the One-Step Least-Squares (OSLS) algorithm is used. 
This closed-form location estimator approximates suf- 
ficiently accurate the exact solution to the non-linear 
problem [6]. 

Post-Processing: Adaptive Kalman Filtering 
For a continuous source trajectory, these ini- 

tial, noise-corrupted position estimates are spatially 
smoothed by a Kalman Filter (KF). The applied KF 
is derived from 3 possible source motion models; a 
static, a constant velocity and a constant acceleration 
model. The motion dynamics of a speaker in our office 
environment can be variable and, hence, the decision 
for one of the sound source models has to be made 
continuously. Therefore, the approach of the Multiple 
Model Adaptive Estimator (MM AB) is applied [7]. In 
this approach 3 KFs with the 3 different motion mod- 
els mentioned above run in parallel. The final position 
estimate is the sum of the estimates of each of these fil- 
ters weighted with the according source motion model 
probabilities. These model probabilities can be calcu- 
lated recursively from the initial input estimates. 

Experiments and Results 
Real data experiments have been carried out in a 

(5m x 5m x 3m) office room. For the data recording 
we used a 5-microphone array in an equilateral double- 
tetrahedron geometry with a side length of D = 28 cm 
as shown in Fig. 4. The sampling frequency was 
fs = 16 kHz. The recorded data were analyzed in 
frames of 32 ms to assure quasi-stationarity. For this 
data segmentation a Hamming window with a 50% 
overlap was applied. 

The proposed system shows robust speaker local- 
ization capabilities for our noisy and reverberant, en- 
vironment. The speaker could be tracked with ease 
if he or she keeps talking while moving. Exemplarily, 
Fig. 5 displays the true trajectory (arrow) and the po- 
sitional estimates before and after the adaptive KF for 
a walking speaker in a 3D-plot. Note the advantage 
of the KF: the source trajectory is not only smoothed 
but also guaranteed to be continuous because of the



Figure 4: Experimental Setup 

ity of the filter to predict source positions in case 
of missing current. position estimates due to speech 
pauses or non-reliable TDOA estimates. 
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Figure 5: Positional Estimates before and after Adap- 
tive Kalman Filtering 

4 Visual Tracking 
In order to gain information about the location and 

posture of a person interacting with a robot, we track 
the 3D-positions of the person’s head and hands. They 
are important features for the recognition of many ges- 
tures, including the pointing gesture. 

Our approach combines color information and 
range information obtained by stereoscopic vision, 
thus improving the quality of tracking compared to 
plain color-based tracking. 

Vision System 

Figure 6: Stereo camera head mounted on a par-tilt 
unit 

Our setup consists of a fixed-baseline stereo camera 
head mounted on a pan-tilt unit (Fig. 6). 
A commercially available library (SRI’s Small Vi- 

sion System) calculates a dense disparity map made 
up of pixel-wise disparity values, and provides 3D- 
coordinates for each pixel. The pan-tilt unit is pro- 
grammed to keep the head of the tracked person 
slightly above the center of the image. 

Skin Color Modeling 
Head and hands can be located by color as human 

skin color clusters in a small region of the chromatic 
color space [8]. To model the skin color distribution, 
two histograms of color values are built by counting 
pixel samples belonging to either the skin-color class 
S* or the not-skin-color class S~. By means of the 
histograms, the ratio between P(S*|2) and P(S~|x) is 
calculated for each pixel x of the color image, resulting 
in a grey-scale map of skin-color probability 

To eliminate isolated pixels and to produce closed 
regions, a combination of morphological operations is 
applied to the skin-color map. 

Combining Color and Range Information 
In order to initialize and maintain the skin-color 

model automatically, we search for a person’s head in 
the disparity map of each new frame. Following an 
approach proposed in [9], we first look for a human- 
sized connected region, and then check its topmost 
part for head-like dimensions. Pixels inside the head 
region contribute to $*, all other pixels contribute to 
S~. Thus, the skin-color model is continually updated 
to accommodate changing light conditions. 

In order to find potential candidates for the coor- 
dinates of head and hands, we search for connected 
regions in the thresholded skin-color map. For each 
region, we calculate the spatial mean of the associated



3D-pixels, weighted by their skin-color probability. If 
the pixels belonging to one region vary strongly with 
respect to their distance to the camera, the region is 
split by applying a k-means clustering method. We 
thereby separate objects that are lying on different 
range levels, but accidentally merge into one object in 
the 2D-image. 

Figure 7: Head and hand candidates detected in the 
skin-color map 

Fig. 7 shows the skin-color map generated for a 
video frame. Dark pixels represent high skin-color 
probability. All connected regions are highlighted, 
their spatial means are the potential coordinates of 
head and hands. 

Tracking 
The state of the tracker s; is a combination of the 

3D-coordinates of head and hands at time t. With 
each new frame, all permutations of the candidate co- 
ordinates are evaluated in order to find a new combi- 
nation s; that maximizes the product of following 3 
scores: 

The observation score P(O;|s:) is a measure for the 
extent to which a given state s; matches the obser- 
vation O;. P(O;|s:) increases with each pixel that 
complies with the model, e.g. a pixel showing strong 
skin-color at a position the model suggests to be part 
of the head. 

The posture score P(s;) is the prior probability of 
the posture. It is high if the posture represented by s; 
is a frequently occurring posture of a human body. It 
is equal to zero if s; represents a posture that. breaks 
anatomical constraints. To be able to calculate P(s;), 
a model of the human body was built from training 
data. The model consists of the average height of the 
head above the floor, a probability distribution (rep- 
resented by a mixture of gaussians) of hand-positions 
relative to the head, as well as a series of constraints 
like the maximum distance between head and hand. 

The transition score P(s;|)-1) is a measure for the 
probability of s; being the successor of s;-1. It is 
higher the closer the positions of head and hands in 

Figure 8: Automatically extracted 3D body features 

s; are to their positions in the previous state s;1. 
P(s;|1-1) is set to a value close to zero! if the distance 
of a body part between t—1 and t exceeds the limit of 
a natural motion within the short. time between two 
frames. 

Experimental Results 
Our experiments indicate that by using the method 

described, it is possible to track a person robustly, 
even when the camera is moving and when the back- 
ground is cluttered. 

The tracking of the hands is affected by occasional 
dropouts and misclassifications. Reasons for this can 
be temporary occlusions of a hand, a high variance in 
the visual appearance of hands and the comparatively 
high speed with which people move their hands. 

The detection of the head in the disparity image 
does not succeed in every frame, but it is still sufficient 
to keep the skin-color model up and running. 

The system runs at about 8 frames per second on 
a standard 1GHz-PC. 

Pointing Gestures 
Pointing gestures are amongst the most important 

gestures a mobile robot should be able to understand. 
One approach to extract the direction of a pointing 
gesture is based on the assumption that the pointing 
direction is the extension of the line of sight between 
the head and the pointing hand [10]. As this approach 
is limited to gestures performed with an outstretched 
arm, our estimate of the pointing direction is based 
on the direction of the forearm. To identify the ori- 
entation of the forearm, we calculate the covariance 
matrix C’ of the 3D-pixels w1,,y within a 20cm radius 

1 P(si|s:_-1) must always be positive, so that the tracker can 
recover from erroneous static positions.



around the center of the hand ji: 

1 
C= Fen — wen Ww) 6) 

N 

The first principal component of C' indicates the 
direction of the largest variance of the pixel positions, 
which is equivalent. to the orientation of the forearm 
on condition that no other objects are present in the 
critical radius around the hand. 

This work is in progress - an evaluation will have 
to show the accuracy of our approach. Fig. 8 shows a 
frame from a video sequence including the extracted 
locations of head and hands as well as the orientation 
of the forearms. 

5 Focus of Attention 
Gaze plays an important role in human social in- 

teraction. During face-to-face communication peo- 
ple look at each other, monitor each other's lip- 
movements and facial expressions, and follow each 
other's gaze. In an intelligent working space, where 
humans and robots interact. with each other, informa- 

tion about the user’s gaze direction is a necessary cue 
to detect. with what or whom the user is interacting 

or to what he is paying attention. 
In recent: years, we have addressed the problem of 

tracking the visual focus of attention of participants in 
meetings; i.e., tracking who is looking at whom dur- 
ing meetings [11, 12]. In the framework of the Sonder- 
forschungsbereich “Humanoide Roboter” we are now 
adapting and extending our approach to build a gaze- 
aware robot which is able to monitor a person's focus 

of attention. 

A body of research literature suggests that humans 
are generally interested in what they look at (e.g. [13]) 
and the close relationship between gaze and attention 

during social interaction has been emphasized (14, 15]. 
In addition, recent user studies reported strong ev- 
idence that people naturally look at the objects or 
devices with which they interact. [16, 17]. 

A first: step to determine someone's focus of atten- 
tion, therefore is, to find out in which direction the 
person looks. There are two contributing factors in 

the formation of where a person looks: head orienta- 

tion and eye orientation. In this work head orientation 
is considered as a sufficient cue to detect. a person’s 

direction of attention. Relevant psychological litera- 
ture offers a number of convincing arguments for this 
approach (e.g. [15, 14]) and it has been shown ex- 
perimentally, for example, that head orientation alone 
is a very reliable cue to detect focus of attention of 
participants in a meeting [18]. 
A practical reason to use head orientation to esti- 

mate a person’s focus of attention, is, that in scenarios 
such as addressed in this work, head orientation can be 

estimated with non-intrusive methods while eye orien- 
tation can not. 

In the remainder of this section we describe our ap- 
proach to estimate head orientation using neural net- 
works. 

5.1 Estimating Head Pose Using Neural 
Nets 

In this work we aim at estimating head orientation 

directly from facial images. The main advantage of 
such an appearance based approach is that no facial 
landmark points have to be detected in order to com- 

pute head pose. Instead, head pose is estimated from 
the whole facial image and therefore only the face has 

to be detected and tracked in the camera image. 

We use neural networks to estimate pan and tilt 

of a person's head from pre-processed facial images. 
Similar approaches are for example described in [19] 
or [20]. As compared to our work, these systems are, 
however, user-dependent and report only results for 
one single user. They also differ in the used network 

architectures and image preprocessing approaches. 

Data Collection 

We collected training data from 19 persons in our lab. 
During data collection, users had to wear a head band 
with a sensor of a Polhemus pose tracker attached to 
it. Using the pose tracker, the head pose with respect 
to a magnetic transmitter could be collected in real- 
time. Figure 9 shows two sample images that were 
taken during data collection. 

Figure 9: Two good resolution images taken with a 
pan-tilt-zoom camera during data collection. 

Preprocessing of Images 

To locate and extract the faces from the collected im- 
ages, we use a statistical skin color model [8]. The 
largest skin colored region in the input image is se- 
lected as the face. 
Two different image preprocessing methods were in- 

vestigated: 1) Using normalized grayscale images of 
the user's face as input and 2) applying edge detec- 
tion to the images before feeding them into the nets.



In the first preprocessing approach, histogram nor- 
malization is applied to the grayscale face images as a 
means towards normalizing against different lighting 
conditions. No additional feature extraction is per- 
formed. The normalized grayscale images are down- 
sampled to a fixed size of 20x30 pixels and are then 
used as input to the nets. 

In the second approach, a horizontal and a vertical 
edge operator plus thresholding is applied to the fa- 
cial grayscale images. The resulting edge images are 
downsampled to 20x30 pixels and are both used as 
input to the neural nets. 

Figure 10 shows the corresponding preprocessed fa- 
cial images of a user. From left to right, the normal- 
ized grayscale image, the horizontal and vertical edge 
images of a user's face are depicted. 

normalized Figure 10: — Preprocessed images: 
grayscale, horizontal edge and vertical edge image 
(from left to right) 

Neural Net Architecture, Training and Results 

We have trained separate nets to estimate head pan 
and tilt. For each net, a multi-layer perceptron archi- 
tecture with one output unit (for pan or tilt) and one 
hidden layer with 20 to 150 hidden units was used. 
We estimate head pan in the range of -90 to +90 de- 
grees and head tilt in the range of -60 to +60 degrees. 
Output activations for pan and tilt were normalized 
to the range [0,1]. Training of the neural net was done 
using standard back-propagation. 
We used around 9900 images from 17 different users 

to train a “multi-user” network. Both the cross- 
evaluation set and the test-set contained around 1240 
images from the same seventeen users. After training, 
we achieved a mean error of 3.8 degrees for pan and 
3.2 degrees for tilt on the test set. 

To determine how well the neural net based system 
can generalize to new users, we have also evaluated the 
neural networks for pan and tilt estimation on data 
from two new users, which have not been in the train- 
ing set. On these new users an average error of 7.1 
degrees for pan and 9.5 degrees for tilt was obtained. 

Table 1 summarizes the results on the multi-user 
test set and on the new users. 

Test Set 
multi-user [| 3.8 

new users 71 

Table 1: Average estimation error in degrees for pan 
and tilt on a multi-user test set and on two new users. 

5.2 From Head Pose to Focus of Atten- 
tion 

Once a person’s head orientation is estimated, we 
would like to infer the most likely target — such as 

objects or persons in the scene, or the robot itself — at 
which a person might have looked at. In our previous 
work on focus of attention tracking in meetings [11, 12] 
we have developed a statistical approach to find the 
most likely target person at which a subject. might 
have looked at, based on his or her head orientation. 

In our proposed approach the class-conditional 
head orientation distrubitions for the detected target 

persons are modelled as Gaussians and are automat- 
ically learned by looking at a subject’s head orien- 
tations over time. The current approach is however 
limited to scenarios, where the number of participants 
around a table and their locations remains the same 
within a meeting. 
We are currently investigating how to extend our 

approach to make it work in a more dynamic environ- 
ment where as well the user, the robot and the objects 
in the scene may move. 

6 Conclusions 
In this work some key components for a humanoid 

robot to be able to share a common environment with 

a human were presented. These consist of a attention 
system to reduce the data stream and detect danger- 

ous situations, acoustic and visual systems to locate a 

user and to learn about the user’s intentions. For the 
latter, systems to determine the user’s focus of atten- 

tion and his pointing gestures were presented. They 
naturally combine with speech recognition to a multi- 
modal communications interface. 

The work is still in progress. Further extensions 
are envisioned to meet the demands of our scenario. 

Already mentioned were the robustness of the recog- 

nition of the pointing gestures and the adaptation of 
the target models to dynamic environments for the 

estimation of the user’s focus of attention. 

‘As far as the attention system is concerned a special 
mechanism to detect objects falling to the ground is 
planned as this is again likely to indicate a dangerous 

situation. Furthermore, a acoustical component: shall 

be incorporated serving as an early-warning system to 
indicate events outside the visual field of the cameras. 

The acoustic tracking system shall be extended



to multi-source environments with background sound 
sources, Furthermore, it is planned to perform a com- 
plete acoustic scene analysis including the separation 
and classification of these sound sources 
We also plan to combine accoustic and visual person 

tracking in order to get a more robust person tracker. 
Work is in progress to combine them by means of a 
Kalman filter. In designing this filter, special emphasis 
should be placed on the modeling of the measurement 
errors. To this end, possible confidence measures were 
already presented in Section 3. 

7 Acknowledgments 
This work is part of the Sonderforschungsbereich 

(SFB) No. 588 “Humanoide Roboter - Lernende und 

kooperierende multimodale Roboter” at the University 

of Karlsruhe. The SFB is supported by the Deutsche 
Forschungsgemeinschaft (DFG). 

References 
[1] L. Iti. Models of Bottom-Up and Top-Down Vi- 

sual Attention. PhD thesis, California Institute 

of Technology, Jan 2000. 

<
 

J. M. Wolfe. Attention, chapter Visual Search. 
London: UCL Press, 1996. 

[3] B.K.P. Horn and B.G. Schunck. Determining op- 
tical flow. A. I. Memo 572, Massachusetts Insti- 
tute of Technology, 1980. 

[4] C.H. Knapp and G.C. Carter. The generalized 
correlation method for estimation of time de- 
lay. IEEE Trans. on Acoustics, Speech and Signal 
Processing, 24(4):320-327, August 1976. 

[5] D. Bechler and K. Kroschel. Confidence scor- 
ing of time difference of arrival estimation for 
speaker localization with microphone arrays. In 
13. Konferenz Elektronische Sprachsignalverar- 
beitung ESSV, September 2002. 

[6] Y. Huang, J. Benesty, and G.W. Elko. Pas- 
sive acoustic source localization for video camera 
steering. In IEEE Int. Conf. Acoustics, Speech 
and Signal Processing (ICASSP), pages 909-912, 
June 2000. 

[7] Y. Bar-Shalom. Tracking and data association. 
Academic Press, 1988. 

[8] Jie Yang and Alex Waibel. A real-time face 
tracker. In Proceedings of WACV, pages 142-147, 
1996. 

(9] T. Darrell, G. Gordon, M. Harville, and J. Wood- 
fill. Integrated person tracking using stereo, 

[10 

(la 

a
 

fi
ne
 

(13) 

(4 

[15] 

[16 

(17 

[18 

[19 

[20] 

color, and pattern detection. In IEEE Confer- 
ence on Computer Vision and Pattern Recogni- 
tion, (Santa Barbara, CA), pages 601-608, June 
1998. 

N. Jojic, B. Brumitt, B. Meyers, S. Harris, and 
T. Huang. Detection and estimation of pointing 
gestures in dense disparity maps. In 4th IEEE 
International Conference on Face and Gesture 
Recognition, pages 468-475, March 2000. 

Rainer Stiefelhagen, Jie Yang, and Alex Waibel. 
Modeling focus of attention for meeting indexing 
based on multiple cues. IEEE Transactions on 
Neural Networks, 13(4):928-938, July 2002. 

Rainer Stiefelhagen. Tracking focus of atten- 
tion in meetings. In International Conference 
on Multimodal Interfaces, pages 273-280, Pitts- 
burgh,PA, October 2002. IEEE. 

A. L. Yarbus. Eye movements during perception 
of complex objects. In L.A. Riggs, editor, Bye 
Movements and Vision, pages 171-196. Plenum 
Press, New York, 1967. 

Michael Argyle and Mark Cook. Gaze and Mutual 
Gaze. Cambridge University Press, 1976. 

N.J. Emery. The eyes have it: the neuroethol- 
ogy, function and evolution of social gaze. Neu- 
roscience and Biobehavioral Reviews, 24:581-604, 
2000. 

Paul P. Maglio, Teenie Matlock, Christopher S. 
Campbell, Shumin Zhai, and Barton A. Smith. 
Gaze and speech in attentive user interfaces. In 
Proceedings of the International Conference on 
Multimodal Interfaces, volume 1948 of LNCS. 
Springer, 2000. 

B. Brumitt, J. Krumm, B. Meyers, and S. Shafer. 
Let there be light: Comparing interfaces for 
homes of the future. IEEE Personal Communi- 
cations, August 2000. 

Rainer Stiefelhagen and Jie Zhu. Head orienta- 
tion and gaze direction in meetings. In Confer- 
ence on Human Factors in Computing Systems 
(CHI2002), Minneapolis, April 2002. 

Bernt Schiele and Alex Waibel. Gaze tracking 
based on face-color. In International Workshop 
on Automatic Face- and Gesture-Recognition, 
pages 344-348, 1995. 

Robert Rae and Helge J. Ritter. Recognition of 
human head orientation based on artificial neural 
networks. IEEE Transactions on neural networks, 
9(2):257-265, March 1998.


