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Abstract

In this paper, we investigate alternative ways of procegsin
MFCC-based features to use as the input to Deep Neural Net-
works (DNNs). Our baseline is a conventional feature pipe-
line that involves splicing the 13-dimensional front-en&®Cs
across 9 frames, followed by applying LDA to reduce the di-
mension to 40 and then further decorrelation using MLLT.-Con
firming the results of other groups, we show that speaker-adap
tation applied on the top of these features using featuaeesp
MLLR is helpful. The fact that the number of parameters of
a DNN is not strongly sensitive to the input feature dimensio
(unlike GMM-based systems) motivated us to investigatesway
to increase the dimension of the features. In this papernwe i
vestigate several approaches to derive higher-dimersieaa
tures and verify their performance with DNN. Our best result
is obtained from splicing our baseline 40-dimensional kpea
adapted features again across 9 frames, followed by reglucin
the dimension to 200 or 300 using another LDA. Our final re-
sult is about 3% absolute better than our best GMM system,
which is a discriminatively trained model.

1. Introduction

The recent success of Deep Neural Network (DNN) has revolu-
tionized automatic speech recognition systems. In thisfiay
frame-work, an artificial neural network (ANN) is trained to
output hidden Markov model (HMM) context-dependent state-
level posterior probabilities [1, 2]. The posteriors arevarted

into quasi-likelihoods by dividing by the prior of the stste
which are then used with an HMM as a replacement for the
Gaussian mixture model (GMM) likelihoods.

The purpose of this paper is to investigate better features
to use as the input to the DNN. Our baseline features are the
conventional speaker-adapted 40-dimensional featurbgshw
are generated using a setup tuned for the optimal perforenanc
with the traditional GMM-based acoustic models. Although w
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obtained good results using the baseline features, we nwere i
ested to investigate ways to increase the dimensionalithef
feature vectors beyond the baseline case. This is motiyated
the fact that the number of parameters in a DNN does not in-
crease very much when we increase the input dimension, while
otherwise leaving the model topology fixed. Hence, DNNs by
design are less vulnerable to the un-reliable parametinast
tion problem when the dimension of input features is highteNo
that this is not the case with HMM/GMMs, where even a small
increase in the dimensionality would greatly increase than

ber of acoustic parameters (means and co-variances); dkisan
the GMM-based acoustic models subject to the estimatido-pro
lem, which may cause performance degradation when the di-
mensionality is high. The optimum choice for input dimemsio
for GMM systems is widely believed to be about 40.

Our baseline features (shown in Figuredl= 40) are ob-
tained as follows. The 13-dimensional Mel-frequency aggbst
coefficient (MFCC) [3] features are spliced in time takinghac
text size of 9 frames (i.e4: 4), followed by de-correlation and
dimensionality reduction to 40 using linear discriminanaly-
sis (LDA) [4]. The resulting features are further de-caatet
using maximum likelihood linear transform (MLLT) [5], whic
is also known as global semi-tied covariance (STC) [6]. This
is followed by speaker normalization using feature-spaagim
mum likelihood linear regression (fMLLR), also known as €on
strained MLLR (CMLLR) [7]. The fMLLR in our baseline case
has 40x 41 parameters and is estimated using the GMM-based
system applying speaker adaptive training (SAT) [8'.7]

We investigated the following four ways to increase the di-
mensiond, of the features beyond 40:

Type-l : By including additional rows of the LDA matrix be-
yond40 (Section 3.1, Figure 1 > 40).

Keeping the dimension of the fMLLR transforms
40 x 41, and passing some of the dimensions “re-
jected” by LDA, while bypassing MLLT and fMLLR
(Section 3.2, Figure 2).

Splicing the (baseline) 40-dimensional speaker
adapted features again across several frames (Sec-
tion 3.3, Figure 3).

Splicing the (baseline) 40-dimensional speaker
adapted features across several frames, and again de-
correlating and performing dimensionality reduction
using another LDA (Section 3.4, Figure 3).

The above features are used as the input to the DNN. Consis-
tent improvements in the recognition performance is olekry
with all four types of features in comparison to the baselibe
dimensional features. Our best results are obtained wiple-Ty

IV features. On the other hand, as expected, we observehthat t

Type ll :

Type Il :

Type IV :

1The baseline recipe is the Kaldi system described in [9].
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Figure 1: Generation of our baseline/Type | features

performance of GMM-based systems usually deterioratds wit
the investigated features.

The rest of the paper is organized as follows. In Section 2,
we describe our DNN training setup. In Section 3, we provide
details of the four types of features that we investigated. |
Section 4, we discuss our experimental setup, and present th
results in Section 5. Finally, we conclude in Section 6.

2. Our DNN training setup

Most of the details of our DNN setup are based on [10]. The
neural networks had 4 hidden layers. The output layer ista sof
max layer, and the outputs represent the log-posterioreadtit-

put labels, which correspond to context-dependent HMMestat
(there were about 2600 states in our experiments). The input
features are either the standard 40-dimensional featortreei
baseline case, or various higher-dimensional featuregswba
describe in this paper. The number of neurons in the hidden
layer is the same for all hidden layers, and is computed ierord
to give a specified total number of DNN parameters (typically
in the millions, e.g. 10 million for a large system trained on
100 hours of data). The nonlinearities in the hidden layegs a
sigmoid functions whose range is between zero and one. The
objective function is the cross-entropy criterion, i.er &ach
frame, the log-probability of the correct class. The aligmin

of context-dependent states to frames derives from the GMM
baseline systems and is left fixed during training.

The connection weights were randomly initialized with a
normal distribution multiplied by 0.1, and the biases of it
moid units were initialized by sampling uniformly from the-i
terval [-4.1,-3.9]. The learning rate was decided by the “new-
bob” algorithm: for the first epoch, we used 0.008 as the learn
ing rate, and this was kept fixed as long as the increment in
cross-validation frame accuracy in a single epoch was highe
than 0.5%. For the subsequent epochs, the learning rate was
halved; this was repeated until the increase in cross-atatid
accuracy per epoch is less than a stopping threshold, o0f.0.1%
The weights are updated using mini-batches of size 256 same
the gradients are summed over each mini-batch.

For these experiments we used conventional CPUs rather
than GPUs, with the matrix operations parallelized overtmul
ple cores (between 4 and 20) using Intel's MKL implementa-
tion of BLAS. Training on 109 hours of Switchboard telephone
speech data took about a week for the sizes of network we used
(around 10 million parameters).

3. Investigated Features

3.1. Basdine/Type-| features

Figure 1 shows the generation of Type-l features. The dimen-
sion of the final features supplied as the input to the DNN is de
noted asi. The baseline features correspond/te40. The fea-
tures are derived by processing the conventional 13-diineals
MFCCs. The steps are as follows:

2|t has been found that where training data is plentiful, tpaiing
does not seem to be necessary [11] and conventional randteliza-
tion [1] will suffice. In this work we do not use pre-training.

- Cepstral mean subtraction is applied on a per speaker. basis

- The resulting 13-dimensional features are spliced actdss
frames to producé17 dimensional vectors.

- Then LDA [4] is used to reduce the dimensionalityoT he
context-dependent HMM states are used as classes for the
LDA estimation.

- We apply MLLT [12] (also known as global STC [6]). Itis
a feature orthogonalizing transform that makes the feature
more accurately modeled by diagonal-covariance Gaussians

- Then, global fMLLR [7] (also known as global CMLLR) is
applied to normalize inter-speaker variability.

In our experiments fMLLR is applied both during training and
test, which is known as SAT. In some cases, the results ase als
shown when it is applied only during test.

3.2. Type-ll features

The main concern with our Type-I features is that as we irs@ea
the dimension of the features, we also (quadratically)dase
the number of parameters in the fMLLR transforms. As a con-
sequence the speaker-specific data might become in-snofficie
for reliable estimation of the parameters wheébecomes large
(e.0.,80 or more). In addition, Type-I features require training
of the HMM/GMM s in the higher dimensional space which can
be problematic. Our Type-ll features (Figure 2) are degigne
to avoid the above problems by applying speaker adaptation t
only the first 40 coefficients of the LDA features, and passing
some of the remaining dimensions directly to the neural net-
work while bypassing MLLT and fMLLR. It also avoids the
training of the HMM/GMNMs in the higher-dimensional space.

3.3. Type-lll features

Another way to increase the dimension of the features, while
keeping the dimension of fMLLR matrice$ x 41, is to splice

the baseline 40-dimensional speaker adapted features agai
across time and use them as the input to the DNN (Figure 3).
The Type-Ill features are most closely related to the previo
work in this area [13, 11].

3.4. TypelV features

The Type-IV features (Figure 3) consist of our baseline 40-
dimensional speaker adapted features that have beendsplice
again, followed by de-correlation and dimensionality retchn
using another LDA. We use a variable window size in this case
(typically £4 frames) and the LDA is estimated using the state
alignments obtained from the baseline SAT model.

We do not believe that the dimensionality reduction pro-
vided by this LDA is something very useful; rather the whiten
ing effect on the features will be favorable for the DNN tiam
The LDA would work as a pre-conditioner of the data, making it
possible to set higher learning rates leading to a fastenileg
especially when pre-training is not used.

4. Experimental setup

The experimental results are reported with the acousticatsod
trained on a 109-hour subset of the Switchboard Part | trgini
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Figure 3: Type-Ill and 1V features: splicing speaker-aédfeatures (Type-Ill), followed by de-correlation usinQA (Type-IV).

Table 1: WER (%) with GMM system using baseline features.
The results are shown on Hub5’00-SWB and Hub5’00 (shown
in brackets) test sets.

Type of feature | WER (%)
LDA+MLLT (no adaptation) | 34.6 (42.5)
+MLLR in test time 26.9 (34.4)
+fMLLR train/test (SAT) 25.6 (32.7)
+HBMMI+BMMI 21.6 (29.2)

set (the total training data is 318 hours). The subset aostai
data from 1351 speakers. We used a separate 5.3 hour develop-
ment set for cross-validation for the neural network tiragn it

is used to set the learning rates and to decide when to tetenina
the training. The tri-gram language model was trained on the
Switchboard Part | transcripts.

The baseline HMM/GMM system is trained using the Kaldi
[9] example scripts for Switchboard. The sequence of system
that we build for the HMM/GMM baseline is: (i) monophone
system, (ii) triphone system with MFCEA + AA features,

(iii) triphone system with LDA+MLLT, (iv) triphone system
with LDA+MLLT+SAT (v) discriminative training of the above
system using first feature-space boosted MMI (fBMMI) and
then model-space boosted MMI. Note that the fBMMI is simi-
lar to the form of fMPE described in [14], but uses the objexti
function of boosted MMI (BMMI) [15] instead of that of MPE.

For the DNNs trained using fMLLR features, we used
the decision tree and state alignments from the GMM-based
LDA+MLLT+SAT system as the supervision for training. The
fMLLR transforms of the training/test speakers are takemfr
the same GMM system. Similarly, for DNNSs trained using un-
adapted features (i.e. LDA+MLLT), the decision tree andrali
ments are obtained from the LDA+MLLT GMM system. The
decision tree in both cases had about 2600 leaves, which was
optimized for the GMM system. In all experiments, unless oth
erwise stated, the total number of parameters in the neatal n
works was about 8 million. Our DNNs had 4 hidden layers; this
leads to hidden layers with around 1200 nodes in each.

Test was conducted on the eval2000 test set, also known as
Hub5'00, which has 3.72 hours of speech. Note that in [13] the
results are reported only on the Switchboard subset (H@5'0
SWB) of Hub5'00 test set, excluding data from the Callhome
subset. In this paper, the results are presented on botwstts
an emphasis given to the Hub5'00-SWB subset. The results on
Hub5’00 are shown in brackets in all Tables.

The best word error rate (WER) we report on Hub5’00-
SWB is 18.8%, while the authors of [13] report 15.2% on the

Table 2: WER (%) with GMM using baseline/Type | features.
Results are shown on Hub5’00-SWB and (Hub5’00) test sets.

LDA+MLLT | +fMLLR test | +fMLLR ftrain/test
d | (un-adapted) (SAT)
40 34.6 (42.5) 26.9 (34.4) 25.6 (32.7)
60 36.1(42.3) 27.0 (34.3) 24.9 (32.2)
80 36.2 (43.2) 27.2 (34.8) 25.3 (32.6)
100 38.5 (44.4) 28.8 (36.2) 26.1(33.9)

Table 3: WER (%) with GMM using Type-Il and IV features.

dimension feature feature

of feature Type-lI Type-IV
(d) WER (%) | contextlength| WER (%)
40 25.6 (32.7) 5 27.4 (35.0)
60 25.8 (33.7) 5 27.8 (35.3)
80 26.7 (34.4) 9 29.0 (36.3)
100 27.3 (34.9) 9 29.7 (37.1)

same test data. The major differences in the experimerttgh se
are that we used a 109 hour subset of Switchboard Part | for
training, whereas the full 318 hours of data has been used in
[13]; we tested with a language model trained only on the
Switchboard Part | transcripts and used the 30k-word lexico
supplied with the Mississippi State transcripts, where@@02
hours of Fisher transcripts interpolated with a writtexttan-
guage model, and a 58k-word lexicon were used in [13]. It
is possible that there might be other differences involet t
are specific to the Switchboard recipe, but in general, we find
that Kaldi is competitive with other systems. So far as atious
modeling is concerned, we believe that we are comparing with
a reasonable baseline.

5. Experimental results
5.1. Resultswith GMM systems

Table 1 shows the baseline results with various GMM-based
systems. The best result is provided by the discriminativel
(fBMMI+BMMI) trained GMMs. The results of GMMs with
Type-l and Type-ll/Type-IV features are presented in Tal2e
and 3, respectively. We note that the WERSs with these festure
are usually worse than the results given by the baselinarfesait

We do not present the results of discriminative training
over the non-baseline features as they were usually wotse. T
WERSs with Type-Ill features were worse than Type-IV feature
and are not presented.



Table 4: WER (%) with DNN using baseline/Type | features

LDA+MLLT | +fMLLR test | +fMLLR train/test
d | (un-adapted) (SAT)
40 25.3 (32.6) 22.9 (29.4) 22.0 (28.4)
60 23.4(30.6) 21.6 (28.0) 19.7 (26.5)
80 23.4(30.1) 21.5 (27.7) 19.5 (26.1)
100 | 22.9(29.9) 21.2 (27.4) 19.8 (26.2)
117 | 23.4(30.4) 21.7 (28.0) 20.0 (26.4)

Table 5: WER (%) with DNN using Type-Ill features.

dimension | context length feature
of feature () for splicing Type-lll
40 no splicing 22.0 (28.4)
200 5 frames 19.7 (26.0)
440 11 frames 19.7 (25.8)

5.2. Resultswith DNNs
5.2.1. Baseline/Type-I features

Table 4 shows results with the baseline/Type | features.ekhe
periments are conducted in three ways: without speaketadap
tion, speaker adaptation only during test, and speakettigdap
training (i.e. SAT). We note that a substantial improvenient
obtained by speaker adaptation applied only during test, an
a further improvement from SAT. Our overall best result with
Type-I feature is 19.5% (26.1% on Hub5’00), which is given by
the 80 dimensional features, using SAT. The relative improve-
ments obtained by selecting the optimal dimensions over the
baseline feature are 10.5%, 8.0%, 12.8%, that correspathe to
three columns of Table 4, respectively.

We note from the experiments that simply increasing the
feature dimension by including extra rows of LDA can be quite
useful. Confirming the results of [13], we conclude that the
speaker adapted features generated using fMLLR can be used
as the input to DNNs with good advantage. However, it is also
observed that the performance of this type of feature degrad
d becomes large, i.ed,> 100. The main reason is that the size
of the fMLLR transforms becomes too large (more than 10,000
parameters) for reliable estimation of the parameters fitzen
limited speaker-specific data. For instance, on average the
was about 3 minutes of data from each speaker in the test set.

5.2.2. Type-ll features

The results with the Type-Il features are presented in Téble
Note that in this case the size of fMLLRs is kept fixed @t 41.

We can see that this type of feature helps to reduce the WER
compared to the baseline case as we increase the featuee-spa
dimension — the best WER being given by 117 dimensional fea-
tures, which is 20.1% (26.5% on Hub5’00). In addition, un-
like the Type-I features, the performance does not degregie e
when the dimension is very large. Hence, Type-II processing

a suitable way to increase the input dimension, while enguri
robustness to speaker adaptation.

We note, however, that the best result with Type-Il features
is worse than Type-I| features (Table 4) that gives 19.5%1(26.
with Hub5’00) as the best WER. We believe that this would stil
not hold true if there was only a small amount of adaptation
data available from the speakers, as in this case the estimat
transforms for Type-I features would be poor.

5.2.3. Type-lll features

The WERs with Type-lll configuration are shown in Table 5.
This is the type of features investigated by others in thémar

Table 6: WER (%) with DNN using Type-Il and 1V features.

dimension feature feature

of feature Type-Il Type-IV
(d) WER (%) | contextlength]  WER (%)
40 22.0 (28.9) 5 21.5 (28.0)
60 20.6 (26.8) 5 20.3 (26.7)
80 20.3 (26.5) 9 19.7 (26.0)
100 20.4 (26.5) 9 19.4 (25.7)
117 20.1(26.5) - -
200 - 9 19.0 (25.4)
300 - 9 19.3 (25.4)
400 - 11 19.3 (25.6)

With increased #parameters (12 million vs. 8)

200 - [ 9 [ 188(25.)

[13, 11]. Such features are also expected to provide robsstn
to speaker adaptation as the dimension in which adaptation i
carried out is only 40. The best result in this configurateab-
tained by splicing the frames with context lengths of 11 (or 5
which is 19.7% WER (25.8% on Hub5'00). We also note that
on the Hub5’00-SWB set the performance of Type-I features is
slightly better than the Type-Ill features, i.e., 19.5% Wé&tRn-
pared to 19.7%, respectively.

5.2.4. Type-IV features

The lowest WER is achieved with the Type-IV feature process-
ing. Although we did not try all possible configurations, best
result among the experiments we conducted is obtained with a
context length of 9, i.ed4 frames. It gives a further 0.7% ab-
solute reduction in WER compared to the lowest WER given by
Type-lll features (Table 5), i.e., from 19.7% to 19.0%, whis
a 3.7% relative reduction.

We were able to get a further improvement by training a
DNN with more parameters (12 million rather than 8), which
improved the performance to 18.8%.

5.3. Comparison with GMM-based system

If we compare with GMM-based systems, our best
DNN is substantially better than our best GMM system
(SATHMMI+BMMI), i.e., a reduction in WER from 21.6% to
18.8% on Hub5'00-SWB, which is a 14.9% relative reduction,
and from 29.2% to 25.1% on Hub5’00, which is a relative
reduction of 16.3%. This is in the same ballpark as the im-
provement we see in [13], when comparing similar techniques
The “best” results from their GMM-based system, which
includedonly model-space discriminative training, was 20.4%
WER on Hub5’00-SWB, and the best WER with their DNN
system was 16.3%, which is 20.0% relative improvement.

6. Conclusions and further work

In this paper, we explored various methods of providing éigh
dimensional features to DNNs, while still applying speaker
adaptation with fMLLR of low dimensionality. We found the
Type-1V feature to be the most useful one among all. We were
also able to show a substantial reduction in WER compared to
our best (single system) WER using GMMs and discrimina-
tive training. Our results are consistent with the previaask
reported in the literature in that we get similar improvetsen
when we compare with similar baselines.

Further work that we would like to do in this area includes:
testing whether initial MFCCs of dimension larger than 18, o
an initial LDA dimension higher than 40, or an initial contex
window size larger thar:-4, would help as the input to DNNs.
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