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ABSTRACT

Speaker dependent (SD) ASR systems have significantly lower word
error rates (WER) compared to speaker independent (SI) systems.
However, SD systems require sufficient training data from the target
speaker, which is impractical to collect in a short time. We present a
technique for training SD models using just few minutes of speaker’s
data. We compensate for the lack of adequate speaker-specific data
by selecting neighbours from a database of existing speakers who are
acoustically close to the target speaker. These neighbours provide
ample training data, which is used to adapt the SI model to obtain an
initial SD model for the new speaker with significantly lower WER.
We evaluate various neighbour selection algorithms on a large-scale
medical transcription task and report significant reduction in WER
using only 5 mins of speaker-specific data. We conduct a detailed
analysis of various factors such as gender and accent in the neigh-
bour selection. Finally, we study neighbour selection and adaptation
in the context of discriminative objective function.

Index Terms— Speech recognition, acoustic modeling, speaker
adaptation, data selection approaches

1. INTRODUCTION

Speaker specific characteristics such as age, gender, vocal-tract
length and accent have significant influence on the ASR acoustic
models. Speaker-independent systems trained by pooling data from
wide range of speakers perform poorly for speakers whose features
are under-represented in the training set, e.g. non-natives, female
speakers, etc. Speaker-adaptive systems handle these variations
using various normalization [1] and adaptation techniques [2].
Speaker-dependent ASR systems on the other hand, address this
issue by training models solely on data specific to the target speaker.
While SD systems perform significantly better compared to an SI
system [3], they require fairly large amounts of the target speaker’s
training data, which is time-consuming to collect.

In a real-world task such as dictation, the user starts off with
an SI system out of the box and the system adapts to the speaker’s
data with continued usage. Unfortunately, the new speaker has to
painfully navigate through this adaptation phase with a low accu-
racy SI system until he/she has produced sufficient data for adapting
the initial model. This issue is more serious for accented speakers
who encounter significantly higher word error rates with SI system
compared to native speakers. Customer satisfaction and adoption
rates for commercial ASR systems suffer significantly throughout
this transition period. In this paper, we aim to shorten this adapta-
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tion period by creating better SD models as soon as the initial ASR
acquires just a few minutes of data from the new user.

We address the challenge of building SD models by automati-
cally selecting acoustically similar speakers to the target speaker, or
neighbours from a large and diverse set of existing users with large
amounts of training data. We use a few minutes of the speaker’s data
to select the neighbours, so the adaptation can be performed sooner
than waiting for sufficient data from the user. We utilize the neigh-
bours’ data to build an initial SD system for the target speaker. We
show that such a neighbours initialized SD system performs signif-
icantly better compared to the baseline SI models, thus helping to
reduce the adaptation interval for the new speaker.

2. RELATED WORK

Speaker adaptation has a long history in ASR with popular tech-
niques such as Maximum A-Posteriori (MAP) adaptation [4], Max-
imum Likelihood Linear Regression (MLLR) [5] and Constrained-
MLLR (CMLLR) [2]. However, these techniques are confined to the
available adaptation data, which is only a few minutes in our case.
To address the issue of limited data, several approaches have been
previously proposed. They can be classified into 3 groups. In eigen-
based techniques, a low-dimensional projection of model [6, 7] or
transform parameters [8, 9] is used to reliably estimate parameters
with less data. These techniques are most effective with adaptation
data of a few seconds and saturate to the performance of regular
MLLR/CMLLR with data more than 10 seconds.

In clustering based approaches, the training dataset is clustered
into multiple groups with individual [10, 11] or shared set of models
[12]. The test speaker is assigned to one or more of the clusters and
uses the models estimated on their respective speaker groups. These
techniques are computationally efficient as training the clusters can
be done offline and only the cluster assignment is carried out during
decoding. However, it is sub-optimal to precluster the speakers as
its difficult to obtain representative clusters for different factors such
as age, gender, accent, etc. that influence the acoustic space of each
speaker.

Rank-and-select approaches attempt to find a ranked list of
acoustically relevant neighbours specific to each test speaker [13,
14, 15, 16] and uses the neighbours’ data for adaptation. It can also
be viewed as an instance of exemplar-based technique [17] at the
speaker level. Most of the previous attempts used some form of
approaximation of SI and SD models to select the neighbours based
on the acoustic match. [18] used single gaussian models to train
SD models on few secs of training data. [15, 16] used gaussian
clustering and linear transformation to select source speakers for
augmenting the adaptation data. In this paper, we use the existing



ASR models to directly compute the likelihood of target adaptation
data. We explore several variations of this technique and empirically
evaluate them based on their performance on the target speaker test
set. We also investigate different parameters involved in the selec-
tion including the number of neighbours, size of adaptation data,
etc.

3. NEIGHBOUR SELECTION TECHNIQUES

We study two different neighbour selection techniques in our initial
experiments - likelihood based and transformation based. The likeli-
hood based approach aims to find source speakers in the training set
who are close to the given target speaker. It is performed using the
following steps:

• The SI model is adapted to each of the source speakers in the
database.

• The resulting source SD models are used to calculate the like-
lihood of the target speaker’s data. Given a source model λS

for the source speaker S, adaptation utterances UT and their
reference transcriptions Wr for the target speaker T , the like-
lihood is calculated as

LikelihoodT (S) =
∑

u∈UT

logP (Ou,Wr|λS) (1)

• The training speakers are ranked based on their likelihoods
and top N speakers are selected for target speaker adaptation.

In transformation based approach, source SD models are com-
puted as the first step similar to the likelihood based technique.
We do an additional step of adapting the SD models on the target
speaker’s data before calculating the likelihood score. The likeli-
hood in transformation based approach is given by

LikelihoodT (S) =
∑

u∈UT

logP (Ou,Wr|fT (λS)) (2)

where fT (λS) is the source model adapted on the target speaker’s
data. In our case, we use a regression-tree based MLLR for the trans-
formation function fT . The source speakers are ranked as before for
the selection. The transformation based neighbour selection attempts
to choose neighbours who can be transformed into the target speaker.
The extra adaptation step compensates for any mismatch between
the source and target speakers, that can be modeled by linear trans-
formations, e.g. channel variations. Section 7 explores neighbour
selection and adaptation using discriminative objective function.

Once the neighbours are chosen, we adapt the SI model using
data from the selected neighbours. The neighbour adapted model is
used to initialize the SD system for the new speaker. As we get more
of the target speaker’s data, we continue to adapt the initial model to
obtain an accurate SD model for the speaker.

4. EXPERIMENTS

4.1. Database and setup

We conduct our experiments on an 8kHz, telephony quality, English
medical transcription task. Table 1 lists the different datasets used
in our experiments. Medical dictation is a fast-paced speaking style
compared to typical conversational speech. Our training dataset con-
tains medical reports dictated from 1878 training speakers with a
maximum of 1 hour per speaker. The database has speakers with

different accents, varying telephony channels and background noise
levels. The total size of the dataset is 1450 hours. A set of 10 South-
Asian accented speakers, independent of the training set form our
target speakers. We use 5 minutes for each target speaker as our de-
velopment set. For the test set, the same speakers with 1 hour of
speech are used. As mentioned before, we are interested in the ac-
curacy of SD models after 5 minutes of adaptation. Hence, we don’t
perform any second pass, unsupervised adaptation on the 1 hour test
set. We report word error rates averaged across the 10 target speak-
ers.

Table 1. Datasets and their statistics.

Dataset Speakers #Hours &words
Train 1878 1450 1.2M
Dev 10 0.83 8.3K
Test 10 10.72 86K

4.2. Baseline system

The SI system is a fully-continuous, ML trained, GMM-HMM
based ASR using 3000 context-dependent states and 86K gaussians.
The system uses MFCC features, Vocal Tract Length normalization
(VTLN) and a global Semi-tied Covariance (STC) matrix trained
using ML criterion. The decoder uses a 4-gram language model
with a vocabulary size of 53K words. The language model has a
OOV of 0.8% on the test set. As a first step, the SI model is adapted
on 5mins of the development set using regression-tree based MLLR
[19]. The number of tranforms for MLLR is automatically selected
based on the amount of available adaptation data. In our case, we
ended up with an average of 10 MLLR transforms given 5mins of
adaptation data for each target speaker.

Table 2 shows the WER of SI and MLLR adapted systems. The
MLLR adapted system produces a relative improvement of 10.4%
over the SI model. Additional improvements can be obtained by
training canonical models using SAT and CMLLR. However, the
CMLLR matrices for the test speakers have to be computed on
the adaptation data as this is a one-pass dictation system. Such a
SAT setup didn’t give us any significant improvement on top of
regression-tree based MLLR adaptation with 5 mins of speaker-
specific data in our previous experiments, so we didnt include SAT
in our baseline.

Table 2. Baseline WERs.

System Test set WER
SI South Asian 45.73
SI + MLLR South Asian 40.99
SI Native 29.89

To put the WER on accented speakers in context, we also in-
clude the WER of the SI system on a test set of 15 native US English
speakers from the same task. It shows that a new South Asian ac-
cented speaker will start with a significantly worse (53% relative)
ASR for dictation compared to a native US English speaker, before
any adaptation. However, we note that the South Asian accent is not
a homogeneous group of speakers. The test set statistics and WER
of the SI model broken down by individual speakers is listed in Table
3. It shows the wide differences between the South Asian speakers
in the test set. The SI WERs vary anywhere from 19.7% to 63.8%.



Hence, it is important to select neighbours to match each speaker’s
individual characteristics, for adaptation.

Table 3. SI WERs for South-Asian speakers.

Speaker Test Data (15 Reports) Test WER (%)Words #Hours
1 15673 2.28 19.7
2 7690 0.89 30.5
3 7702 0.80 42.7
4 8837 1.11 37.3
5 6762 0.98 48.0
6 8221 1.02 58.5
7 12301 1.55 63.8
8 6761 0.73 59.7
9 4535 0.45 53.5
10 7782 0.91 43.6

Avg 8626.4 1.07 45.73

4.3. Neighbour selection

In likelihood based selection, we adapt the SI model to the source
speaker using MAP adaptation. We then compute the likelihood of
the target speaker’s data (5 mins) on the adapted model. The source
speakers are ranked based on the likelihood score. In the transfor-
mation based technique, we compute an additional regression-tree
based MLLR for the source model on the target data before the like-
lihood computation. We select 20 neighbours using each criteria.
We constrained the neighbours to have at least 15 minutes of speech
to ensure sufficient data for adaptation. Once the neighbours are se-
lected, we use MAP to adapt the SI model on the neighbours’ data.
The neighbour initialized model is further adapted using MLLR on
the target speaker’s data. The final SD models are used to decode
the test set. Table 4 shows the WER for the likelihood and transfor-
mation based selection. The results show that transformation based
neighbour selection outperforms the likelihood based approach. It
also has 26.3% relative lower WER than the SI and 17.8% relative
lower than MLLR adapted baseline.

Our setup of creating SD models for each source speaker might
seem computationally demanding. However, the neighbours are cho-
sen from a set of existing speakers with large amounts of data. These
speakers already have SD systems trained for their own dictation.
We only need to access their parameters instead of creating source
SD models from scratch during selection. Once the neighbours are
chosen, the data for these speakers are accessed for adapting the SI
model. Table 5 shows speaker-wise WER for the SI, SI + MLLR
and neighbour MAP + MLLR systems. The improvements over
SI+MLLR are between 10.9% and 31.2% on this test set. This shows
that neighbour selection produces improvements for speakers over a
wide range of WERs. The following sections will analyze varying
these parameters and their influence on target WER. All the experi-
ments hereforth will use transformation based neighbour selection.

4.3.1. Varying the number of neighbours

In this section, we vary the number of neighbours chosen, from 1
to 80 and use them to initialize the SD system for the target speaker.
Table 6 lists the WERs of adapting with varying the neighbours. The
adaptation step after neighbour selection, involves MAP adaptation

Table 4. WER for neighbour selection techniques.

System Selection WER (%)Source Target
SI - - 45.73
SI + MLLR - - 40.99
Likelihood MAP - 36.32
Transformation MAP MLLR 33.71

Table 5. Adaptation WERs for South-Asian speakers.

Speaker Test WER (%) Impr (%)SI SI + MLLR Neighbour
1 19.7 15.9 12.9 18.9
2 30.5 27.6 24.6 10.9
3 42.7 37.4 32.6 12.8
4 37.3 30.2 23.3 22.9
5 48.0 44.9 30.9 31.2
6 58.5 52.5 41.4 21.1
7 63.8 56.1 45.5 18.9
8 59.7 55.7 49.1 11.8
9 53.5 48.6 41.6 14.4

10 43.6 41.0 35.2 14.1
Avg 45.73 40.99 33.71 17.8

on the neighbour data followed by MLLR adaptation on the target
data. We list both the WERs below.

Table 6. Analysis of varying number of neighbours.

Neighbours WER (%)
Neighbour MAP + Target MLLR

1 43.21 41.58
5 38.32 34.57

10 36.81 34.18
20 36.49 33.71
40 40.72 36.48
80 42.21 37.81

From Table 6, it is clear that 20 neighbours produces the lowest
WER. However, neighbours 5 and 10 are very close to the WER of
20 neighbours.

4.3.2. Varying the amount of adaptation data

We vary the amount of target adaptation data to measure its effect
on the neighbour selection. We should note here that, to select dif-
ferent amounts of target speaker data, we start adding utterances of
each speaker to the development set until we reach the desired time
in minutes. However, we do not excise utterances to meet the time
limit, so the exact duration will be slightly higher than the expected
length. We vary the target data by 1, 2, 5 and 60 minutes for neigh-
bour selection. In each case, we choose 20 neighbours and perform
neighbour-MAP followed by target-MLLR adaptation. Table 7 lists
the WERs for neighbour selection carried out for different amounts
of development data. To add clarity, we list the exact amount of tar-
get adaptation data (averaged across speakers) chosen for each case.

Neighbour MAP WER in Table 7 can be used to compare the



Table 7. Analysis of varying adaptation data.

Target speaker data (mins) WER (%)
Neighbour MAP + Target MLLR

1.63 37.21 36.02
2.68 36.93 35.17
5.82 36.46 33.87
60.85 36.48 30.40

speaker selection across different amount of adaptation data. The re-
sults show several interesting properties. Focusing on the first three
rows, we get better neighbours with increasing target data. How-
ever, the neighbours chosen with just 2.68 minutes perform quite
close to the ones selected with 5.82 minutes of target speaker data.
This is attractive as most dictation systems perform an enrollment
step which guides the new user to read out a few phonetically bal-
anced sentences. The average amount of data collected during the
enrollment step is around 2 minutes which could be used to select
the neighbours, rather than waiting for the speaker to start using the
system.

The last row reports results for neighbours selected with 1 hour
of target speaker data. It doesn’t perform any better than neighbours
selected with 5 minutes. This shows that neighbour selection can be
performed with just few minutes and we don’t need to re-select them
as we get more data. The Target MLLR results for 60 minutes on the
other hand is better than 5 minutes due to additional speaker’s data
and not because of better neighbours.

5. ANALYSIS

5.1. Influence of gender and accent

In this section we analyze the neighbours selected to study the in-
fluence of various factors such as gender and accent. Our training
data is manually annotated with accent and gender labels. For a few
speakers without gender labels, we assign them based on their VTLN
[1] warpfactors. We use the annotations to measure the influence of
different factors on the neighbours selected for a target speaker. We
note that 99% of the neighbours selected match the gender of the ref-
erence speaker. Hence, we can conclude that gender has a decisive
impact in the neighbour selection. Figure 1 shows the cumulative
count of South-Asian and non-South-Asian neighbours in each rank
added across all target speakers.
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Fig. 1. Cumulative frequency of neighbours at each rank.

The graph clearly shows that South-Asian speakers are ranked
higher than others in the neighbours list. We conduct Mann-Whitney
U test [20], a non-parametric rank test to verify the influence of ac-
cent. We consider 100 ranked neighbours selected for each speaker
and group them into South-Asian and non-South-Asian categories.
The test showed significant difference (p < 0.001) between the
ranks of the two groups, thus confirming accent has significant in-
fluence on choosing neighbours.

5.2. Automatic selection vs. manual annotations

In this section, we conduct experiments to compare automatic se-
lection with choosing neighbours based on the manual annotations.
We have 168 South-Asian speakers labeled in our training set. We
use the gender and accent labels to explicitly choose neighbours that
match the target speaker to compare it with our automatic selection
technique. In all cases, once the neighbours are decided we per-
form MAP adaptation on neighbours’ data and MLLR on the target
speaker’s speech. Table 8 shows the WERs of adapted systems on
automatically selected neighbours and the ones based on manual la-
bels.

Table 8. Automatic selection Vs. Manual annotations.

System Neighbours Selection WER (%)
Transform 20 Automatic 33.71
Accent 168 Accent 36.89
Random 20 Accent & Gender 36.35

The first row represents our best automatic selection technique,
transformation based 20 neighbours selection using 5 minutes of tar-
get speaker’s data. The second row shows the WER of SI model
adapted on the South-Asian subset. It is 3.2% absolute worse than
transformation based automatic selection. In the third row, we ran-
domly selected 20 neighbours from a set of matched accent and gen-
der speakers. The results were averaged across 5 trials. Still the
adapted system is 2.6% absolute worse than the best system. Both
of these results show that, although gender and accent have signifi-
cant influence on neighbours, the automatic selection is better than
using accent and gender labels for choosing neighbours.

In the second set of experiments, we combine automatic se-
lection with manual annotations, by running transformation based
neighbour search on the accent subset instead of the whole training
set. Table 9 lists the WER of automatic selection without and with
manual annotations.

Table 9. Automatic selection using manual annotations.

System Neighbours Selection WER (%)
Transform 20 Automatic 33.71
Accent 20 Automatic + Accent 33.73

The results show no major difference in performance between
the two systems. From both the above experiments, we conclude
that gender and accent have significant influence in automatic neigh-
bours selection. However, the manual annotations of these speaker
characterists don’t provide any additional benefits over transforma-
tion based approach, whether used by themselves or combined with
automatic selection, except for reducing the search space.



6. VARYING TARGET SPEAKER’S DATA

In this section, we examine the behaviour of SI and neighbours ini-
tialized SD models with increasing adaptation data. For each data-
point, we adapt both systems on the available adaptation data and re-
port WER on the test set. We calculate MLLR on the target data and
use the transformed means as a prior model for the ensuing MAP
adaptation. The combined adaptation performed better than using
MLLR or MAP alone. Figure 2 plots the WER for both systems.
The datapoint at zero SD data, refers to the SI baseline.
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It is interesting to note that, although the neighbours are chosen
with only 5 minutes of target speech, the neighbours initialized sys-
tem continues to perform better than SI with increased adaptation
data. To understand the impact of the neighbour adaptation tech-
nique on native speakers, we conducted the same experiment on the
test set of 15 US English speakers. As in the South-Asian case, we
used 5 minutes of each speaker to select the neighbours. Figure 3
shows the WER plot of SI-Init and Neighbours-Init systems with
increasing adaptation data. We find the same pattern for both the
systems as with non-native speakers. However, the total improve-
ment is less (7% relative at 5 minutes) compared to the South-Asian
case (15% relative at 5 minutes), which is expected as the majority
of training set data consist of native speakers.
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7. DISCRIMINATIVE SELECTION AND ADAPTATION

The experiments so far have been conducted with ML trained SI
model. In this section, we investigate the neighbour selection and

adaptation using discriminatively trained (DT) models. Our DT SI
model is trained using state-level Minimum Bayes Risk (sMBR)
[21] for 8 iterations with an I-smoothing weight τ of 350. It ob-
tains a WER of 34.55% which is 24.4% relatively lower than ML SI
model. Our first step involved plugging this model in tranformation
based speaker selection approach to choose 20 neighbours. Table 10
shows the WER for different selection and adaptation setups with SI
model in row 1. It can be seen that there is almost no improvement
by adapting the DT SI model on the neighbours data using ML-MAP
criterion. We implemented discriminative adaptation [22] of the SI
model on the neighbours data, which yielded a relative improvement
of 8.5% compared to the unadapted model.

We also investigated using discriminative criterion in neighbour
selection, in addition to adaptation. In this approach, the adaptation
data of 5 mins is decoded using the SI model to create lattices for
the target speaker. We choose source speakers whose models maxi-
mize the sMBR accuracy on the target speaker lattices. The sMBR
accuracy is calculated as

sMBR AccuracyT (S) =
∑

u∈UT

∑
W∈W ′

γ(Ou,W |fT (λS))A(Wr,W )

(3)
where Wr is the reference alignment, W ′ are the competitor paths
in the denominator lattice, γ(Ou,W |λS) is the posterior of a lattice
path accoring to the (adapted) source model fT (λS). A(Wr,W )
is the raw accuracy between the reference and competitor state se-
quences. Analogous to likelihood and transformation based neigh-
bour selection, discriminative method leads to choosing neighbours
who make less errors on the target speaker’s data.

Table 10. Discriminative selection and adaptation.

Neighbours Adaptation WER (%)
- - 34.55

ML transformation ML MAP 34.49
ML transformation sMBR MAP 31.60

sMBR Acc. ML MAP 31.97
sMBR Acc. sMBR MAP 31.00

From Table 10 row 4, it is interesting to note that neighbours
selected using sMBR accuracy produce 7.5% relative improvement
over SI model, using ML MAP adaptation. Comparing rows 2 and
4, we note that discriminative selection can lead to neighbours who
produce less WER on target speaker data than ML based selection.
However, the gains from discriminative selection and adaptation are
not additive but the combined technique shown in row 5, still pro-
duces the best result of 10.3% relative improvement over the un-
adapted system. Figure 4 shows the WER of SI and neighbours-
initialized systems with increasing target data. We performed ML
adaptation in each bin as we didnt get any additional improvement
through DT adaptation on the relatively small amount of available
speaker-specific data (<= 1 hour)

8. CONCLUSION

We have presented an adaptation technique to build SD models with
a few minutes of target speaker’s data. We obtained an improvement
of 23% relative over SI with just 5 minutes of the target speakers’
data. We analyzed the selected neighbours and showed that accent
and gender play a crucial role in their selection. We also compared
the automatic selection with choosing neighbours based on manual
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annotations and concluded that the automatic approach performed
better. Finally, we studied neighbour selection and adaptation with
discriminative objective functions and showed that they perform bet-
ter than ML based alternatives. As part of the future work we plan
to investigate Deep Neural Networks [23] and Bottle-neck features
[24] in the context of SD models and neighbours’ adaptation. We
would also like to extend the work to unsupervised adaptation and
evaluate the benefit of neighbour selection in that scenario.
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