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Abstract 
The expertise required to develop a speech recognition system 
with reasonable accuracy for a given task is quite significant, and 
precludes most non-speech experts from integrating speech 
recognition into their own research. While an initial baseline 
recognizer may readily be available or relatively simple to 
acquire, identifying the necessary accuracy optimizations require 
an expert understanding of the application domain as well as 
significant experience in building speech recognition systems. 
This paper describes our efforts and experiments in formalizing 
knowledge from speech experts that would help novices by 
automatically analyzing an acoustic context and recommending 
appropriate techniques for accuracy gains. Through two 
recognition experiments, we show that it is possible to model 
experts’ understanding of developing accurate speech 
recognition systems in a rule-based knowledge base, and that this 
knowledge base can accurately predict successful optimization 
techniques for previously seen acoustic situations, both in seen 
and unseen datasets. We argue that such a knowledge base, once 
fully developed, will be of tremendous value for boosting the use 
of speech recognition in research and development on non-
mainstream languages and acoustic conditions. 
Index Terms: adaptations, knowledge base, speech recognition 

1. Introduction 
Speech-user interfaces (SUIs) such as Apple’s Siri [1], 
Samsung’s S Voice [2] and Google’s Voice Search [3] are 
emerging as a popular alternative to graphical user interfaces. 
However, despite years of research, these interfaces work well 
only for specific user groups, such as adult native speakers of 
English, and in specific acoustic situations such as non-noisy 
backgrounds, when in fact, users such as non-native speakers or 
children stand to benefit at least as much, if not more. The 
problem in developing SUIs for non-traditional users and non-
typical acoustic and language contexts is the expertise, time and 
cost needed in building a reasonably accurate initial speech 
recognition system, which can then be used in iterative 
development of other components e.g. the user interaction. It is 
particularly difficult for non-speech experts (or novices) such as 
researchers in human-computer interaction who wish to test their 
ideas with a working speech system, but instead routinely resort 
to Wizard-of-Oz experiments that are unable to test real usage of 
the system. At the same time, speech recognition technology has 
reached a point where, given enough data, a working recognizer 
can be developed for any scenario. 

Researchers who are beginners in speech recognition, or are 
novices can benefit from a “speech recognition” knowledge base 
(KB) and associated toolkit because: (A) it is difficult to find 

speech recognition experts easily, and (B) even when an expert is 
available, hiring them for a project can be expensive. In 
simplifying the task for novices, we focus on providing 
automatic guidance about the type of optimizations to perform, 
since optimizations are the most challenging tasks in the 
development process [4][5][6][7]. To do this, we take the view 
that well-trained speech experts who routinely build working 
recognizers have accumulated years of experiential knowledge 
that is hard for them to explicitly teach to non-experts or novices, 
but by observing them in action, we can study and formalize 
their tacit knowledge. This formalized knowledge can then be 
used for the benefit of novices for automatic analysis and 
recommendation of appropriate optimization techniques. 

Accordingly, we present two contributions: first, we detail 
the process and results from interviews with professional speech 
developers that led to formalizing expert intuition and know-how 
in a knowledge base. Second, using two datasets, we outline 
empirical results that evaluate the above knowledge base in its 
ability to predict correct optimization steps to a non-expert. As 
such, the work presented in this paper should be seen as a 
feasibility study towards automatically identifying and 
recommending optimization steps for the benefit of non-experts. 

2. Related Work 
Many systems that model experts’ knowledge for a specific 
domain (also known as expert systems) have been successfully 
developed in the past, e.g. see review by [8]. For instance, in the 
medical domain, MYCIN [9] was one of the first expert systems 
that recommended antibiotics for bacterial infection. It took a set 
of symptoms as input, found the best rule that matched the 
criteria, and then, recommended the corresponding antibiotic. In 
a study conducted by Shortliffe et al. [9], MYCIN out-performed 
the recommendations made by several doctors. Since then, we 
have seen a surge in rule-based expert systems, such as, in 
recommending mortgages [10], tax consultation [11], or also in 
computational domains, such as recommending correct cleansing 
technique in big data [12], or finding issues in code that limit 
interoperability of web interfaces [13]. To our knowledge, no 
expert system to date has been developed to guide the 
development of an accurate speech recognizer. 

At the same time, researchers have attempted to tackle the 
problem of enabling non-experts to rapidly develop and test 
speech-user interfaces in a number of other ways. For instance, 
SUEDE [14] is a toolkit that allows any user-interface designer 
to rapidly mock-up a prompt/response speech interface and test it 
in a Wizard-of-Oz study. It does not, however, support 
development of a working recognizer. Another toolkit, SPICE 
[15] supports rapid development of a baseline recognizer for new 
languages. It does so by allowing any researcher to input a set of 



audio files, corresponding phoneme set, and a dictionary to 
generate the baseline acoustic model. It does not automatically 
perform acoustic or language context-specific adaptations, when 
in fact these adaptations are key in improving accuracy [5][6][7]. 
Open-source toolkits such as Kaldi [16] support development of 
both the baseline recognizer and an adapted version; however, 
they don’t provide any automatic guidance on what adaptation(s) 
to perform, and leave it to the developer’s expertise to 
understand the context of the application, and apply the suitable 
adaptation technique(s). As a result, non-expert researchers find 
them substantially difficult to use. For instance, in 2012 alone, a 
discussion forum of a widely used recognizer, Sphinx [17] saw 
over 6000 posts with over 1000 unique topics from non-experts 
asking help on various issues of speech recognition, e.g. adapting 
acoustic models, generating pronunciation variants, etc. 

Another method of developing “working” recognizers is to 
collect a large amount of training data from representative 
speakers (> hundreds of hours), and then train an acoustic model 
on those files. Google [3] and Apple [1], for instance, follow this 
model. However, this approach is very costly, and collection of 
large speech corpora is a research challenge in and of itself [18]. 

3. Knowledge Elicitation Methodology 
As is common in knowledge engineering literature [19] for 
eliciting knowledge from experts, we conducted semi-structured 
interviews with five experts, all senior PhD students at CMU. 
Later in this paper, we will call them “old” experts. The 
interview methodology draws on ideas from distributed 
cognition [20][21], which posits that knowledge lies not only 
with the individual, but is also distributed over the tools in the 
individual’s social and physical environment. Thus, our 
interviews covered questions on experts’ interaction with: (i) 
other individuals, e.g. data collectors, application designers, or 
other experts, and (ii) with the machines, tools, data sources, etc., 
e.g. listening to audio files using an audio processing tool 
[22][23]. We divided the interviews in two phases: first, we 
asked the participants to describe a general adaptation process, 
the common challenges they faced, the people they consulted, 
and the tools they used. For the second phase, we observed them 
in-action for a speech recognition optimization task. We gave 
each expert a dataset from a project that contained utterances 
from Indian children, recorded in a noisy background on a 
mobile phone. Since this dataset contained several potential 
degrading factors, e.g. noise, children’s speech, accent, etc., we 
felt it was a good choice to understand an expert’s thought 
process while developing recognizers for challenging contexts. 
We asked each expert to explain the steps (by thinking aloud) 
that they would take to build the best recognizer on this dataset. 

Post interviews, the transcripts of the above interviews 
became the basis for line-by-line open coding process [24] to 
identify relevant concepts and themes that enhanced our 
understanding of the optimization process and the associated 
intuition. Specific instructions or intuitions by the experts were 
formulated as rules. Once formulated, the same experts vetted 
these rules for consistency and accuracy of formulation. 

4. Knowledge Formalization 
The analysis of the above interviews led to two results: (A) a 
general process that experts follow while optimizing for 
accuracy, and (B) a set of rules that guide their choices at each 
step in the above process. Below we detail each of them.  

4.1. Accuracy Optimization Process and Rules 

The accuracy optimization process starts with experts receiving a 
small set of audio data (and associated transcripts), which is 
recorded in the representative setting of the application use. The 
expert’s task is to develop a recognizer with best possible 
accuracy. A general process is summarized in five steps: 
1. Data validation and cleaning: this step involves 

performing several sanity checks, e.g. validating that the 
transcripts are free of spelling errors, deciding how to 
handle half words in the dictionary, detecting out-of-
vocabulary words, splitting adaptation data in tune, 
validation and test sets, what parts of data to label further to 
improve results [25], deciding whether to pick an existing 
“off-the-shelf” acoustic model for adaptation or build a new 
one, etc. For each such issue, we documented how the 
experts handled the specific situation: for instance, a part of 
a larger rule to decide whether or not to train a new acoustic 
model is: “IF no matching “off-the-shelf” baseline model 
found, AND app. = dialogue system for single speaker, 
AND tune data > 1 hour of recording, AND Vocabulary 
Size < 60 words, THEN train your own acoustic model …”1    

2. General adaptation: experts separated most of the 
optimization techniques into three categories: general 
transformations, context- and user-specific adaptations, and 
recognizer tuning. Assuming that the experts are adapting 
the baseline models, this step concerns general 
transformations such as linear and Gaussian transformations 
for feature and model parameters. The idea is that barring 
concerns about overfitting, general adaptations tend to 
almost always improve recognition accuracy as this set of 
adaptations transform the baseline parameters closer to the 
characteristics of the tuning set, e.g. channel, noise, accent, 
etc. Several rules were documented for this step. E.g.:  “IF 
Adaptation Data Size < 20 sec per-speaker THEN perform 
Global mean-only MLLR”, “IF Adaptation Data Size > 100 
utterances per-speaker, THEN first perform MLLR using 
first 100 files, and next switch to MAP.”  

3. Context- and user-specific adaptation: experts next 
explored recognition errors to identify the degrading factors 
i.e. factors that are negatively impacting recognition 
accuracy, e.g. noise, accent, pitch, speaking rate, etc. by 
manually listening to a few audio files that were incorrectly 
recognized and mentally comparing them with those used in 
the baseline model to understand the point(s) of difference. 
They would then use normalization or adaptation techniques 
specific to these degrading factors. In our experiments (as 
we will discuss in the next section), we automate the above 
qualitative process. The goal is to see whether an automated 
method could identify similar issues as the manual 
inspection by experts. To do so, we extract quantitative 
values for several degrading factors (as in section 5.2) for 
each audio file in the test set, and it’s recognition result 
from the recognizer after step 2. Next, we perform 
univariate and multivariate regression to identify the impact 
of each factor on recognition accuracy [27]. Based on the 
statistical significance (p<0.05), we identify the significant 

                                                                    
 
1Note that the rules in this paper are rewritten for readability; actual rules 
are instituted in a popular rule management system, CLIPS [26]. Also, 
due to space limitations, we cannot provide the entire set of rules, but 
provide various examples for the reader to follow. 



factors, and based on the coefficient of correlation, we rank 
them from most to least impact. Next, we perform 
corresponding adaptations, as enlisted in the rules from the 
expert interviews. E.g. “If degrading factor = SNR, perform 
Cepstral Variance Normalization; If degrading factor = F0, 
perform Vocal Tract Length Normalization…” 

4. Tuning overall recognizer parameters: this step includes 
tweaking recognizer parameters such as insertion penalty, 
silence penalty, or changing the language model weight 
based on inspecting the type of errors in the recognition 
output from step 3. It also includes analyzing confusion 
pairs, and possibly recommending alternative phrases to 
change the interface dialogue for reducing common errors. 

5. Final check for overtraining: this step includes checking if 
the models have been trained on sufficient data, e.g. each 
Gaussian in the speech recognizer acoustic model should be 
trained or tuned on a minimum amount of data. 

4.2. Why are rules a good representation for the KB? 

We chose a rule-based knowledge representation for two 
reasons: (1) Ease of representation: we recognized that experts 
had developed many “unspoken rules” that followed an “IF … 
THEN … ELSE …” structure, and (2) Scalability: previous 
research in rule-based systems has shown that it is relatively 
simple for knowledge engineers (or domain experts) to add new 
techniques in a rule system [28]. This would be of importance, 
given the ever-expanding needs of speech recognition. 

4.3. Dealing with Conflicts 

On various occasions, we received conflicting recommendations 
from the experts. For instance, such conflicts arose for the initial 
setup condition, e.g. whether to start with an existing baseline or 
train a new acoustic model. When this happened, we instituted 
both options as alternates in the knowledge base, and ranked 
them based on the number of experts that had recommended the 
option. In the event a rule with multiple options got triggered, 
the knowledge base would first recommend the top most option; 
and if the non-expert developers were unsatisfied with accuracy, 
they could query the knowledge base again for an alternative, if 
any existed. Based on the results of what actually worked, the 
developer could provide feedback to the knowledge base that 
would update the ranking of the alternatives. 

4.4. Characteristics of the Knowledge Base (KB) 

In addition to the interviews, we also reviewed over 15 
publications on speech adaptations and error analysis, e.g. see 
[6][29][30][31] to further understand techniques that experts use. 
Based on these, our current knowledge base covers the following 
variations spanning over 80 rules: 
1. Application: isolated words, dialogue system, or dictation. 
2. Recording Device: external headset, telephony, etc. 
3. Speakers: single, multiple, speaker-independent or not. 
4. Vocabulary Size: small (<60 words), medium (60-500 

words), large (>500 words). 
5. Vocabulary Type: expressions, technical, conversation, etc. 
6. Adaptation Data Size: small (1hr), medium (5hrs), large 

(10hrs), very large (>50hrs). 
7. Availability of Labels: exists for the entire set or partial set. 
8. Noise Conditions: quiet room, street, competing talkers, etc. 
9. Speaker Factors: age, gender, emotion, dialect, etc. 

5. Evaluation 

5.1. Datasets 

We used the following two datasets in our evaluation: 

5.1.1. “Seen” Dataset A: Indian Children’s Speech 

Dataset A – also used during the knowledge elicitation process – 
comes from another project of the authors [32].  In total, it 
comprises of 6250 single-word English utterances from 50 rural 
Indian children (~2 hours of speech). The speakers are equally 
split across gender and grades 4-5. Each child spoke 125 words 
selected from a set of 325 words, ensuring equal coverage for all 
words. The audio recordings were made on Nokia N810 using a 
close-talk microphone in out-of-classroom, noisy backgrounds. 
In our experiments, we set aside data from 10 speakers (5 males) 
as test set, and the remaining available as tune set. 

5.1.2. “Unseen” Dataset B: CMU Kids Corpus 

Dataset B, popularly known as “CMU Kids Corpus” [33], 
comprises of English sentences read aloud by 76 children (24 
males). In total, the dataset has 5180 recordings where each 
recording represents one sentence. The recordings were made in 
a classroom, and there are some files with background noise. 
There are two types of speakers: “good” readers (44) and “poor” 
readers (32). For the latter, the speech has some typical reading 
errors that children make when not confident about a text. In our 
experiments, we set aside data from 16 “poor” speakers (8 
males) as test set, and remaining as tune set. 

5.2. Annotation 

We annotated our data on the following features that correlate 
with popular reasons of recognizer failure. These were used in 
picking the rule from step 3 of section 4.1. 
1. Pronunciation score measures the correctness in 

pronunciation on a scale of 1-10. To calculate the score, we 
first force-aligned the audio file with its transcript to obtain 
a phone-segmented file. Next, we calculated several 
aggregated statistics of each phone from these files and 
compared them to exemplar statistics of native English 
pronunciations from TIMIT dataset to get a score [34]. 

2. Signal-to-noise ratio (SNR) measures the strength of the 
signal with respect to the background noise. 

3. Fundamental frequency (F0) of voice is the lowest 
frequency at which human vocal cord vibrates. Formant 
frequencies (F1-F3) are its spectral peaks. These were 
calculated using Praat [35], and measured in Hz. 

4. Speaking Rate (SPR) is calculated as the average time for 
the user to say one phoneme i.e. 
𝑆𝑃𝑅 = !"#$%&_!"_!!!"#$#%

!!"#!_!"##$!_!"#$%&(!")!!"#_!"##$!_!"#$%&(!")
  

5. Intensity is the sound power per-unit area and is a measure 
of how loud the sound is. It was also calculated using Praat. 

5.3. Experiment 1: Dataset A – Old Experts vs. KB 

After annotating our datasets, the first question we sought to 
answer was whether the KB correctly modeled experts’ 
knowledge and whether we could quantitatively identify the 
degrading factors that the experts recognized through “manual 
inspection” (step 3 of section 4.1). In other words, we wanted to 



assess its internal validity. To do so, we compared the 
recommendations made by the KB with those made by the “old” 
five experts interviewed earlier, and how those translated into 
accuracy gains. The objective was to build a speaker-
independent isolated word recognizer for 325 words in dataset A. 
 Table 1 summarizes the recommendations from the experts 
and the KB, and the corresponding accuracy gains. Overall, the 
KB outperformed all experts on test set for Dataset A. One point 
of difference came from starting with an existing acoustic model  
(AM) such as WSJ and then adapting it for the tune set using 
general adaptation rules such as MLLR and MAP (E1-3), or 
training one from scratch (E4-5 & KB) using the tune set. E1-3 
had reasoned that the amount of tune data available for training a 
new AM is very small, and so starting with an existing AM is 
best; whereas E4-5 had reasoned that the characteristics of the 
data were different from any available AM, and given that it’s a 
small vocabulary recognition task, it would be best to train a new 
AM. While designing the KB, we had instituted both the options 
as alternatives for small vocabulary, low-resource situations. 
Given that 3 experts had recommended to adapt an existing 
model, the KB first recommended that option, but once the low 
accuracy was noticed, it switched to the next best alternate i.e. 
train a new acoustic model. In addition, after “seeing” the results, 
it updated the ranking of the two alternatives. 
 
Optimization 
Techniques 

Experts KB 
E1 E2 E3 E4 E5 

1- Baseline: 
existing AM 

94.7 94.7 94.7   94.7 

1- Baseline: 
train AM 

   25.4 25.4 25.4 

2- MLLR 77.3 77.3 77.3    
2- MAP 78.3 78.3     
3- VTLN  76.9 76.9  24.9  
3- Dictionary   71.7 22.2  22.2 
3- Frame-rate      20.8 
Final 78.3 76.9 71.7 22.2 24.9 20.8 

Table 1: Word error rates (in %) for test set in Dataset A; the 
numbers in the first column are the step nos. from Section 4.1  

From the univariate and multivariate linear regression, accent 
(i.e. pronunciation score) and speaking rate (SPR) turned out to 
be significantly correlated with accuracy. This implied that they 
significantly impacted accuracy and their impact did not suffer 
from interaction effects with other factors. E3 and E4 too, from 
their manual inspection, recognized accent as an issue and 
recommended adding pronunciation variants to the dictionary as 
a potential solution (as in Table 1), while E1 acknowledged 
accent as an issue, but mentioned that adding pronunciation 
variants may not result in accuracy gains. Instead, he was 
working on a new accent modeling technique, but since it was 
not published yet, we did not include it in our analysis. None of 
the experts, identified SPR as an issue, when in fact, frame-rate 
tuning had an (minor) improvement on the accuracy results. 

5.4. Experiment 2: Dataset B – New Experts vs. KB  

Our second evaluation focused on assessing the generalizability 
of the KB for an unseen dataset B, and comparing its 
recommendations against new experts (E6 & E7) i.e. assess its 
external validity. We asked E6 & E7 to develop a speaker-
independent reading speech recognizer for “poor” speakers, as in 

Dataset B. Table 2 summarizes their recommendations and the 
accuracy comparison with those from KB. The KB correctly 
identified data cleaning issues such as half words (E6-7) and 
spelling errors (E7), and recommended that we train our own 
acoustic model (E7). E6, however, felt that since we had access 
to data from “good” readers, we should first train a “high-
quality” model on good speakers, and then use it to find the 
alignments on the data from poor readers. This technique, known 
as model bootstrapping, is useful in low-resource situations, 
especially when you have access to a high-quality recognizer. 
Since we did not have a high-quality recognizer when the KB 
was developed, this technique was not covered by it. None-the-
less, it is simple to add because we have a clear definition of its 
use i.e. “presence of high-quality recognizer”, and “low-resource 
situation”. For the next optimizations, the regression correctly 
pointed SNR (E6) and SPR (E7) as the degrading factors. 
 
Techniques E6 E7 KB 
1- Add half words to dict. ✔ ✔ ✔ 
1- Correct spelling errors  ✔ ✔ 
1- Baseline: train AM   56.1 56.1 
1- Baseline: train AM + 
model bootstrapping 

42.2   

3- CVN (SNR) 40.9  54.3 
3- Frame-rate (SPR)  54.8 52.2 
Final 40.9 54.8 52.2 

Table 2: Word error rates (in %) for test set in Dataset B 

6. Conclusion & Future Directions 
With this work, we aim to lower the difficulty that novices 
encounter when building accurate speech recognizers. In 
particular, we present the design and characteristics of an initial 
rule-based knowledge base that models experts’ understanding of 
speech recognition issues. Further, we assess if with the help of 
this knowledge base (KB), we can automatically recommend 
appropriate optimization steps. Our results show that the KB can 
successfully predict optimization techniques for previously seen 
acoustic situations during the interviews or the papers reviewed, 
both in seen and unseen datasets. Moreover, by the nature of its 
rule design, it can be expanded to incorporate additional insights 
on specific acoustic and language contexts by other experts [28]. 
 We are exploring several extensions of this research. First, it 
is important to note that the task of building an accurate 
recognizer consists not only of applying the most suitable m 
optimization techniques from the available n, but might also 
require changes to the interface, e.g. replacing a word with its 
semantic equivalent to reduce confusion pairs (as in dialogue 
systems). Providing this level of guidance is a natural extension 
of our work. Second, we will look at the types of difficulties that 
an expert might have while inserting new rules. Will that lead to 
conflicts in the KB, and if so how will they be resolved? Finally, 
we are exploring how we can host this infrastructure over the 
web or in a Virtual Machine, so that the KB can improve from 
the experiences of test runs of many potential users. 
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