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Abstract
Out-of-vocabulary (OOV) words can appear more than once in
a conversation or over a period of time. Such multiple instances
of the same OOV word provide valuable information for esti-
mating the pronunciation or the part-of-speech (POS) tag ofthe
word. But in a conventional OOV word detection system, each
OOV word is recognized and treated individually. We therefore
investigated how to identify recurrent OOV words in speech
recognition. Specifically, we propose to cluster multiple in-
stances of the same OOV word using a bottom-up approach.
Phonetic, acoustic and contextual features were collectedto
measure the distance between OOV candidates. The experi-
mental results show that the bottom-up clustering approachis
very effective at detecting the recurrence of OOV words. We
also found that the phonetic feature is better than the acoustic
and contextual features, and the best performance is achieved
when combining all features.
Index Terms: OOV word detection, distributed evidence,
bottom-up clustering

1. Introduction
Most speech recognition systems are closed-vocabulary rec-
ognizers and do not accommodate out-of-vocabulary (OOV)
words. But in many applications, e.g.,voice searchor spoken
dialog systems, OOV words are usually content words such as
names and locations which contain information crucial to the
success of these tasks. Speech recognition systems in which
OOV words can be detected are therefore of great interest.

Hybrid speech recognition systems use a hybrid lexicon and
language model (LM) during decoding to explicitly represent
OOV words with smaller sub-lexical units [1-9]. In previous
work, we have built hybrid systems using different types of sub-
lexical units [10]. We also improved the hybrid system perfor-
mance by using system combination techniques [11, 12]. But
in current OOV word detection systems, each OOV word is rec-
ognized and treated individually. We do not know whether two
detected OOV words correspond to the same word or not.

In this paper, we describe how to find recurrent OOV words
in a speech recognition system through unsupervised cluster-
ing. As we do not know the correct number of OOV words in
the testing speech, and many OOV words only have one or two
instances, we cannot apply the centroid-based or distribution-
based clustering algorithms, such as the k-means algorithm.
Therefore we propose to cluster multiple instances of the same
OOV word using a bottom-up approach. We began with collect-
ing the phonetic, acoustic and contextual features for OOV can-
didates in the hybrid system output. Then each OOV candidate
was considered as one cluster and pairs of clusters were itera-
tively merged until the distance between two clusters exceeded
a threshold. The proposed approach was tested on tasks with
different speaking styles and recording conditions including the

Wall Street Journal (WSJ), Switchboard (SWB), and Broadcast
News (BN) datasets.

The remainder of this paper is organized as follows. Section
2 describes the details of the bottom-up clustering approach and
the definition of the phonetic, acoustic and contextual distances.
Sections 3 and 4 discuss experiments and results. Concluding
remarks are provided in Section 5.

2. Method
2.1. OOV word detection using a hybrid system

In our hybrid system, we applied a hybrid lexicon and hybrid
LM during decoding to detect the presence of OOV words. The
hybrid lexicon was obtained by integrating sub-lexical units and
their pronunciations into the word lexicon. And the hybrid LM
was trained in a flat manner. First, pronunciations of all OOV
words were estimated through the grapheme-to-phoneme (G2P)
conversion [13], and then used to train the sub-lexical units. Af-
ter that, OOV words in the training text were replaced by cor-
responding sub-lexical units to get a new hybrid text corpus.
Finally, a hybrid LM was trained from this hybrid text data. De-
tails of the hybrid system can be found in [12].

In the hybrid system output, sub-lexical sequences were
considered as detected OOV candidates, where word boundary
symbols were used to segment a sequence of sub-lexical units
into multiple OOV candidates. Then, we collected the phonetic,
acoustic and contextual features for each OOV candidate. As
given in Table 1, the phonetic feature is simply the decoded
phone sequence of an OOV candidate, the acoustic feature is
posterior probability vectors extracted from the OOV region in
the testing speech, while the contextual feature is obtained from
the words surrounding the OOV candidate. Note that since we
worked on the hybrid system output, recognition errors might
be incorporated in these features. For example, in the contex-
tual feature of OOV candidates1, the word “major” is a mis-
recognition of “mayor”; and the correct pronunciation of OOV
candidates2 is actually “B AO R AO F”. Depending on the hy-
brid system performance, the collected features could be very
noisy, which thus could cause a poor clustering performance.

Table 1:Examples of the phonetic, acoustic and contextual fea-
tures of an OOV candidate.

OOV Phonetic Acoustic Contextual

s1 S EH L T S [0.00 ... 0.17] major join crowd
wall street ...

s2 M AO R AO F [0.01 ... 0.24] pakistani minister
campaign ...

s3 W AO L IY [0.02 ... 0.01] play ball court rule
gym schedule ...



2.2. Bottom-up clustering

After collecting features from the hybrid system output, weper-
formed the bottom-up clustering to iteratively find multiple in-
stances of the same OOV word. Initially, each OOV candidate
was considered as a single cluster. Then, in each iteration,two
clusters with the smallest distance were merged. This clustering
procedure ended when the distance between clusters was larger
than a threshold. In this paper, the distance between two clusters
was defined as the average of pairwise distances between OOV
candidates in two clusters. Formally, the distance betweenclus-
terCm andCn is

D(Cm, Cn) =
1

|Cm||Cn|

X

s∈Cm

X

s′∈Cn

d(s, s′), (1)

where|Cm| and |Cn| are the number of candidates in cluster
Cm andCn, and

d(s, s′) = ωP dP (s, s′) + ωAdA(s, s′) + ωCdC(s, s′), (2)

is the distance between two OOV candidates. Here,dP (s, s′),
dA(s, s′) anddC(s, s′) are the phonetic, acoustic and contex-
tual distances between OOV candidates ands′, while ωP , ωA,
ωC are their weights respectively. In addition to averaging the
pairwise distances between OOV candidates, we also experi-
mented with calculatingD(Cm, Cn) as the maximum or mini-
mum distance between OOV candidates in two clusters. How-
ever, we found that the clustering performance with different
definitions ofD(Cm, Cn) was essentially the same, although
the average one occasionally performed better.

2.2.1. Phonetic distance

The most direct way to determine whether two OOV candidates
may correspond to the same OOV word is to examine whether
they have the same pronunciation. To do that, we measured the
phonetic similarity between OOV candidates by computing the
distance between their decoded phone sequences. Specifically,
the phonetic distancedP (s, s′) between OOV candidates and
s′ was formulated as the normalized edit distance between their
phone sequenceps andps′ :

dP (s, s′) =
edit(ps, ps′)

|ps| + |ps′ |
(3)

where|ps| and|ps′ | are the lengths of phone sequenceps and
ps′ . As shown previously in Table 1, the decoded phone se-
quences of OOV candidates may incorporate recognition errors.
Particularly, similar phones, such as “AA” and “AO”, are more
often to mis-recognize than the other phones. Therefore, we
adopted a modified edit distance that compensates for the acous-
tic confusability between phones [14-17],

edit(0, 0) = 0

edit(i, 0) = i

edit(0, j) = j

edit(i, j) = min

8

<

:

edit(i − 1, j) + 1
edit(i, j − 1) + 1
edit(i − 1, i − 1) + c(i, j).

(4)

In Eq. 4,c(i, j) is the confusability between phonei andj

c(i, j) =



0 if i = j

1 − p(i, j) if i 6= j,
(5)

wherep(i, j) is the probability of mis-recognizing phonei and
phonej, which was estimated from the recognition result of the
training speech.

2.2.2. Acoustic distance

Besides measuring the phonetic distance between OOV can-
didates, we can also compare their acoustic features extracted
from the OOV region in the testing speech. Acoustic features,
such as the mel-scale frequency cepstral coefficients (MFCCs),
are highly sensitive to speaker and channel variations. On the
other hand, posterior-based features, such as the phoneticpos-
teriorgram, are more robust and also widely used in speech
recognition [18-20]. Therefore, we used the posterior feature
to model OOV candidates in our system. Precisely, each frame
ft in the OOV region was represented by a probability vector

vt = [P (p1|ft), P (p2|ft), ..., P (pK|ft)], (6)

where P (pk|ft) is the posterior probability offt belonging
to phonepk and K is the number of phones. To estimate
P (pk|ft), we trained a Gaussian mixture model (GMM) with
256 Gaussian components for each phone. Then the posterior
probabilityP (pk|ft) can be calculated as

P (pk|ft) =
P (ft|pk)

P

k∈K
P (ft|pk)

, (7)

where P (ft|pk) is the likelihood of observingft from the
GMM of pk. In our experiments, we found that the probabil-
ity mass was usually absorbed by only a few GMMs. Most
phones had a posterior probability close to zero. Because of
that, we performed a discounting-based smoothing on the pos-
terior probability vectorvt in a way similar to [20]. Specifically,
each zero element invt was assigned a small posterior probabil-
ity λ, and each non-zero element was discounted by(1−Nλ),
whereN is the number of zero elements invt.

After constructing the posterior features, we calculated the
acoustic distance between OOV candidates using the dynamic
time warping (DTW) algorithm [21, 22],

dA(s, s′) = DTW (s, s′). (8)

In DTW, the distance between two posterior vectorsvi andvj

was defined as the negative log cosine similarity betweenvi and
vj

d(vi, vj) = −log(
vi · vj

‖vi‖‖vj‖
). (9)

Moreover, similar to the phonetic distance, we also normalized
the acoustic distance by the lengths of OOV regions.

2.2.3. Contextual distance

OOV words are usually content words such as names or loca-
tions and the same OOV word may appear in similar contexts
or environments. If two OOV candidates are surrounded by the
same words or used in the same topic, they may actually be
the same OOV word. As presented in Eq. 2, besides the pho-
netic and acoustic distances, we also measured the contextual
distance between OOV candidates during clustering. To take
the position of surrounding words into account, the contextual
distance has two elements:

dC(s, s′) = ω
l
d

l
C(s, s′) + ω

g
d

g
C(s, s′). (10)

Here,dl
C(s, s′) is the local contextual distance that measures

the similarity between the adjacent words of OOV candidates,
which works like an N-gram LM. Anddg

C(s, s′) is the global
contextual distance, which resembles a topic model.



Table 2: Examples of the local and global contextual features
of an OOV candidate.

OOV s1 s2

Text i am going to watch
tonight because s1

ryan is going to pitch

i love s2 ryan i alway
like to watch him pitch

Local
context

tonight because s1

ryan is
i love s2 ryan i

Global
context

watch:0.33 pitch:0.33
ryan:0.33

watch:0.25 pitch:0.25
ryan:0.25 love:0.25

To calculate the local contextual distance, just like the tri-
gram LM, we compared the left two and right two words of
OOV candidates

d
l
C(s, s′) = 1 −

M

4
, (11)

whereM is the number of matched words. For instance, as
shown in Table 2, there is one match between the local context
of OOV candidates1 ands2, hencedl

C(s, s′) equals to 0.75.
The global contextual distance was calculated in the same

manner as measuring the similarity between two documents in
information retrieval. However here, we focused on words in
the same sentence and we only used content words. Particularly,
for an OOV candiates, its global context was represented by
a term frequency vectorcg which was built from the content
words of the sentence containings. Then the global contextual
distance between OOV candidates ands′ was calculated as

d
g
C(s, s′) = −log(

cg · c′g
‖cg‖‖c′g‖

), (12)

which is the negative log cosine similarity between the global
context ofs and s′. Examples of the global context are also
provided in Table 2.

3. Experiment setup
3.1. The hybrid system

We built hybrid systems from the the Wall Street Journal (WSJ),
Switchboard (SWB) and Broadcast News (BN) corpora, respec-
tively. The WSJ and BN system had a 20k-word vocabulary,
while the SWB system had a 10k-word vocabulary. For WSJ,
the evaluation data included the WSJ 92 20k-word and 93 64k-
word Eval sets. For SWB, a subset of the SWB2 data was se-
lected for evaluation. And for BN, the evaluation data was the
F0 and F1 sets of the 1996 HUB4 Eval data.

Table 3:The OOV word detection performance.

Task WSJ SWB BN

OOV Rate 2.2% 1.7% 2.0%
Precision 63.8% 67.2% 49.8%

Recall 74.0% 74.6% 62.4%

From the OOV word detection performance in Table 3, we
can find that the hybrid system performs very well in the WSJ
and SWB tasks — more than 60% OOV words are detected and
the precision is up to 75%. But in the BN task, utterances are
usually much longer than that in the WSJ and SWB tasks and

Table 4:OOV instance count in the hybrid system output.

OOV word has WSJ SWB BN

1 instance 70.8% 77.5% 68.8%
2 instances 24.0% 16.5% 19.5%

≥ 3 instances 5.2% 6.0% 11.7%

multiple OOV words can appear in one utterance or even in a
sequence, which makes OOV word detection more difficult.

The number of instances each OOV word has is given in
Table 4. It can be seen that about 70% OOV words only have
one instance and less than 10% OOV words have more than two
instances. On average, one OOV word has 1.2 instances.

3.2. Evaluation metrics

The Rand index (RI) is a common evaluation metric for clus-
tering [23]. It involves counting pairs of items on which the
hypothesis and reference clusterings agree or disagree. Inprac-
tice however, RI does not take on a constant value for random
clustering. Especially, when the number of classes is largeand
the number of candidates is small, a random clustering result
can have a very good RI score. Contrarily, the adjusted Rand
index (ARI) is another widely used clustering evaluation metric
[24], which adjusts for the chance of a clustering result. The
ARI score is bounded between -1 to 1. Independent clusterings
has a negative ARI score, similar clusterings has a positiveARI
score and an ARI score of 1 indicates a perfect match between
the hypothesis and reference clusterings. As shown in Table
4, in our experiment, the majority of clusters only contain one
candidate and the candidate to cluster ratio is as low as 1.2.If
without clustering but simply consider each candidate as one
OOV word, the RI score will be almost 1, but the ARI score
will be a small value close to 0. For that reason, we chose to
use ARI for evaluation. We also tested the clustering resultus-
ing the adjusted mutual information (AMI) score [25], which
calculates the mutual information between the hypothesis and
reference clusterings and is also normalized against chance. In
our experiment, we found ARI and AMI had very similar ob-
servations. Therefore, only the ARI score was reported.

4. Experiment results
4.1. The intra-cluster and inter-cluster distances

Before discussing the clustering performance, we first takea
closer look at the testing data. Fig. 1 shows the comparison of
the average distance between instances of the same OOV word
(intra-cluster) with the average distance between instances of
different OOV words (inter-cluster). It can be seen that forthe
phonetic, acoustic and contextual features, the intra-cluster dis-
tance is always smaller than the inter-cluster distance. More-
over, the difference between the phonetic intra-cluster and inter-
cluster distances is greater than that of the other features. Fur-
thermore, OOV candidates in the WSJ and SWB tasks seem to
be more separable than those in the BN task.

4.2. The bottom-up clustering results

The performance of bottom-up clustering using one feature is
given in Fig. 2. We can find that the phonetic feature is very
effective in all tasks. The acoustic feature works well in the
WSJ task but shows the same ARI score as random clustering
in the SWB and BN tasks. This may be because that measur-
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Figure 1: Comparison of the average distance between in-
stances of the same OOV word (intra-cluster) with the aver-
age distance between instances of different OOV words (inter-
cluster).
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Figure 2: The performance of bottom-up clustering using one
feature.

ing the distance between acoustic signals in the spontaneous or
noisy speech is less reliable than in clean speech. Althoughthe
contextual feature is not as good as the phonetic one, it doespro-
duce positive results across different tasks. By comparingFig.
2 with Fig. 1, we can also learn that the clustering performance
is highly correlated with the difference between the intra-cluster
and inter-cluster distances of one feature. For instance, the dif-
ference between the phonetic intra-cluster and inter-cluster dis-
tances is great in all tasks, and the clustering performanceusing
the phonetic feature is always good. On the other hand, the
difference between the acoustic intra-cluster and inter-cluster
distances is only noticeable in the WSJ task, and the bottom-up
clustering using the acoustic feature performs badly in theSWB
and BN tasks. The best performance is obtained when using the
acoustic feature in the WSJ task and using the phonetic feature
in the SWB and BN tasks.

In addition to using only one feature to measure the distance
between OOV candidates during clustering, we also applied the
combined feature defined in Eq. 2. Fig. 3 shows the perfor-
mance of bottom-up clustering using the combined feature, in
which the red bar is the best clustering performance using one
feature, the green bar is the performance when using both the
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Figure 3: The performance of bottom-up clustering using the
combined feature.

phonetic and acoustic features, and the blue bar is the perfor-
mance when combining all features. It can be seen that the ARI
score gradually increases when using more features during clus-
tering. Even for the SWB and BN tasks, where the acoustic fea-
ture does not work at all, combining the phonetic and acoustic
features can still yield some improvement. And the best per-
formance is achieved when combining all features. Overall,the
ARI score is up to 0.8 in the WSJ and SWB tasks and about 0.6
in the BN task, which indicates that we can successfully find
most of the recurrent OOV words using the proposed bottom-
up clustering approach. In fact, in the clustering result, most
clusters only contain instances of the same OOV word. When
calculating ARI only from those clusters, the ARI score is upto
0.9 in all tasks. Therefore, the clustering result is good enough
for further process, such as learning the pronunciation of POS
tag of recurrent OOV words.

5. Conclusions and future work
In this paper, we studied a bottom-up clustering approach tofind
recurrent OOV words in speech recognition. We collected pho-
netic, acoustic and contextual features to measure the distance
between OOV candidates. From our experimental results, we
found that the phonetic feature is more effective than the acous-
tic and contextual features for detecting the recurrence ofOOV
words, but the best performance is achieved when combining
all features. In the future, we would like to investigate howto
build a better phonetic representation from multiple instances
of the same OOV word. We are also interested in learning the
POS tag and language model scores of recurrent OOV words.
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