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ABSTRACT

Eigenspace MLLR is effective for fast adaptation when the
amount of adaptation data is limited, e.g., less than 5s. The
general motivation is to represent the MLLR transform as a
linear combination of basis matrices. In this paper, we
present a framework to estimate a speaker-independent
discriminative transform over the combination coefficients.
This discriminative basis coefficients transform (DBCT) is
learned by optimizing discriminative criteria over al the
training speakers. During recognition, the ML basis
coefficients for each testing speaker are firstly found, on
which DBCT is applied to give the final MLLR transform
discrimination ability. Experiments show that DBCT results
in consistent WER reduction in unsupervised adaptation,
compared with both standard ML and discriminatively
trained transforms.

Index Terms— Speaker adaptation, discriminative
training, speech recognition

1. INTRODUCTION

Speaker adaptation is widely used to build speaker-
dependent models which can recognize speech from
unknown speakers. The most commonly used approach for
speaker adaptation is maximum likelihood linear regression
(MLLR), which involves estimation of speaker-specific
linear transforms over acoustic model parameters[1]. MLLR
can perform robustly given limited adaptation data. However,
when the amount of adaptation data becomes really small,
say less than 5s, speaker adaptation based on MLLR does
not always lead to improved recognition performance. This
is because the estimation of MLLR transforms is too noisy
and does not generalize well to the testing data. To solve this
problem, eigenspace-based methods have been proposed [2,
3, 4]. Generally, there are two stages in this type of methods.
During the training stage, an appropriate set of basis
matrices are computed on the training data, using ML-
fashion [4] or PCA-like algorithms [2, 3]. During testing, the
adaptation transform of a specific speaker is represented as a
combination of the basis matrices. Since the number of free
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parameters, i.e., combination coefficients, is reduced greatly,
these methods can improve the robustness of MLLR.

Meanwhile, there has been considerable interest in
exploiting discriminative criteria for improving MLLR
adaptation. In the supervised mode, it has been shown that
discriminative linear transforms (DL T) can bring significant
improvement over ML transforms[5, 6]. However, the gains
of DLT drop dramatically in unsupervised adaptation
because DLT is very sensitive to supervision errors. A more
recent work is to learn a globa discriminative mapping
transform (DMT) on the training data, which can map ML-
estimated adaptation transforms to discriminative transforms
[7, 8]. Since only ML estimation is performed during
adaptation, this DMT method is found to be less sensitive to
hypothesis errors and thus more suitable for unsupervised
speaker adaptation.

In this paper, we combine these two lines of work and
propose a framework which estimates a discriminative linear
transform over the basis coefficients in eigenspace MLLR
adaptation. This global speaker-independent transform,
referred to as DBCT, acts as a linear mapping function from
ML-estimated basis coefficients to discriminative ones.
During training, this DBCT is learned by optimizing
discriminative criterion on the training speakers. During
recognition, DBCT is used to transform speaker-specific
basis coefficients estimated in a normal ML manner. The
final adaptation matrix derived from DBCT-transformed
coefficients becomes discriminative in nature and at the
same time robust to hypothesis errors. We use the maximum
mutual information (MMI) criterion [9] for DBCT training
and only examine MLLR adaptation of HMM-GMM means.
However, this approach can be extended easily to the
minimum phone error (MPE) criterion [9] and other forms
of adaptation transforms such as fMLLR. Experiments with
Switchboard data show the effectiveness of DBCT in
improving unsupervised adaptation.

2. EIGENSPACE MLLR ADAPTATION
The idea of eigenspace MLLR adaptation is to estimate

MLLR transforms in a subspace constrained by the basis
matrices. These basis matrices are learned on the training set



either with PCA or iterative MLE. Specificaly, the MLLR
transform W ® for speaker sisrepresented as

N(s)

W =3 diTW, D
where W, represents the n-th basis matrix. Speaker-specific
basis coefficients d$ are estimated to optimize the ML
objective on the adaptation data. If the feature dimension is
D, the number of basis coefficients N is generally much
smaller than D(D+1), i.e., the size of parameters in the
conventional MLLR adaptation. Therefore, this type of
eigenspace methods perform robustly under inadequate
adaptation data.

In principle, our DBCT approach can be used with any
eigenspace MLLR methods. In this paper, we deal with a
specific  implementation derived from the basis
representation of fMLLR described in [10]. The basis
matrices are obtained via singular value decomposition
(SVvD) on top of MLLR statistics collected from the training
speakers, together with appropriate precon-ditioning. Totally
we estimate D(D+1) basis matrices which are sorted by a
decreasing order on their eigenvalues. For each testing
speaker, an iterative line search algorithm is adopted to find
the basis coefficients (equivalently the MLLR transform)
which optimize the ML objective on the adaptation data.
Compared with others, this implementation has the
advantage that the number of basis matrices to be used, i.e,,
N, can be decided dynamically according to the amount
of available adaptation data. For example, N is set to the
minimum of D(D+1) and hb® , where b‘® is the number
of adaptation speech frames for this spesker and h is a
constant such as 0.2 [10]. In this paper, we call this method
basisMLLR. Interested readers can refer to [10] and the
implementation of basis-fMLLR in the Kaldi toolkit™.

3. DISCRIMINATIVE BASISCOEFFICIENTS
TRANSFORM

This section formaly describes how to learn the
discriminative DBCT over the basis coefficients. After using
basisMLLR on the training set, we can get the ML basis
coefficients for each training speaker s. Since basis matrices
have been sorted by their importance [10], the first P
coefficients represent the most important ones, i.e.,
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which has been extended with an additiona 1. The
remaining coefficients form the second vector

A =[dgh, -+, iG] )
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Applying DBCT, denoted as Wb , to A{> , the transformed
coefficients vector is
Ao = Was -A Y (@

where Wyuet has the size of P(P+1). Considering DBCT on
a small subset of P coefficients has two notable benefits.
First, in testing adaptation, the actual coefficient dimensions
to be used may be much less than D(D+1). Thus, the DBCT
transform modeled on the most important dimensions can
still be applicable even under highly limited adaptation data.
Second, if using the whole set of coefficients, the affine
DBCT has the size of [D(D+1)+1][D(D+1)], which is
expensive to manipulate.

To facilitate the estimation of Wy, We isolate basis
matrices from coefficients by integrating basis matrices into
GMM mean vectors. For Gaussian component m, we have
the DxP matrix M{™ = [m{™,---,m{"] and the Dx (N(s)
- P) matrix MY" =m0, -, (Nm()s)] where the i-th
column vector m{™ represents the mean vector p‘™
transformed by the basis matrix W, , i.e.,

m™ =W, -£™ (5
where £™ isthe extended vector of u™ . Then, it’s natural
to derive the speaker-specific means pi™ , with the DBCT
Wya applied, asfollows:

U = M WAL 1M A ©)
Our goal is to obtain the speaker-independent Wne: which

can optimize the discriminative criterion on the training data.
The standard MM optimization scheme, based on the weak-
sense auxiliary function [9], is used. The auxiliary function

w.r.t. Wape isformulated as:
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where g™ (ts) and ge"(ts) are posterior occupancy of

component m being at time ts given the numerator and
denominator lattices, ts is the speech frame of speaker s,
Dém) is a smoothing term with respect to speaker s and
component m to ensure the convergence of the
discriminative updates. Following [8], we set thisterm to be

D{M — EZt g (ts) where the constant E = 0.8. Also,

(1™ is the adapted mean which is calculated using Eq. (6)

and the current Wy, rather than the mean adapted by
basisMLLR.

The above DBCT can be estimated efficiently with an
expectation maximization (EM) style algorithm. For limit of

(m)) 2, (th ”(m))



space, we are omitting the detailed derivations. In the E step,
the following two types of speaker-specific statistics are
collected for all the training speakers:

GO =3 gi” M.t M{™
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num

where  gm(ts) = g™ (ts) —ge"(ts) , the accumulated
component occupancy is

g{™ =D + 3" dn(ts) ©

(s)

and the two component specific terms in K can be
calculated as

XD =X M7 A

Ij(sm) — Q(sm) _ M(zm) _)\(zs) (10)

Inthe M step, it can be proved that DBCT estimation has
the following updating formula to optimize the
discriminative auxiliary function in Eq. (7):

vec(dect ) = (Zskron(G(s) , P(S‘)))_l vec(Z:S K (9 )

(11)
where the vec(.) operator stacks the rows of a matrix into a
single vector, kron(.) is the Kronecker product of two
matrices, P'® is the scatter of the first-part coefficient
vector defined in Eq. (2), that is, P®® =A{® -A{9T  Given
awell trained acoustic model, for example discriminatively
trained HMM-GMM, iterative estimation procedures for
DBCT are summarized as follows:

(1) Estimate the ML basis coefficients d(rj) for each

training speakers s with basisMLLR.

(2) InitidizeWS>, =[1;0] and set k= 0.

(3) Collect statistics using Eq. (8) and estimate W<

according to Eq. (11).

(4) k=k+ 1. Goto step 3 if not converged.
After obtaining the DBCT, we can use it in recognition. For
a testing speaker s, discriminative adaptation with DBCT is
performed as follows:

(1) Perform first-pass decoding to generate the supervision
hypothesis for the utterances of speaker s.

(2) Estimate ML basis coefficients d' with basisMLLR.

(3) Adapt the acoustic mode! parameters using Wnet and
the ML coefficients dfﬁ) according to Eq. (6).

(4) Decode the testing set with the adapted model.

From the training process, we can see that DBCT depends
on specific acoustic models. If the acoustic model changes,
DBCT needs to be re-estimated.

4. EXPERIMENTS

The performance of DBCT is evaluated on an English
conversational telephone speech task. The training data
contains 898 speakers (conversation sides), around 72 hours,
from the Switchboard-1 corpus. The testing data comes from
a subset of the 2001 HUBS evaluation set, consisting of 20
speakers and 1 hour of speech. Acoustic modeling is based
on a 13-dimensional MFCC front-end including the CO
energy and its first, second derivatives with per-speaker
mean normalization. An LDA transform reduces the feature
dimension to 40, on which MLLT is applied. The ML model
has 3000 clustered triphone states, with an average of 12
Gaussians per state. The MMI criterion [9] is used on top of
the ML baseline and generates the speaker-independent
MMI model. In MMI training, the numerator lattices are
built from the reference, while the denominator lattices are
produced by the ML model with a heavily pruned unigram
language model. Our experiments are conducted with this
MMI-SI model, which has a first-pass WER of 38.5% on the
testing set. During unsupervised adaptation, basisMLLR
estimation is performed given the hypothesis output from
MMI-SI. For al the decoding runs, we use a trigram
language model built only with the training transcriptions.

4.1. Effectivenessof DBCT

As discussed in Section 3, DBCT is applied on a small
subset of the basis coefficients. Therefore, it can be robustly
estimated with limited training data To verify this, we
perform DBCT learning on various training sets with
different sizes. Table 1 presents the results for the adapted
MMI model, using standard basisMLLR and basisMLLR
+DBCT respectively. The coefficient dimension P, on which
DBCT is applied, is set to 10. On each training set, we run
DBCT estimation for 4 iterations and give the final MMI
objective. Note that we are not reporting the actual MMI
objective as computed in [9]. Instead, the objective here
equals the partsin Eq. (7) dependent on Wi -

We can see that using DBCT in addition to basisMLLR
adaptation yields further reduction on WER. Reducing the
amount of training data results in superior recognition
performance and MMI objectives. The best WER is
achieved on the 9-hour set, where DBCT brings 0.7%
absolute improvement to basisMLLR. With more training
data available, we observe decreased MM objectives, which
indicate that DBCT may not reach the optimal point. Thus,
for the 72-hour set, we run DBCT estimation for more
iterations and achieve the best WER in the 6" iteration.
Despite a larger MMI objective, the recognition perform-
ance is only 0.1% better than using 9 hours data. This
confirms that we are able to learn DBCT only with a small
training set. If we shrink the training set further to 3 hours,
the performance of DBCT degrades significantly.



Table 1. Performance (WER%) of basisMLLR with DBCT in
unsupervised adaptation.

| | WER | Mmiob |
| BassMLLR | 37.1 | |
+ DBCT 72Hrs 36.6 1.415
+DBCT 36Hrs 36.6 1463
+ DBCT 18Hrs 36.8 1.706
+DBCT 9Hrs 36.4 2033
+ DBCT 3Hrs 37.2 1.959
+ DBCT 72Hrs
(6th iteration) 36.3 2129

4.2. Sensitivity to Supervision Errors

The following two subsections examine properties of DBCT.
Unless stated otherwise, we show the results of DBCT
trained with 9 hours data. As a global transform, DBCT
should be less sensitive to supervision errors compared with
DLT [5, 6]. To investigate this point, three types of
adaptation supervisions are used. The baseline hypothesis
are from MMI-SI in the first-pass decoding. Hypothesis of
worse quality are generated by the ML model. Finaly, the
correct reference is also taken as supervision. These
supervisions are used to estimate basisMLLR coefficients,
on which DBCT is applied. During DLT training, the
numerator lattices are built from these supervisions and the
denominator |attices are generated by MMI-SI.

Table 2 presents the WER comparison with various
supervisions. For basisMLLR, using the reference obtains
14% absolute gains over the ML-SI and MMI-SI
supervisions. This is similar to DBCT performance
differences. In contrast, for DLT, the reference has 3.9%
absolute improvement over ML-SI and 3.5% over MMI-SI
supervisions. This shows that DBCT is less sensitive to the
quality of supervisions and thus suitable for unsupervised
adaptation. It can aso be observed that DBCT aways
outperforms DLT under erroneous supervisions. But with
reference supervision, DLT is significantly better than
DBCT. This is because DBCT is learned on the training set
and is not tuned to the reference during adaptation.

4.3. Training Stability

Another notable observation is that DBCT may encounter
instability in discriminative updates. In Fig. 1, we plot the

Table 2. WER% of DBCT and DLT with different supervisions.

Supervision
ML-Sl | MMIsSI [ Ref
| wer | 43 | 385 | - |
| BassMLLR | 371 | 371 [ 37 |
+DBCT 365 36.4 352

DLT 37.1 36.7 33.2

MMI objectives for 10 iterations of DBCT estimation and
the corresponding WER. With E=0.8, there is a dramatic
rise in the MMI objective after 5 iterations, while the
performance of DBCT on the testing set begins to drop. This
instability can be relieved by setting the const E to a larger
value, which corresponds to a smaller step size in each
iteration. Fig. 1 also shows the MMI objectives and WER
with E=1.2. In this case, DBCT estimation remains stable
within the 10 iterations. But we need more iterations to
reach the optimal recognition results. Moreover, we observe
that increasing the coefficient dimension P to 20 or 30
introduces more instability into DBCT training. That is, the
testing WER goes up quickly to 50% after severa iterations.
That's why we set P to 10 in our experiments.
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Fig. 1. Instability of DBCT estimation in terms of MMI objective
and WER% in 10 iterations.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach to estimating DBCT
for eigenspace MLLR adaptation. The DBCT transform is
learned on top of basisMLLR and applied in recognition to
improve the ML adaptation with additional discrimination.
Experiments show the effectiveness of DBCT in improving
unsupervised adaptation. In our future work, we will focus
on the extension of this method to cluster adaptive training
(CAT) [11], where we can learn the discriminative trans-
forms on the cluster combination coefficients.
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