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Abstract
This paper proposes an improved approach of summarization
for spoken multi-party interaction, in which a multi-layer graph
with hidden parameters is constructed. The graph includes
utterance-to-utterance relation, utterance-to-parameter weight,
and speaker-to-parameter weight. Each utterance and each
speaker are represented as a node in the utterance-layer and
speaker-layer of the graph respectively. We use terms/topics
as hidden parameters for estimating utterance-to-parameter and
speaker-to-parameter weight, and topical similarity between ut-
terances as the utterance-to-utterance relation. By within- and
between-layer propagation in the graph, the scores from differ-
ent layers can be mutually reinforced so that utterances can au-
tomatically share the scores with the utterances from the speak-
ers with similar terms/topics and similar utterances. For both
ASR output and manual transcripts, experiments confirmed the
efficacy of including hidden parameters and involving speaker
information in the multi-layer graph for summarization. We
find that choosing latent topics as hidden parameters can sig-
nificantly reduce the running time and does not hurt the perfor-
mance.
Index Terms: summarization, multi-party meeting, mutual re-
inforcement, random walk

1. Introduction
Speech summarization is important for spoken or even multime-
dia documents, which are more difficult to browse than text, and
has therefore been investigated in the past [1]. Recent work has
been increasingly directed towards conversational speech such
as telephone conversation and multi-party meeting [2, 3, 4, 5, 6].
In this work, we perform extractive summarization on the out-
put of automatic speech recognition (ASR) and correspond-
ing manual transcripts of multi-party academic meeting record-
ings [7].

A general approach has been found be very successful [8],
in which each utterance in the document can be represented as
a sequence of terms, and the importance score of the utterance
can integrate the score from the grammatical structure of the
utterance, some statistical measure (such as TF-IDF), some lin-
guistic measure (e.g., POS tags), a confidence score, and an n-
gram score for each term in the utterance. For each document,
the utterances to be used in the summary are then selected based
on this score.

Many approaches to text summarization focus on graph-
based methods to compute lexical centrality of each utterance,
in order to extract summaries [9, 10]. Speech summarization
carries intrinsic difficulties due to the presence of recognition
errors, spontaneous speech effects, and lack of segmentation.

In recent work, we proposed a graphical structure to rescore
the importance scores of utterances, which can model the top-
ical coherence between utterances using a random walk pro-
cess within documents [4, 11, 12, 13]. Unlike lecture and news,
meeting recordings contain spoken multi-party interactions, so
that the “speaker importance” scores can be added to the esti-
mation of the importance of individual utterance [14]. How-
ever, the utterance-to-speaker relation is not easy to model [12],
so this paper additionally includes a middle layer to provide
the common parameters between utterances and speakers. Then
the proposed multi-layer mutually reinforced random walk can
compute the importance of hidden parameters and then increase
the scores of utterances similar to other utterances based on hid-
den parameter modeling. It models intra- and inter-speaker top-
ics together in the graph by automatically propagating scores
from the utterance- and speaker-layer to hidden-parameter-layer
for improving meeting summarization [10, 12, 15].

Section 2 describes the construction of the multi-layer
graph and the algorithms about computing the importance of
utterances with integration of within- and between-layer propa-
gation through hidden parameters. Section 3 shows the results
of applying proposed approaches, evaluates the effectiveness of
hidden parameters, and discusses the difference parameter types
and relation types result in for both ASR and manual transcripts.
Section 4 concludes the achievements.

2. Proposed Approach
We first preprocess the utterances in all meetings by applying
word stemming, stop word removal, and noise utterance filter-
ing [16]. For extractive summarization, we set a cut-off ratio
to retain only the most important utterances to form the sum-
mary of each document based on the “importance” of utter-
ances. Thus, we formulate the utterance selection problem as
computing the importance of each utterance. Then we construct
a multi-layer graph to compute the importance for all utterances,
speakers, and hidden parameters in utterance-layer, speaker-
layer, and hidden-parameter-layer respectively. In the multi-
layer directed graph, each utterance is represented by a node in
the utterance layer, and the edges between these are weighted
by topical or lexical similarity described in Section 2.4. Each
speaker in the meeting is a node in speaker layer. The hidden
parameters represent terms or latent topics, and the edges be-
tween different layers are weighted by the relation between the
two nodes as described in Section 2.3.

The basic idea is that an utterance similar to more important
utterances should be more important [11], so the importance of
each utterance considers the scores propagated from other ut-
terances weighted by the similarity between them. In this ap-
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Figure 1: A simplified example of the multi-layer graph with
hidden parameters, where a speaker Si is represented as a
speaker node, an utterance Uj is represented as an utterance
node, and a hidden parameter Hl is represented as a pa-
rameter node of the graph. There are three different types
of edges corresponding to different relations (utterance-to-
utterance, utterance-to-parameter, and speaker-to-parameter).

proach, the propagated scores additionally consider speaker in-
formation, which is automatically modeled via hidden parame-
ters in the graph. Figure 1 shows a simplified example for such
a multi-layer graph with hidden parameters, in which there are a
speaker-layer, an utterance-layer, and a hidden-parameter-layer.

2.1. Parameters from Topic Model

Topic models such as probabilistic semantic analysis (PLSA)
and latent Dirichlet allocation (LDA) have been widely used to
analyze the semantics of documents based on a set of latent top-
ics [17, 19]. Given a set of documents {dj , j = 1, 2, ..., J} and
all terms {ti, i = 1, 2, ...,M} they include, PLSA uses a set
of latent topic variables, {Tk, k = 1, 2, ...,K}, to characterize
the “term-document” co-occurrence relationships. The PLSA
model can be optimized using the EM algorithm, by maximiz-
ing a likelihood function [17]. We utilize two parameters, latent
topic significance (LTS) and latent topic entropy (LTE), for pro-
posed approach [18].

Latent topic significance (LTS) for a given term ti with re-
spect to a topic Tk can be defined as

LTSti(Tk) =

∑
dj∈D n(ti, dj)P (Tk | dj)∑

dj∈D n(ti, dj)[1− P (Tk | dj)]
, (1)

where n(ti, dj) is the occurrence count of term ti in a document
dj . Thus, a higher LTSti(Tk) indicates that the term ti is more
significant for the latent topic Tk.

Latent topic entropy (LTE) for a given term ti can be calcu-
lated from the topic distribution P (Tk | ti),

LTE(ti) = −
K∑

k=1

P (Tk | ti) logP (Tk | ti), (2)

where the topic distribution P (Tk | ti) can be estimated from
the topic model. LTE(ti) is a measure of how the term ti is
focused on a few topics, so a lower latent topic entropy implies
the term carries more topical information.

2.2. Statistical Measures of a Term

The statistical measure of a term ti, s(ti, d) measures the im-
portance of ti such as TF-IDF. In this work, it can be defined
based on LTE(ti) as s(ti, d) = γ ·n(ti, d)/LTE(ti), where γ
is a scaling factor such that s(ti, d) lies within the interval [0, 1],
so the score s(ti, d) is inversely proportion to the latent topic
entropy LTE(ti). This measure outperformed the very success-
ful “significance score” [18, 8] in speech summarization, so we
use the LTE-based statistical measure as our baseline.

2.3. Between-Layer Relation via Hidden Parameters

Given a set of utterances {Ui, i = 1, 2, ..., |U |} and a set of
speakers {Sj , j = 1, 2, |S|}, where a speaker node in the graph
is represented by combining all utterances from the speaker, for
the middle layer of the graph, we choose two different types
of hidden parameters {Hl, l = 1, 2, ..., L} – terms in the vo-
cabulary and latent topics from the topic model, which are the
common parameters shared with other two layers. We derive
the weights of between-layer relation as the significance of the
hidden parameters given the utterance or the speaker.

2.3.1. Term Layer

We use terms from the vocabulary to represent hidden parame-
ters, and the weight is computed as follows.

Lex(Ui, Hl) =
1

|Ui|
∑
t∈Ui

idft, (3)

where |Hl| is the size of vocabulary and idft is the inverse docu-
ment frequency (IDF) of term t. Hence Lex(Ui, Hl) is average
TF-IDF of term t in the utterance Ui. Lex(Sj , Hl) can be de-
rived in the similar way.

2.3.2. Topic Layer

We use the trained topic model to represent each latent topic
as a node in the layer of hidden parameters. Based on latent
topics, which are the common parameters shared by utterances
and speakers, we can weight between-layer edges below.

Topic(Ui, Hl) =
1

|Ui|
∑
t∈Ui

LTSt(Tl), (4)

where |Hl| is set to be K, which is the number of latent topics.
Topic(Sj , Hl) can be computed in the similar way.

2.4. Within-Layer Relation via Similarity

We compute two different types of similarity between utter-
ances based on topical and lexical distribution.

Within a document d, we can first compute the probability
that the topic Tk is addressed by an utterance Ui,

P (Tk | Ui) =

∑
t∈Ui

n(t, Ui)P (Tk | t)∑
t∈Ui

n(t, Ui)
. (5)

Then an asymmetric topical similarity Sim(Ui, Uj) for utter-
ances Ui to Uj (with direction Ui → Uj) can be defined by
accumulating LTSt(Tk) in (1) weighted by P (Tk | Ui) for all
terms t in Uj over all latent topics,

Sim(Ui, Uj) =
∑
t∈Uj

K∑
k=1

LTSt(Tk)P (Tk | Ui), (6)

where the idea is similar to generative probability in information
retrieval. We call this generative significance of Ui given Uj .



2.5. Multi-Layer Mutually Reinforced Random Walk

For each document d, we construct a directed multi-layer graph
G containing utterance set, speaker set, and hidden parame-
ter set to compute the importance of each utterance. G =
〈VU , VS , VH , EUU , EUH , ESH〉, where VU = {Ui ∈ d},
VS = {Si ∈ d}, VH = {Hi}, EUU = {eij | Ui, Uj ∈ VU},
EUH = {eij | Ui ∈ VU , Hj ∈ VH}, and ESH = {eij | Si ∈
S,Hj ∈ VH}. EUU ,EUH , andESH correspond the utterance-
to-utterance, utterance-to-parameter, and speaker-to-parameter
relation respectively [10].

We compute WUU = [wUi,Uj ]|VU |×|VU |, where wUi,Uj

is from Sim(Ui, Uj). Word overlap between utterances may
be sparse due to recognition errors, so it’s possible that topi-
cal similarity via topic models can be more informative than
lexical similarity. WUH = [wUi,Hj ]|VU |×|VH |, where wUi,Hj

is the either from Topic(Ui, Hj) or Lex(Ui, Hj). Simi-
larly, WSH = [wSi,Hj ]|VS |×|VH |, where wSi,Hj is the either
from Topic(Si, Hj) or Lex(Si, Hj). Row-normalization and
column-normalization are applied to obtain LUU , LUH , and
LSH as normalized affinity matrices [20].

Traditional random walk integrates the original scores and
the scores propagated from other utterance nodes [11, 14, 21].
Here the proposed approach additionally considers the speaker
information and integrates importance propagated from speaker
nodes via hidden parameters to model intra- and inter-speaker
relation automatically. The algorithm is detailed as follows.

Here we use mutually reinforced random walk to propa-
gate the scores based on external mutual reinforcement between
different layers and internal importance propagation within the
layer.


F

(t+1)
H = (1− 2α)F

(0)
H + α · LT

UHF
(t)
U + α · LT

SHF
(t)
S

F
(t+1)
U = (1− 2α)F

(0)
U + 2α · LT

UULUHF
(t)
H

F
(t+1)
S = (1− 2α)F

(0)
S + 2α · LSHF

(t)
H

,

(7)
where F (t)

H , F (t)
U , and F (t)

S denote the importance scores of hid-
den parameter set VH , utterance set VU , and speaker set VS in
t-th iteration respectively. In the algorithm, they are the interpo-
lations of the initial importance and the scores propagated from
another layer, where F (t)

H integrates the scores propagated from
both utterance-layer and speaker-layer to measure the impor-
tance of each hidden parameter.

For utterance set, LT
UULUHF

(t)
H is the score propagated

from hidden parameter set according to utterance-to-parameter
relation and then weighted by utterance-to-utterance similar-
ity LUU . Similarly, nodes in the speaker-layer also include
the scores propagated from hidden-parameter-layer but without
within-layer propagation, because the speaker-to-speaker rela-
tion cannot be estimated accurately, and if we set the uniform
distribution for the speaker-to-speaker relation, the results may
not be influenced a lot. Then F (t+1)

H , F (t+1)
U , and F (t+1)

S can
be mutually updated by the latter parts in (7) iteratively. The
algorithm will converge and then (8) can be satisfied [10].


F ∗H = (1− 2α)F

(0)
H + α · LT

UHF
∗
U + α · LT

SHF
∗
S

F ∗U = (1− 2α)F
(0)
U + 2α · LT

UULUHF
∗
H

F ∗S = (1− 2α)F
(0)
S + 2α · LSHF

∗
H

(8)

We can solve F ∗H as below.

F ∗H = (1− 2α)F
(0)
H (9)

+ α · LT
UH

(
(1− 2α)F

(0)
U + 2α · LT

UULUHF
∗
H

)
+ α · LT

SH

(
(1− 2α)F

(0)
S + 2α · LSHF

∗
H

)
= (1− 2α)F

(0)
H

+ α(1− 2α) · LT
UHF

(0)
U + α(1− 2α) · LT

SHF
(0)
S

+ 2α2 · LT
UHL

T
UULUHF

∗
H + 2α2 · LT

SHLSHF
∗
H

=
(
(1− 2α)F

(0)
H eT

+ α(1− 2α) · (LT
UHF

(0)
U eT + LT

SHF
(0)
S eT )

+ 2α2 · (LT
UHL

T
UULUHF

∗
H + LT

SHLSHF
∗
H)
)
F ∗H

= MF ∗H ,

where the e = [1, 1, ..., 1]T . It has been shown that the closed-
form solution F ∗H of (9) is the dominant eigenvector of M [22],
which is the eigenvector corresponding to the largest absolute
eigenvalue of M . Then we can compute the solution of F ∗U
using (8), which denotes the updated importance scores for all
utterances. Similar to the PageRank [23], the solution can also
be obtained by iteratively updating F (t)

H , F (t)
U , and F (t)

S .
We set F (0)

U to be the baseline score after normalization
such that the sum of them is equal to 1, F (0)

H = eT /|VH |, and
F

(0)
S = eT /|VS |, which means we assume all hidden parame-

ters and speakers in the document have equal importance in the
beginning.

3. Experiments
3.1. Corpus

The corpus used here is a sequence of academic meetings,
which features largely overlapping participant sets and topics
of discussion. For each meeting, SmartNotes [3] was used
to record both the audio from each participant, as well as the
notes. The meetings were transcribed both manually and using
a speech recognizer; the word error rate is around 44%. In this
paper we use 10 meetings held from April to June of 2006. On
average, each meeting had about 28 minutes of speech. Across
these 10 meetings, there were 6 unique participants; each meet-
ing featured between 2 and 4 of these participants (average:
3.7). Total number of utterances is 9837 across 10 meetings.
In this paper, we empirically set α = 0.45 for the unsupervised
experiments because (1 − 2 × 0.45) is a proper damping fac-
tor [23, 21]. Note that for previous approaches, α is set to be
0.9 such that damping factor is (1− 0.9). We use PLSA as our
topic model and set the number of topics to be 32.

The reference summaries are given by the set of “notewor-
thy utterances”: two annotators manually labelled the degree
(three levels) of “noteworthiness” for each utterance, and we
extract the utterances with the highest level of “noteworthiness”
to form the summary of each meeting. Note that this experiment
does not consider redundancy of information but focuses on the
importance of utterances. After performing the algorithm, it-
eratively selecting utterances based on redundancy can achieve
final summarized results. In the following experiments, for each
meeting, we extract about 10% and 20% of the number of terms
as the shorter summary considering reasonable ratios of meet-
ing data, which are different from previous experiments [12],
where the ratio is set to be 30%.



Table 1: The results of all proposed approaches and maximum relative improvement with respect to the baseline (%).

F-measure
10% Summary 20% Summary

ASR Manual ASR Manual
R-1 R-L R-1 R-L R-1 R-L R-1 R-L

(a) Baseline: LTE 44.27 43.32 43.10 41.99 44.73 44.11 42.30 41.68
(b) Two-Layer MRRW-WBP (LexSim) 45.82 44.82 44.89 44.00 45.64 44.78 43.92 43.26
(c) Two-Layer MRRW-WBP (TopicSim) 46.53 45.77 44.46 43.57 45.18 44.34 43.95 43.20
(d) Multi-Layer MRRW-Term 50.36 49.62 49.36 48.42 48.02 47.35 45.69 44.95
(e) Multi-Layer MRRW-Topic 50.00 49.16 48.68 47.82 48.35 47.78 46.69 45.99

Max Relative Improvement +13.76 +14.54 +14.52 +15.31 +8.09 +8.32 +10.38 +10.34

3.2. Evaluation Metrics

Our automated evaluation utilizes the standard DUC (Document
Understanding Conference) evaluation metric, ROUGE [24],
which represents recall over various n-grams statistics from a
system-generated summary against a set of human generated
summaries. F-measures for ROUGE-1 (unigram; R-1) and
ROUGE-L (longest common subsequence; R-L) can be eval-
uated in exactly the same way.

3.3. Results

Table 1 shows the performance achieved by all proposed ap-
proaches. Row (a) is the baseline, which uses an LTE-based
statistical measure to compute the importance of utterances.
Row (b) is the result after applying two-layer mutually rein-
forced random walk (MRRW) using within- and between-layer
propagation (WBP), which uses lexical similarity to measure
utterance-to-utterance relation [12]. Row (c) is the same as row
(c) except it uses topical similarity for utterance-to-utterance re-
lation. Row (d) and (e) are the results of proposed multi-layer
MRRW with terms (Term) and latent topics (Topic) as hidden
parameters respectively.

3.3.1. Effectiveness of Hidden Parameters

We can see all performance of the multi-layer graph with hidden
parameters (row (d)-(e)) significantly outperforms two-layer ap-
proaches (row (b)-(c)) for both ASR and manual transcripts.
The largest improvement is from multi-layer MRRW-Term (row
(d)) for 10% summary and from multi-layer MRRW-Topic (row
(e)) for 20% summary. The results confirm that hidden param-
eters carry more information and help summarization.

3.3.2. Comparing Types of Hidden Parameters

For shorter summary, there’s no obvious difference between us-
ing lexical and topical similarity in two-layer approaches (row
(b)-(c)). Therefore, we analyze the difference between choosing
terms (similar to lexical information) and latent topics (similar
to topical information) as hidden parameters.

When using terms as hidden parameters, we have about
2000 nodes in the middle layer. The selected terms correspond
to words in vocabulary, which are collected from the corpus af-
ter word stemming and stop word removal. After performing
the algorithm, each term in the hidden-parameter-layer has the
score indicating the term significance in terms of utterances and
speakers. Then the importance of each utterance integrates the
scores propagated from other utterances and from the terms the
utterance contains, where the latter carries speaker information.
Using terms as parameters allows scores to be computed more

accurately, and more accurate scores are better for extracting
shorter summary so that MRRW-Term (row (d)) performs bet-
ter than MRRW-Topic (row (e)) for 10% summary.

In the case of latent topics as hidden parameters, the size
of middle layer is equal to the number of topics, which is 32.
We experiment using different numbers of topics, 16, 32, 64,
and 128, but the different settings do not influence the results
a lot, which means that topic models can still capture the most
important topics for all settings. With the proposed algorithm,
the score of each latent topic considers utterance-to-parameter
and speaker-to-parameter relation to indicate the topic signifi-
cance in the multi-layer graph. With latent topics as parameters,
scores can be computed more generally. Topic models capture
not lexically but conceptually similar information so that using
latent topics as parameters is more suitable for extracting a 20%
summary. Hence the results show that MRRW-Topic (row (e))
performs better than MRRW-Term (row (d)).

3.3.3. Running Time Reduction

MRRW-Term includes larger size of hidden-parameter-layer
and the proposed algorithm needs to compute the eigenvec-
tor of M2000×2000 in (9), which requires longer running time.
MRRW-Topic can use smaller size of hidden-parameter-layer
by modeling similar terms in the same latent topic so that the
running time can be significantly reduced. Comparing the re-
sults between them, reducing the running time does not hurt the
performance a lot for 10% summary and even results in further
improvement for 20% summary. It shows that our proposed al-
gorithm is effective and can be applied in a practical way.

4. Conclusions and Future Work
Extensive experiments are performed and evaluation shows
that multi-layer mutually reinforced random walk with hid-
den parameters can model importance of utterances and speak-
ers through hidden parameters in the multi-layer graph. The
speaker information can be automatically included in impor-
tance of utterances by between-layer propagation, achieving
about 13% and 8% relative improvement compared to the LTE
baseline for shorter summary of ASR and manual transcripts re-
spectively. Reducing the running time by using latent topics as
hidden parameters does not hurt the performance, showing the
practicality and effectiveness of the proposed algorithm. In the
future, we plan to model additional parameters such as prosodic
features and to integrate different types of features in a single
multi-layer graph.
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