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Abstract

Stress Is one of the key components in human speech perception. Its
uses extend from the phonetic level over the lexical to the syntactic and
semantic level, Several methods have been developed in the past to
detect stress automatically from the signal. This paper takes a patern
recoghition approach to the the problem of stress detection. The
algorithm presented has three key features: (1) optimal combination of
the evidence obtained from the acoustic correlates of stress is achieved
by means of a Bayesian classifier assuming nwltivariate Gaussian
distributions; (2) the algorithm detects lexical stress in continuously
spoken English utterances; (3) rather than making hard decisions, the
algorithm returns probabilities for each syllable, i.e, a measure of
stressedness,  The algorithm was tested over 4 databases of differing
continuous speech data. When a forced decision is imposed by setting a
threshold at stress probability 0.5, error rates of 7.79% o 14.85% missed
stresses were obtained. Unlike in other languages (such as Japanese),
amplitude integrals are the strongest predictor of English stress.
Performance results and an analysis of errors are presented.

1. Introduction

Stress has repeatedly been found to be an extremely important factor in
speech perception. Stressed syllables are usually the best articulated
syllable in a word and thus could provide islands of phonetic reliability
[1,2]. With a decrease in degree of stressedness (e.g., reduced syllables
at higher speaking rates) all vowels appear to move towards a neutral,
central schwa-like point in F1/F2-space or are deleted altogether.
Stressed syllables in a large English dictionary also carry more
acoustically discriminatory information than unstressed syllables [3] and
therefore provide not only acoustic  reliability, but also more
diseriminatory information content.  Morcover, in sentence conlext,
content words, i.c., "important” words carrving most of the semantic
informaton content of a senlence, are mostly stressed, while function
words (articles. conjunctions, possessive determiners, eic.) tend w be
unstressed or reduced.  In Inglish, word-level stress is [ree, el its
position is not fixed within the word, Stress could thus also be used asa
constraint for lexical access. This lawer property has in fact been
demonstrated w0 be of potential value for word hypothesization in
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automatic large vocabulary recognition [4, ). The analysis of riythmic
and/or tempuoral aspeets of speech also relics heavily on the availahility
of stress information.  Speaking rate and the corresponding
applicability of phonological variations such as palatalization, glotial
stop and pausc insertion, flapping, cte, can be best predicted by the
intervals between  stressed  svllables. the  so-called  interstress
intervals [1]. Since English is said to be a stress-timed language, these
interstress inlervals are approximately isochronous and their duration
determines the rate of speech.  Significant deviations from these
interstress intervals typically indicate major syntactic boundaries such
as phrase boundaries or clause bonndaries [1].

2. Acoustic Correlates of Stress

Although the importance of the percept of stress in speech perception
and speech recognition seems intuitively dear from the foregoing
discussion, the acoustic manifestations of stress have been the subject of
debate and appear w0 be language dependent, Various perceptual
studies have found pitch o be the most salient correlate of stress in
English. Conversely, measurements of acoustic features in word pairs
that differ only in stress patiern (CONvict/conVICT) indicate that the
amplitude integral is the strongest correlate of stress, (For a good
review see Lehiste [6]) Nevertheless, in contrast to other languages
such as Japanese (where only pitch accent is systematically used [7]),
English has been found to use all of the above acoustic features as
correlates of stress.

In the experiments described in the following, these predictions and
observations will be reexamined to arrive at an optimal automatic stress
detection algorithm. Rather than relying on manually set thresholds,
we will then use an automatic learning algorithm to obtain an optimal
combination of these acoustic correlates for automatic stress detection.
Results of extensive evaluation of over 2850 syllables from continuously
spoken sentences will also be given below,

3. Automatic Detection of Stress

The notion of stress or prominence is so mtuitive thag this fiequently
clouds the fbet that automatic stress detection itselt is a difficult
probiem, Scveral attempis have been made to automarically detect
stress in spaken English, Respectable performince was achicved for
isolated word stress detection by Licherman in 1960 [8] and Aull [5],
Lea[l] reports good performance for a continuoys speech stress
detection algorithm.  In the following sections we will atlempt ©
construct a stress detection algorithm that operates on continbous
speech, attempts W detect lexical stress, and assigns o probability of
stressedness to all syllables. A pattern recognition approuch is adopted
1o optimally combine various [catures (parameters acting as correlates
of stress) into one minimum-error stressed-syllable classifier. Sinee this

42.16. 1

ICASSP 86, TOKYO

CHZ2243-4/86/0000-2287 $1.00 © 1986 [EEE 2287



approach departs in vanious ways from previous systems we will star by
first reexamining the acoustic correlutes of stress found in our datbase
of continuously spoken sentences, These are intensity. duration, pitch,
and spectral change. For this analysis as well as for the final stress
detector a database of 50 sentences (Harvard sentences) read by 5
speakers (3 male, 2 female, reading 10 sentences each) was used, Fach
sentence was labeled according 1o three coarse phonetic classes:
silence, fricative and vocalic. In addition, syllable boundaries and stress
labels were added to these label files, All stress labels were lexical stress
labels ag indicated by a dictionary or as derived synthetically by rule.
Only 3 levels of stress were used: prumary stress, secondary stress, and
unsiressed, This labeling scheme, of course, ignores sentential stress,
emphasis, phrase level phenomena, rhythmic/syntactic/semantic
phenomena, that all do indeed plav a significant role on the actual
realization and pereeption of stress in spoken English sentences. [n the
following, each of the 50 urerances was automatically segmented into
syllables. For each syllable a particular feature was measured and
pooled into the stressed or unstressed category in order o compute
histograms and class conditional probability density functions of a
given feature for stressed and unstressed classes (secondary stresses
were considered to be stressed). In this fashion a training database of
244 stressed syllables and 238 unstressed syllables was obtained. To
achieve nearly Gaussian distributions, cach feature is offsel by a
constant (o &ssure positive numbers) and the nawra) logarithm is
taken. The resulting distributions will be presented for each feature
individually in the following subsections, Pattern recognition principles
will then be applied to combine these features in a Bayesian classifier,
assuming normal distribution of the component features.

3.1. Features for Stress Detaclion

Energy, loudness und amplitude have all been said o correlite with the
percept ubstress. Several experiments [9) were conducted o dewrmine
what the most aseful measure of amplitude could be to obtain best
separability between stressed end  unstressed  svllables.  including
average peak-to-peak amplitude over the extent of the sonerant portion
of cach syllable, the gverage peak-1o-peak amplitude over the extent of
the entire syllable. the saxbawm peok-lo-peak amplitude over the
extent of the emire syllable and the jriegrel of the peak-lo-peak
amplitude gver the extent of the surorent portion of cach syllable. TFor
the syllables in our training database, the hest separability was achieved
by the integral of the peak-to-peak amplitude over the sonorant portion
of the syllable, in good agreement with other studies (8], Fig. 1 shows
the PDFs for the loganthm of tiis intearal for hoth the stressed and the
unstressed syllables. The dotted curves show the approximation of the
PDF by a Gaussian distribution (with mean and variance cstimared
from the training data).
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Figure 4. PIOF of Average Spectral Change

Three separate measures of duration were taken: (1) the duration of
the sonorant portion of the syllable in question, (2) the duration
between syllable boundaries defined by the unsets of the sonorants of
consecutive syl]ablcs). and (3) the duration between syllables defined
by the onset of the consonant (cluster) preceding the syllabic nuclews in
question. The best separability was obtained by the second
measuremnent, i.e., the dutations between syliabies defined by the onset
of their syllabic nuclei [9], The PDFs corresponding to this measure are
shown in Fig. 2.

To provide the pitch measurements, a feature based time domain pitch
tracker [11] was used. A post-processing clean-up routine was necessary
to remove irrelevant variability in the original pitch contour due to
pich wracker failures, segmental effects at consonant boundaries, or
vocal fry. In this routing, all pitch values obtained in unvoiced regions
were first sel to zero, Next, pitch values with more than twice or less
than half the average fundamental frequeney are considered unreliable
{pitch tracker errors or vocal fry) and are ignored. Spurious outlicrs are
then removed using 5-point median smoothing. Finally, we wished 10
express the fall/rise movements at the syllabic level undisturbed by
sepmental effects (as, for example, encountered after the release of stop
consonanis), short pitch dips or peaks, or overall declination. Towards
this goal, a best-fit lincar approximation of the pitch contour in each
syllabic segment was computed using a lincar rogression. Care was
tken 10 exclude pich pulses during the first 15 msee of a syllable to
aveid perturbations due to scgmental effects. [n addition, a linear

Inis mcasure approximates the duration between syllabic beas [10]
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regression over the pitch values af an entire utterance wag computed as
a measure of declination [12]. All measures that were tried as (eanires
for stress detection were cxtracted from these short syliabic line
segments and  normalized by overall  declination. Fxtensive
cxperimentation suggests that this provides robust estimaics of the local
pitch variations in conlinuous speech [9].  Siress s typically
accompanicd by an increase in pitch as well us a rising aod in some
cascs also a falling contour.  Several measurcs might be suitable to
capture the essential ingredients of stress.  ‘The specific measures of
pitch that were (ested include (1) the sfope and the absolute value of the
slope, (2) the maximom value, (3) the average value, and (4) the offsct
between pilch values from the previous syllable to the cnsel of the
current syllable. The most promising measures were found to be the
pitch maxima and (only slightly inferior) the piich offset, Fig. 3 shows
the FDF for pitch maxima.

Finally, average spectral change has been reported clsewhere as a useful
measure for stress detection [3]. This is based on the observation that
stressed syllables will be dominated by steady state vocalic portions
rather than by short, rapidly changing, transitory vowels. As a measure,
spectral change was averaged over the sonorant portion of a syllable
nucleus, The resulting disaibutions are shown in Fig. 4.

3.2. Combination of Features - Optimal Stress Detection
We will now attempt 1o combine the features we have discussed so far
in an optimal classifier, Based on the distributions obtained in the
previous sections it is reasonable 1o assume normal (Gaussian)
distributions of the features, The general approach, thercfore, is to use
a ¢lassical minimum probability=of-error decision rule[13], where we
agsume that the joint probability density function of the feawres (the
measures discussed above) for a class § (in our case, i = 0,1 (stressed or
unstressed)) is a multidimensional Gaussian distribution with known
mEan VeCtor and covariance matrix Ei. Let x be an N-dimensional
vector representing the measurcments we have discussed above as its
clements, Then the N-dimensional Gaussian density function is given
by

p() = @) VBV exp F1/200p) % 0opy)] 0

Assuming this distnbution, minimume-ertor-rate classification can be
achieved using the discriminant function [13]

() = -1/200p)Z, Yxo,) - N/2 log2er
& - 1/210gf2 ] + log Plw) @

The decision rule which minimizes the probability of error is that the
sample described by the feature vector x should be assigned to the class
i, which maximizes g(x). In our simple case, [ = 0.1 (stressed or
unstressed), and our decision rule simply zays that a sylluble with
feature vector x 15 called stressed if g.(:()ﬂN_‘&m1 > S(x)um‘tmﬂwd: otherwise
it is called unstressed. In our case, Equation 2 can be simplified. First,
we assume that stressed and unstressed syllables are equally likely o
occur. This assumption Kolds true for our training data. The biasing @
priori probabilitics Plew,) will therefore be the same for both clagses, ie.,
0.5, Seccond, the feature vector x describing a given syllable will have
the same dimensionality N, regardless of class. Thus, since our decision
depends only on the refasive magnitude of the diseriminant functions
gl.(x). we can rewrite Equation 2 as

g =- (x-pi)zf'](r#-‘) -loglE

In this fashion, we achieve a eombination of the features described in
the previous scctions into one classifier aimed at optimal decision
between stressed and unstressed syliables. Prebability of stresscdness
can be computed according to Equatl'cn 1. In the next section we will
report a series of experiments that investigate various combinations of
features and report the resulling recognition accuracies.

3.3. Performance Evaluation

Pipint  Syldur  FOmax  AveSpch Missed Extra Ave Err.
X 10.98% 1B.03% 14.42%

X 2854% 1279% 20.86%

X 18.36% 46.75% 3221%

X 26.35% 19.08% 2280%

X X p 09.98% 1530% 1258%

X x X X 08.98% 1572% 1227%

Table 3-1: Stressed Syllable Classifiers Using Various Features -
(test) database #4

Each of the measures described above was evaluated in the framework
of a minimum error classifier. Detailed performance results of various
combinations of features and detailed error analyses are described
clsewhere [9). We will here only summarize performance results using
combinations of the most useful measures, Four databases were used
for evaluation:

1, The At is the waining database itself, which consists (as
previously described) of 50 Harvard semences, read by five
different speakers (3 male, 2 female), each reading 10 different
sentences. This database yields a total 482 syllables, 244 of which
were determined by hand-labeling to be stressed and 238 o0 be
unstressed.

g

. The second datuabase used is the Fmail sk, which consists of 6
sets of § sentences euch (2 ol of 48 sentences). Hach sentance
was read by a different speaker.  1duc @ poor recording
conditions 6 sentences are unusable, leaving 42 sentences for the
evaluation. These 42 sentences resulied in 431 syllables, 202 of
which were determined by hand-labels to be siressed and 229 o
be unstressed.

L

“The third database is given by two separate readings of the same
50 Harvard sentences we had used for training (with cach apeaker
again reading 10 sentences). This dutabase was generated and
hand-Tabeled at the MIT Research Laboratory of Elecoronies. It
presents data produced by different speakers and under different
recording conditons than’ those used in taining. This database
yiclds 959 syllables, 488 of which were determined to be stressed
and 471 1o be unstressed.

4. 'The fourth databasc is similar to the third database described
above, It was also generated &t MIT and consists of 50 sentences
read by 10 different speakers, 10 sentences each. The 50
seflences used here, however, are different from those in the first
(training) and third databases. In addition. as in the third
database, the speakers and the recording conditions differ from
the database used for training. This database provided 978
syllables. This includes 501 stressed and 477 unstressed syllables,

Table 3-1 summarizes the results for the fourth database, a testing
database. using different sentence material, speakers and recording
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environment than those used in (raining. To arrive at these
performance measures, a stress probability of 0.5 was arbitranly set as
the decision criterion belween stressed and unstressed classes. Errors
are tabulated in percent missed (all syllables that were labeled stressed
but recognized as unstressed), percent extra (all syllables labeled
unstressed, but recognized as stressed) and their average. The x-marks
indicate the specific feature used in a given classifier. [t can be seen
that the best performance result was achieved by a classifier using all
four features. Use of addidonal combinations of features such as the
alternate measurcs mentioned above caused deteripration of results [9).
Performance results for the other databases (not shown hcre) were
qualitatively similar. It is interesting to note that out of the four single-
feature classifiers the peak-lo-peak integral over the sonorant region of
the syllable clearly performs best, and in fact independently achieves a
respectable error rate {14.42%). This result is in good agreement with
those of other studies [12, 9). It indicates that peak-to-peak integral is
perhaps the most powerful feature for discrimination between stressed
and unstressed syllables, It might also have been predicted from the
good separability between distributions found in Figure 1. All three

additional features, however, do yield significant improvements over
the pnc-feature classificrs,

Tuble 32 shows the individual errar rates achieved by the best classiier
for the various datnhases used, As could Be expected, the error rate
obtained by the training data is lowest, e classificrs perform worst on
the Fmail tsk due w syllabificatiun crors, and possibly due 1o
emphatic stress (which ends w de-emphasize all but one prominent
syllable), Perhaps not surprisingly. a positive correlation of 39 was
found between the amplitude integral and duration feature in the
training data. Also. duration and average spectral change showed a
slight negative correlation of -0.22.

178-1 128-2 DEB-3 DB-4 Ave,
Missed 8.20% 14.85% 10.04% 8.98% 10.52%
Extra R.40% 16.16% 1741% 15.77% 14.42%
Ave. %.30% 15.55% L3.66% 12.27% 12.44%

Table 32: Frror Rates of the best classifier for each database

Fxtensive erfor analvsis was performed for each error in the above
experiments[9]. The two most prominent causes of error were
syllabification errors and discrepancies between the actual realization of
a syllable and the assigned lexical stress. The first situation pccurs when
the syllable boundary detection algorithm eccasionzlly misses a
houndary (e.g. “beauTY-OF"), or erroneously inserts a boundary (e.g.,
when 2 pop is detected as a voiced segment). A missed syllable
boundary leads 1o long syllables recognized as stressed, while an extra
boundary leads to detection of an additional (typically) unstressed
syllable. The second major source of errors includes syllables with very
short nuclef (e.z. "CHICKS", "KITTEN") leading to inissed errors or
syllables utered longer than predicted lexically (c.g., the conjunction
"AND" drawn out between clauses). Missed errors in short stressed
syllables occurred more frequently in syllables with high vowels, since
no phonetic information was taken into account for amplitude
normalization. Many of the errors in this category, however, were
indirectly due 1o a disagreement between the assurmed model of lexical
stress and the actual pronunciation, Stress is inherently a rather
subjective percept, with human listeners also disagreeing about what is
heard as stressed. [n a separate experiment-with two sets of seven

human listeners {9] it was found that the correlation between stress
votes of these two human groups (0.86) is about as good as between the
human stress votes and this algorithm’s stress probabilities.

In summary, this classifier appears to be robust, its features are
relatively simple t0 compute, and it leads to consistently good
recognition performance for all four databases. The present results
exceed the performance achieved by other speaker independent
continuous speech stress detection algorithms.  In a forced decision
sk, error rales between 8.3% and 15.5% arc obtained. Rather than
making abselute decisions, the algorithin returns a probability of
stressedness. The stress information obtained can be used in various
ways in a continuous speech understanding system, U is 2 good
predictor of the function/content word distinction (<15% crror) with
potential mplications for lexical search and syntactic analysis. Other
applications dre currently being explored.
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