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Abstract 
SttCSs Is Ont' of t.he key cOmpOnents In human speech pcn:cption. !cs 
uses extend from i:he phone!lc level over the lc,;ical to the syntactic and 
semantic level. Sc\·eral methods have been developed in the past to 

detect stress automatically from the signal. This paper takes a pauem 
recognition approach to the t.he problem of sttcss detection. The 
algorithm presented has three key features: (1) optimal combination of 
the evidence obtained from the acoustic correlates of stress Is achieved 
by means of a Bayesian classifier assuming n1ullivsriate Gaussian 
distributions; (2) the algorithm detects lexical stress in continuously 
spoken cnglish utterances; (3) rather than making )lard decisions, the 
algorithm returns probabilities for each syllable, i.e .• a measure of 
SLiessedncss. Toe 3lgorithm was tested over 4 databa.~es of differing 
continuous six:ech data. \\/hen a forced decision is imposed by selling a 
threshold at stress probability 0,5, error rates of 7.79% to 14.85% missed 
stresses were obtained. Unlike in other languages (such as Japanese). 
amplltlldc inregrals arc t.he strongest predictor of English stress. 
Performance rcsultS and an analysis of errors arc presented. 

1. Introduction 
Stress has repeatedly been found to be an extremely important factor in 
speech perception. Stressed syllables are usually the best ankulated 
sylfablc in a word and i:hus could provide islands of phonetic reliability 
(1, 2). WiUi a decrease in degree of stres:;cdness (e.g., reduced syllables 
al higher spcaldng rat.eS) all vowels appear LO move towards a neutral, 
central schwa-like point in Fl/F2·space or !ll'e deleted altogether. 
Stressed syllables in a large EngliSll dictio1Lary also carry more 
aco\ll>tically discriminatory infonnation than 1.1nstressed syllables (3) and 
thcrc/i,rc provide nor 011ly aclll1Sllc r<'Hill>ility. but also more 
discriminatory inihrriwtion cvntcnt. Moreover. in ~cntc11,c context, 
cuntem word~. l.c .• "imp1innnt" words carryiug mnst uf i:hc semantic 
infurmatiofl content of II scntcnce. ate mostly stressed. while fu11ction 
words (articles. conjunctions, possessive dctcnnlncrs, ctc.) 1end t1, be 
unstressed or reduced. In English. word·lcvel stress Is free. i.e .. its 
position is not fixed within the word. Stress could thus also he used ,ls a 

constraint for lexical access. Th is !,mer pn>perty has in fact been 
demonstrated lO be of potential value for wm·d hyputhesiz.atiun in 
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automntit large vo~n1Juh1ry rcn1g.nlti11t1 (4. 5). ·111c an~ly,i,, ut' rhythmic 
and/11r temporal asp<.'Cts ufspcci:h alsn rdics hca\ily on the a~ui!JIJilitY 
of stress infomiation. Speaking r~te and ,he corresponding 
applicnhility of ph,inologic:il varlati<ms such as palatalit.ation, glottal 
stop and pause insertion. flapping, ctc. can be hcsc predicted b)• U1c 
lntm·als between stresscd syllabics. the SCl·callcd intcrstrcss 
inccrv,1ls (l]. Since Engli~h is said w be a strcss·tlnied language, tllcsc 
intcrstrcss intervals arc approximately i$ochronous and ~'ieit' duration 
determines the rate or specch. Significant dcvi~tion~ from these 
lnterstress Intervals typically indicate major syntactic boundaries such 
as phrase boundaries or clause bo1mdnries (I]. 

2. Acoustic Correlates of Stress 
Alt.hough the importance of the percept of stress in speech perecptlon 
and speech recognition seems Intuitively dear from the foregolng 
discussion, the acoustic manifcsialions of stress have been the subject of 
debate and appear 10 be language dependent. Various perceptual 
studies have found pitch to be the most salient correlate of stress in 
English. Conversely, measurements of acousrlc femures in word pairs 
that differ only in stress paucrn (CONvict/conVJCT) indicate thal the 
amplitude integral is the strongest correlate of stress. (For a good 
review see Lehiste [6),) Nevertheless, in comrasl lD other languages 
such as Japanese (where only pitch accent is systematic.illy used [7D, 
English has been fbund to \lSC all of lhc above acoustic features as 
correlates of stress. 

In the e~pcriments described in the following, these predictions and 
observations will be reexamined to arrive at an optimal automatic SU'ess 
detection algorithm. Rather than relying on manually set thresholds, 
we will then use an automatic learning algorith.rn to obtain an optimal 
combination of these acoustic correlates for automatic stress detection. 
Results of extensive evaluation of over 2850 syllables from continuously 
spoken sentences will aJso be given below. 
3. Automatic Detection of Stress 
·111c notion t1f mc,;s or l)l\llllillc11ce i~ ,(1 111witivc thnt this li't'qncnlly 
clouds the fact tlrnt "11tn11i.1tic mes.-. detection iL,;c!f is .1 difficult 
problem. Sever.ii attempt~ hJvc IJ~c11 1mde to nutnmntic~ily dctci:L 
st1'C~':> in spoken English. Rcs~wblc pcrfonn,lncc was uchievcd for 
isolated word strc~s dcrcction by I .ieberman in 1960181 and 1\1111 [5], 
l .ea ( I] r~ports SClCld performance fnr a c(111tinum1s sp,:,ech stress 
detection algorithm. In the following sections we will allClllJ)L to 
construct n stress detection algorithm that upcrntes on continuous 
speech. attempt~ to detect lexical stress. ilhd "~~1fM i, pn,n,1bility of 
stte;scducss 10 all syll,11->lcs. i\ paucrn rc111snitlun app1tJ;,th jj .1,k1ptctl 
10 optimally combine 1ario1.1s f.:aturcs (par~mclcrs acting as correlates 
of stress) into one niinirni1m-crror strcssed:syllablt d us5ifier. Sioc~ t.his 
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r,pprooch departs in various wats fro111 previous systcrns we win ~(1!11 by 
lir,t r<:cx:1mining Lhc iic{n,stic corrcl<1tes of" stress found in our dnwh;\sc 
of continuously spoken sentences, These ~re intensity. d11ralion. pit,;h, 
nnd spectral change, For d1is a11alysh as well as for the final stress 
clctector a database uf 50 sentences (Harvard scnten,;es) read by 5 
speakers (3 rttale, 2 fem,tk, reading 10 sentences each) was used. F,ach 
sentence was labeled according to three coarSe phoncric classes: 
s:lc11cc, fricative and vocalic. ln addition, syllabic boundaries and stress 
l8bels were added to these label files. Ali srrcss labels were lexical stress 
labels as indic~tcd by a dictionary or as derived synthetically by rule. 
Only 3 levels of stress were used: primary mess, secondary srress, and 
unstressed, This labeling scheme, of c(iurse, ignores scnrential stress. 
emphasis, phras~ level phcnorncna, rhythrnic/syntactit/scmantic 
phenomena, that all do indeed play a significant role on the actual 
reali1.a1ion nod perception of stress in spoken English sentences. In the 
following. each of the 50 utterances was automatically segmemed into 
syllables. For each syllable a paniculnr fcawrc was mc.asured and 
pooled into the stressed or unsucs~d category In order to compute 
histograms :md class conditional probability density functions or a 
given feature for stressed and unstrC!>.SCcl classes (secondary stresses 
were considered to he stressed). lo this fashion a training database of 
244 stressed syllablcs and 238 unstressed syll~blcs was obtained. Tu 
achieve nearly Gaussian distributions. each feature is offset by a 

conslJ!nt (to assure posirlve numbers) and the natural logarilhrn is 
taken. The rcsulti.ns distributions will be presented for each feature 
individually in the following subsections. Pattern recognition prindples 
will then be applied to combine these features in a Daycsian classili,cr, 
as.~uming normal distribution of the component features. 

3. 1. Featu res fo r St ress Detoc1lon 

En~r'!)y, loudnes~ ,ind ampliwdc h:I\C ;111 been s.iicl 111 wrn:l,ltl· wi[h thr 
pcrt·cpt ,1r,1rc,;s_ !lever-JI cxperu11cn1, l'IJ were co11J11cted tt1 dct<'rrninc 
wh,1t U1c l'r1tl!;I useful mc,1,urc of ,11npli!lldc coultl be m o\J1~i11 best 
scpa1:1b11ity bc1-.cen sm•ssctl uncl u11strcss.-tl syllables. including 
11vc1«;;r pc~k-ltl·pcal :.11nplit11tlc 11\•cr Uw c~.tcnt of the s111uJra111 pur1ion 

of each S)·llalllc, the avPra/te p~~k·w· rc,1k a1npli1uuc over the cxtcm of 
lite l!11Jiri! syllable. the 11w.1 l111w11 pc:ik-to-peak ,11npli111dc over Ll1c 
cxt~nt or die e111ire syllable and Lh~ i111rgn1/ of the peak-to-peak 
amplitude over the extent of the su110t{JII/ portion of each syllable. For 
the syllnhlC1, in our 1raini11g, da1<1baS<'. the hes1 scpnrabili,y wus w:hicvcd 
by the intcgrnl nf the pcuk-to-pcak mnpliwdc o,cr die so11ora1ll portion 
of the syllable, in good agrcrmc111 with other studies (8], Flg. l shows 
U1e P[)fs for the logarithm ofU1is intc,irnl fl)r both the stressed and the 
unstressed syllahlcs. ·111e dotted c1u1·es show tile approximation of the 
PD~ by a Oau5si~n distribution (with mc,1n and v,1rionce estim:,tcd 
from the Lrnining dara). 

o.~ 
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Figure l. POF of pcnk·to·pcak 3mpliwdc lmcawl 
over S,morant Scgn1e111s 
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figure 2. PDF or Syllable Duration 
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Figure 3, PDF of Pit.eh Maxima 
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Fi~urc 4, PDF of Average Spemal Change 

Three sep3rate measures oi durntion wcr,;, mkcn; (1) LhC duration of 
the sonoram portion of the s;,llable in question, (2) the duration 
between syll,iblc boundaries defined by d1e onsets or the sonorants of 
consecutive syll~blcs1. and (3) !lie duration between syllabic~ defined 
by the onset of the ,;onsonant (cluster) preceding the syllabic nu,;lcus in 

qucsUon. Ille bc~l separ<1bility was uhtalncd by U1e second 
mc35urcmcnt, i.e., \he durations b~twten ~yl\3b\CT. defined by Li\<: onset 
of their syllabic nuclei [9], The PDl-'"s corresponding to this measure arc 
shown in Fig, 2-

To provide the pi11;:h measurements, a feature based time domain pi1ch 
trilCkcr (llj was used. A post-processing dean-up routine was necessary 
10 remove irrelevant variability in U1e original pirch contour due to 

pi11;:h uacker failures, SC".,memal efTecL~ at consonam boundaries, ur 
vocal fry . In this routine, all pitch values obtained in unvm,;ed regions 
were first set to zero. Next, pitch vttlues wiU1 more !ha~ twice or less 
than half the average fundamemal frequency are considered unreliable 
(pitch tracker errors or vocal fry) aod arc ig11ored. Spurious ouUic;rs arc 
then removed u~ing 5-point median smoothing. Finally, we wished to 
express the fall/rise movements at the syllabic level undisrurbed by 
segmental cff~cts (as, for example, encountered after the release of stop 
consonants), short pitch dips· or peaks, or overall declination. Towards 
this goal, a best-fit linear approxi1nation of U1c pitch contour in each 
syllabic segment was computed using a linear regression. Care was 
taken to ¢xclude pitch pulses during the first JS mscc oi a syllable to 
avoid perturbations dlie 10 segmental effecrs. fn addition. a linear 

1n,L~ muorura app1u.,.inlllteS the dPration between ~ ll.obic beats [10) 
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rcgrcs.~lon over the pi1ch l'.ilucs nf an em ire u1tcrunce \las rnn1pL11cd ilS 

a measure of ded111111ion {1 2], /\II me,isur~s that were ,ricd .,s rc,11111-cs 
fhr stress detection were cxtructed frc1m lhcsc sho11 s~llab\c line 
segments and nonn~li~.cd hy ov..:rall l1~clination. lfatensive 
experimentation sugscsts U1a1 thi~ provitk~ 1·ubLISL ~ti mates of tiic luc.11 
pitch v~riations in continu<>Us ~pc..:ch [9]. S1M, is typically 
~<:eomp~nicd by an increase in pitch ~s well ,is a rising nod in some 
cases also a falling contour. Severo) lllCJSures miglll l1e suitable to 
capture 1hc essential ingredients of strc:K The specific mco~urcs of 
pitch Urnt were ICSted i11ch1de (I) 1hc .ilope imd ll1e ,1hsolute value of the 
slope. (2) the mnxlmum rnlue. (3) the ,1rcrasc vnlue. ~nd (4) 1hc offset 
between pi1ch values from the previous syllable to the onsc1 of the 
current syllable. The tnOSI promising measures were found lo be the 
pitch maJim& and (only slightly inforior) U1c pitch offset. Fis- 3 shows 
lhe PDF for pilch maxima. 

Finally, avernge ~cc1ral change has been reported elsewhere as a useful 
measure for srress detection l5]. This iS based on the observation that 
messed syll~bles wlU be domlna1cd bY steady state vocalic ponions 
rau1er than by shon. rapidly changing, t.tansilory vowels. As a measure, 
spectral change was averaged over the sonor-am portion of a syllable 
nucleus. The resulting disaibu1lons are shown in Fig. 4. 

3.2. Combination of Features - Optimal Stress Detection 
We will now attempt to combine the features we have discussed so far 
in an optim~I classifier. Based on lhe distributions obt.ained iri the 
previous sections It is reasonable to assume nonnal (Gaussian) 
distributions of the features. The senetal approach, therefore, is to use 
a classical minimum probabillty-of-crror decision rule [l 3), where we 
assume that the joint probability deasity function of the features (tile 
measures discussed above) for a class I (in our case. i - 0.1 (wessed or 
unstressed)) is a multidimensional Gaussian distribution with known 
mean vectorµ.; and covariance matrix !;. Let x be an N-dimcnslonal 
vector representing the measurements we have discussed above as its 
clements. Then lhe N·dimensional Gaussian density function is given 
by 

p(x) =- (21rrN121Efl,/2exp l•l/2(:x-µ;>:~:i·l(x·µ-i)] (l) 

Assuming thls distribution, nlinimum•error-rale classification can be 
achieved using the discriminant function (13] 

Sj(X)"' •l/2(x·l'/;-l(x·µ} • N/2 log21r (
2
) 

· 1/2 Iogl::Ell + log P(w) 

The decision rule which minimizes the probabilicy of error ls that the 

sample described by the fea1ure vec1or x should be assigned to the c;lass 

I, which maximizes g1(x). In our ~implc case, i "' 0.1 (sircsscd or 
unsu·cssed). and out' dccisi,,n rule simply .,;a~s 111111 a syll;1blc with 
fcumrc ·1cc1ur x is rnllcd slrcs~rd if (\(x),,,ti,crl > g(x)un•lr~d'. otherwise 
it iS called uns1res!;td. In 011r c11se. Fqu,1uo11 2 Cjfl be simplified. First, 
we as,umc lh<1t strcsliCd :ind ,1nstrcsscd ~,llablcs arc equally likely 10 
occur. This nssumrtion lwlds 1ruc for <,ur training data. 'n,e t,iasing a 
prioriprob:ihilitic, t,>(..,;I will therefore be the same fur both clas.~cs, i.e., 
0.5. Second. the fca,ure vector x descdbing a i;hcn syllabl~ will hllve 
the same dimensionality N, r~gardlcss of class. Thus. since our decision 
depends only on the r//la1fr1' m:1gnitudc of the disc.;riminahl filnc!iuns 
&;(~). we Chn rewrite £qua1ion 2 as 

g1(x) == · (x·µ1)~i'1(x·µ) · logll:;I 

In !hi~ fashion, we achieve a C()m!Jinacion of the features described in 
the previous sections into one cl.-1ssllicr aimed ,ll optimal dc-clslun 
be1wccn slresscd and unstressed syllaolcs. Probabilil} of s:rcsscdness 
can be computed a:cording to Equation l. In the next s,clion we will 
rcpon n series of cxpcrimcn1s lh~l investigate various e!Jmbinations of 
features and report the resulting recognition accur~dcs. 

3.3. Performance Evaluation 

Ptpinl Syldur FOmax AYeSpch Missed Extra Ave.Err. 

~ 30.98% 18.03% 14.42% 
X 28.54% 12.79% 20,86% 

18.36% 46.75% 32.21% 
X 26.35% )9.08% 22.80% 

)( X X 09,98% 15.30% 12.58% 
~ )( X X 08.98% 15.72% 12.27% 

Table 3-I: Stressed Syllaplc Classlflers Using Various features· 
{test) database #4 

E.ach of !he measures described above w~s evalua1cd in the framework 
of a minim urn error classifier. Detailed perfol'r1Uinee rcsull.S of various 
combinalions of featu res and detailed error analyses arc described 
elsewhere (9). We will here only summarize perfonnance results using 
co111blnations of the mos! useful measures. Four dat.1bascs were used 
for evaluation: 

1, The firSt Is the 1raining database Itself, which consists (as 
previously described) of SO Harvard sen1cnces, read by five 
differen1 speakers (3 rnale. 2 female). each reading 10 different 
~cntcnces. This database yields a Iota! 482 syllables, 244 of which 
were dclcnnincd by hand·!abcling to be stressccl and 238 10 be 
unstressed, 

2. ·11,c scc,md da1:1hasc usccl is the l·:111ail ~1~k. whfcll consi~IS uf 6 
scis of 8 scnlcncc:; euch (a w1.nl llf" 4s ·s~n1cnccS). hrch ~cntc11cc 
was re~d tiy ,1 differcn1 ,pcilkCI'. I l11e to p,,ur r<X·ordinp 
cundilions Ii sentences arc unusabk'. k :,ving 42 scn1t•nrc~ lb1 rhc 
cv~luntion, These 42 sc111cnccs r,,,ullcd in 43 J syfl,11,lcs. 102 or 
which were dc1cm1incd by liand·labels ttl be stressed ilnd 229 to 
be unstrcs.~ed.. 

3. The Lhird dutubnsc is given by two sep~r~tc ra.1d;11gs of the s:imc 
50 Harvard scnlCnteS \le hnd used for training (with each spcnkcr 
,,gain rc.Jding 10 ,c1uenccs). This duI;lhas~ was i;wn,,r;1tcd dlld 

hancl•labcled 11t Lhc MIT lfose11rcli Lnburntory of Electronic~. Jt 
presents d~ta produced by differcn1 speakers and L111dc1· diffcre111 
rtcurcling condicinns 1han· 1.hose IJSCd in trainmi;. '[11is d..·uabasc 
yields 959 syllubk'\ 488 of whiGh were dctermiucd 10 be stressed 
ancl 471 to be unstrtsscd. 

4. The fourth database is simllar tu I.he third database described 
above. It was also generated f.l MIT and consists of 50 sentences 
re-ad by 10 different spe,,kers. 10 sentences each. The SO 
sentences u~cd here, howe"er, arc di/Tenmt from those in the flm 
(tralnins) and third database~. ln addition. as m I.he third 
database. lhc ~pcakcrs and the recording condilions differ (rum 
the database used fot training. This dat.ibasc provided 978 
syllahles. This includes 501 stressed and 477 unstressed syllables. 

Table 3· 1 suminari:.:cs the rcsulL~ for lhc fourth database. a testing 
database. usin,8' dlfferent scnt~nce material, speakers and rccurcling 
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environment than those used in training. To arrive at these 
performance measures, a stress probability of 0.5 was arbitrarily sci as 
the decision criterion between stressed and unmesscd classes. Errors 
are tabulated In pcrt:cnt missed (all syllables that were labeled sttcsscd 
but rccogniz.ed as unstressed), percent extra (all syllabics l~belcd 
unsttcsscd. but recognized as stressed) and their average. 111e x·marks 
indicate the specific feature used in a gi"en classifier. It can be seen 
that the best performance result was achieved by a classifier usin& all 
four features. Use of additional combinations of features such as I.he 
alternate me3surcs mentioned above caused deterioration of results {9]. 
Perfonnance results for the other datab:\Ses (not shown here) were 
quati1atlvcly similar. It is Interesting 10 note that out of !he four single· 
featu re classifiers the peak-tu-peak integral over the sunoran1 region of 
t.he syllable clearly performs besl, and in fact independently achieves a 
respectable error rate (14.42%). This result is in good agrecmcm 1>.•ith 
those of other studies (12, 9]. ll indicates Lim peak-to·peak integral is 
perhaps the most powerful feature for diS(:rlmination between sttessed 
and unmessed syllables. I! mig.ht also have been predicted from !he 
good separat>ili1y between di~tributions found in Figure 1. i\11 three 
additional features. however. do yield signi ficant improvements over 
the onc-fe,1mrc ch1,sifie1;, 

T:,hlc 3-2 sl111ws the i11dividui1I crrur rates ~hk•;t <l 1_,y th,· I 1e,t clns~i11cr 
fllr the 1arious dawbusc~ used, A$ wuld ll~ c:,t,(·ct:d, the error r,nc 
oht,1l11~d by the lr.iining dat..1 is !owe~\. !'ii, , I.1~~1 ik r, pct furm wom vh 
the !--.mail t.1sk due tt• syll;.1biiic.itiun cmH, . . ind r ,e;s;hly due rn 
emphatic stress (whi,11 1.end~ to dt--cmpl1asl1.c .ill bltt one prominent 
syll;1blc), Perhaps not surprisingly. a positive c11rreM1on of .39 was 
f,iund between the amplitude integral and d11raliut1 fc:1tllr~ in rhc 
1r:1inin(l {!ala. Also. durati1H1 ;ind average spcclr~l change showed a 
slight ncg:11ive correlation of-0.22. 

1)!3-1 l)IJ-2 Dll-J Dfl-4 Ave. 
Mi:;Sed 8.20% 14.85% 10.04% 8.98% l0.52% 

Extra 8.40% 16.!6% l 7.4]% 15.72% 14.42% 

A,·c. S.30% lS.55% l3.o6% 12.27% 12.44% 

T~ble 3-:Z.: Error Rates nfl.he best cla~slfter for each database 

Extensive error analysis was performed ror each ermr in the :.bove 
experiments (9). The two mos1 prominent cau~es of error were 
syllabification errors and discrepancies between I.he actual realization of 
a syllabi!! and the as:df\llCd le,ical sucss. The first situation oc,curs when 
the syllable boundary detection algorithm ottasionaliy misses a 
boundnry (e.g., "beauTY ·OF"), or erroneously inserts a boundary (e.g., 
when a pop is detected as a voiced segment). i\ miss,;,d syJlable 
boundary lellds to Ions syllables recogniicd as sttessed, while an extra 
boundary leads tu detection of an additional (typically) unstressed 
syllable. 11ie setond major source of errors includes syllables with very 
short nuclei (e.g. "CHICKS", "KITTEN") leading to missed errors or 
syllabics utiered longer Ulan predicted lexlcally (e.s., the conjunNion 
"AND" dnwn out betwe-en clauses). Missed errors in short stressed 
syllables occurred more frequently in syllabics with higt vowels, since 
M phonetic info.r:malion was taken into account for amplitude 
normahz.aliun. Many of the errors in this category, however, were 
indirectly due to a disagreement between the assumed model of lexical 
s1ress and the actual pronunciation. Stress is inherently a rather 
subjective percept, with hurnan listeners also disagreeing about what is 
heard as su-essed. In a separate experlmem -with two sets of seven 

human listeners 19] it was found thai the corrdation between stress 
vo1es of these two human groups (0.86) is about as good as between the 
human stress votes .md I.his algorithm's s1ress probabilities. 

In summary, this classifier appears to be robust, its features are 
relatively simple tO compute, and it leads to c-0nsis1emly good 
rccognition pcrfo.rmancc for all four databases. The present results 
exceed the pcrfiimMncc 3ehic~cd b~ (1!hcr spcnkcr lndertndcnt 
continuous spccd1 stre~s detection ,1lgori1hms. In a forced dcci1;inn 
u,sk, crr1,r rates between 8.3% and 15.5% arc obtvincd. l{~ther th~n 
1nuking ah~olute decisions, the algorithm returns a prnbabil11y of 
strcsscdness. The stress !nformatlo11 obmincd can he us.!d in various 
ways in a cnntinuous speech understanoing system. It is ~ good 
predictor of !he function/content word distinction (<15% error) with 
potential implicatinns for lexical search and syntnctk analysis. Other 
applications ~re currently being explored. 
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