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Abstract

In this paper, we present the KIT systems of the IWSLT 2016
machine translation evaluation. We participated in the ma-
chine translation (MT) task as well as the spoken language
language translation (SLT) track for English→German and
German→English translation.

We use attentional neural machine translation (NMT) for
all our submissions. We investigated different methods to
adapt the system using small in-domain data as well as meth-
ods to train the system on these small corpora. In addition,
we investigated methods to combine NMT systems that en-
code the input as well as the output differently. We combine
systems using different vocabularies, reverse translation sys-
tems, multi-source translation system. In addition, we used
pre-translation systems that facilitate phrase-based machine
translation systems.

Results show that applying domain adaptation and en-
semble technique brings a crucial improvement of 3-4 BLEU
points over the baseline system. In addition, system combi-
nation using n-best lists yields further 1-2 BLEU points.

1. Introduction
The Karlsruhe Institute of Technology participated in
the IWSLT 2016 Evaluation Campaign with systems for
English→German and German→English. For both direc-
tions, we participated in machine translation and spoken
language translation tracks. All submitted systems use the
framework of attentional neural machine translation [1] ex-
tended with further features.

In this evaluation campaign, we investigated the impor-
tance of domain adaptation, where ensemble technique is
deployed for this scenario. In addition to adaptation, we
train further systems with different architectures and com-
bine them by n-best rescoring. One of the systems uses pre-
translation. In this system, we utilize pre-translations from a
phrase based machine translation (PBMT) system in order to
handle the rare word problem of NMT. The pre-translation is
then used as an additional input to the NMT system. Further-
more, we used a system utilizing multi-lingual learning. The
systems are, along with the ensembled systems of adaptation,
combined using the n-best lists.

This paper is structured as follows. In Section 2, we de-
scribe the adaptation technique we used in order to fit the
models better to the domain. A brief explanation of the pre-
translation and multi-lingual learning will be given in Section
3 and Section 4 respectively. How the different systems are
combined will be described in Section 5. Special preprocess-
ing for SLT input will be described afterwards in Section 6,
followed by the results of experiments and detailed analy-
sis on the techniques used throughout in this work. Finally
Section 8 concludes our discussion.

2. Adaptation
One of the main challenges of the IWSLT evaluation is to
adapt the MT system towards the target domain. While rela-
tively large out-of-domain corpora are available for training,
the in-domain data is often limited. For the TED task, only
around 200K sentences of in-domain data are available.

Motivated by the work of [2] and [3], we first trained the
NMT system on the out-of-domain data. Once the BLEU
scores converge on validated set, we used the best model
trained on the out-of-domain data to resume the training on
the in-domain data. An in-domain validation set is used for
this training. While dropout did not have a big influence dur-
ing the training on the large out-of-domain corpus, it was
very important when training on the in-domain data. The de-
tailed discussion on the results will be given in Section 7.2.

2.1. Ensemble

An ensemble of different models can often improve the per-
formance of an NMT system. In a recent system [4], it was
shown that the combination of models saving different time
steps of the training MT1, . . . ,MTn was very successful.

In this evaluation campaign, we analyzed different ways
to adapt this method for the domain adaptation scenario. In
the first method, we take the best model trained on the out-
of-domain corpus MT ∗. The training is continued on the
in-domain data and the intermediate models MA

T1, . . . ,M
A
Tm

are stored. Then these models are ensembled to generate the
final model. In the second strategy, on the other hand, all
models MT1, . . . ,MTn, trained on the out-of-domain data,
are adapted separately on the in-domain data. The final



model is the ensemble of all the separately adapted models.
In addition, it might also be helpful to use baseline mod-

els in the ensemble. This approach can be encouraged further
when the in-domain data and the test data are not expected
to match precisely, as in the MSLT task. The details of the
MSLT task and corpus is explained in [5].

3. Pre-translation
One of the main problems of current NMT system is its lim-
ited vocabulary [6], causing challenges when translating rare
words. While the overall performance of NMT is signifi-
cantly better on many tasks compared to SMT [7], the trans-
lation of words seen only a few times is often not correct. In
contrast, PBMT is able to memorize a translation it has only
seen once in the training data. Therefore, we tried to combine
the advantages of NMT and PBMT using Pre-translation as
described in [8].

In the first step, we translate the source sentence f using
the PBMT system generating a translation eSMT . Then we
use the NMT system to find the most probable translation e∗

given the source sentence f and the PBMT translation eSMT .
Thus, we create a mixed input for the NMT system consisting
of both sentences by concatenating them. This scheme, how-
ever, may lead to errors when the source and target languages
have a same word in surface, but with different meanings, i.g.
die in English is a verb, while it is an article in German. In
order to prevent such errors, we use a separate vocabulary for
each language. An overview of the system can be found in
Figure 1.

Using the byte-pair encoding (BPE) of the input [9], we
are able to encode any input words as well as any translation
of the PBMT system. Thereby, the NMT is able to learn to
copy translations of the PBMT system to the target side.

For both translation directions, we used the pre-
translation from a PBMT system. The detailed description
on the PBMT systems for both directions can be found in
[10]. The final systems without rescoring are used for gener-
ating the pre-translations.

4. Mix-source multilingual system
In [11], a multilingual NMT system shows that additional in-
formation from other languages can improve a single NMT
system and produce better translations. When the encoder of
an NMT system considers words across languages as differ-
ent words, with a well-chosen architecture, it is expected to
be able to learn a good representation of the source words
in a joint embedding space in which words carrying simi-
lar meaning would have a closer distance to each others than
those are semantically different. In turn, the shared informa-
tion across source languages could help improve the choice
of words in the target side. For example, the word Flussufer
in German and the word bank in English should be projected
into two points in a proximity of that joint embedding space.
And that information might help to choose the French word

rive over banque.
To make an attention NMT for single language pair trans-

lation be able to used as a multilingual NMT that shared
the common semantic space, [11] conducted an additional
preprocessing step, namely language-specific coding. Ba-
sically, some language code are appended to every word in
source and target sentences to indicate the original language
the word belongs to before passing to the training process of
the NMT system. For example an English-German sentence
pair excuse me and entschuldigen Sie being language-specific
coded becomes _en_excuse _en_me and _de_entschuldigen
_de_Sie. By doing so, they can train a single multilingual
system that translates from several source languages to one or
several target languages. For example, if we have N English-
German sentence pairs and M French-German sentence pairs
already language-specific coded, we can train a single NMT
system with a parallel corpus of N+M sentence pairs. Then
we can use the trained model to either translate from English
or from French to German.

The aforementioned multilingual NMT can be used
wisely as a novel way to utilize the monolingual data, which
is not a trivial task in NMT systems. Particularly, if we
want to translate from English to German, we can use some
monolingual German data, either the monolingual part of the
parallel corpus or some part of other corpus available only
in German, as an additional German-German data similar
to the way we ultilize the French-German parallel corpus.
Thus, the encoder is shared between the source and the tar-
get languages (English and German), and the attention is also
shared across languages to help the decoder selects better
German words in the target side. The systems implemented
this idea is referred as a mix-source system and it is shown in
Figure 2.

For this evaluation, we apply the idea of that multilingual
NMT approach in English-German direction in order to make
use of the German monolingual corpus and gain additional
improvements.

5. System Combination
Combination of different neural networks often leads to bet-
ter performance, as shown in various applications of neural
networks and previous NMT submissions in evaluation cam-
paigns [7]. In our previously mentioned systems in Section 2,
for example, different models are ensembled during decod-
ing. While this is a very helpful technique, it has a potential
drawback that it can only be performed easily for models us-
ing the same input and output representations.

In order to further extend the variety of models, we com-
bine the output of several of ensemble models by an n-best
list combination. We first generate an n-best list from all or
several of the models, where each of these models is already
an ensemble of several models. In our experiments, we used
n = 50 for the n-best list size. Then, we combine the n-
best lists into a single one by creating the union of the n-best
lists. Since every model only generated a subset of the joint



Figure 1: Pre-translation

Figure 2: The English→German mix-source system

list, we rescored the joint list by each model. Finally, we
used a combination of all the scores to select the best entry
for every source sentence.

For systems to be combined, we used the baseline NMT
system as well as the pre-translation and multi-lingual sys-
tems. For some of these systems, we also combined systems
using different BPE sizes. In addition, we also used a sys-
tem that generates the target sentence in the reversed order
[12, 13, 4]. Finally, we used also the NMT systems for the
reverse translation direction to rescore the n-best list. There-
fore, we swapped the source and target language in the n-
best list and rescored this list with the translation system of
the reverse translation direction. This means that instead of n
translation of one sentence, we now have n source sentence
where the translation is always the same. The we used this
additional probability as an additional feature.

After joining the n-best lists and rescoring the joint n-
best lists using the different systems, we have k scores for
every entry in the n-best lists. Each score is a length-
normalized log-probability.

6. Preprocessing for Speech Translation

Many state-of-the-art automatic speech recognition systems
do not generate punctuation marks or reliable case informa-
tion. Using the raw output of such automatic speech recog-
nition (ASR) systems as an input to an MT system causes
performance drop. In this evaluation campaign, we used
monolingual translation systems for each source language
to augment proper punctuation marks and sentence bound-
aries [14]. The monolingual translation system translates

non-punctuated test data into a punctuated one. During this
process, case information is corrected as well.

The parallel data for training consists of lower-cased
source side without any punctuation and true-cased target
side with all punctuation marks. Note that the source side
language and target side one are the same, except for the
punctuation and case information. The training data is ran-
domly segmented, so that the location of segment boundaries
and different punctuation marks is well-distributed through-
out the corpus.

The monolingual translation system was applied to
all official SLT track directions. For MSLT track of
English→German and German→English SLT, segment
boundaries are given. Therefore, the monolingual transla-
tion system is used to predict punctuation marks within the
boundaries. For TED track of English→German SLT, how-
ever, no segment boundaries are given. Therefore, we ap-
plied the monolingual translation system to resegment sen-
tence boundaries as well. For this, we used a sliding window
of length 10 to observe each word in various contexts as de-
scribed in [14].

Both English and German systems are trained on EPPS,
TED, NC and noise-filtered common crawled data. Each lan-
guage corpus sums up to 3.9 million sentences. Models used
in the phrase-based monolingual translation systems for En-
glish and German are similar. We used GIZA++ [15] to ob-
tain the alignment between non-punctuated, lower-cased text
and punctuated, cased text.

The 4-gram word-based language model is built on the
entire punctuated data using the SRILM Toolkit [16]. A
bilingual language model [17] is used, along with a a 9-gram



part-of-speech-based language model. TreeTagger [18] was
used to obtain POSs for both languages. In addition, we train
a 1, 000-class cluster on the punctuated data. A 9-gram lan-
guage model is built on the cluster codes. The models were
optimized on the official test set of IWSLT evaluation cam-
paign in 2013.

7. Results and Analysis
In this section, we present a summary of our experiments
we have carried out for the IWSLT 2016 evaluation. All the
reported scores are case-sensitive BLEU scores.

7.1. Baseline Systems

All our NMT systems are built using the framework
nematus1. We used sub-word units using BPE as described
in [9]. For both languages, we apply the BPE operations
at 40K (represented as SmallVoc throughout this paper) and
80K (BigVoc) on the joint source and target data depending
on the configurations, which are then combined.

Long sentences whose sentence length exceeds 50 words
are exempted from the training. We use minibatch size 80
and sentences are shuffled within every minibatch. Word
embedding of size 500 is applied, with hidden layers of size
1024. Dropout is applied at every layer with the probability
0.2 in the embedding and hidden layers and 0.1 in the in-
put and output layers. Our models are trained with Adadelta
[19] and the gradient norm is clipped to 1.0. We use a beam
search for decoding, with the beam size of 12.

The baseline systems were trained on the WMT paral-
lel data. For both languages, this consists of the EPPS, NC,
CommonCrawl corpus. In addition, we randomly subsam-
pled a same size corpus from the monolingual news crawled
corpus and created an additional pseudo parallel corpus as
described in [12]. As in-domain data, we used the TED cor-
pus.

Throughout this paper, validation data denotes the new-
stest13 set, while test data the newstest14 set. For the single
models, we apply the early stopping based on the validation
score.

7.2. Results of Adaptation

Our first line of experiment is dedicated on establishing the
effect of training on a large corpus (e.g. out-of-domain data)
or a small corpus (e.g. in-domain data). For English to Ger-
man, for example, we trained one system only on the out-
of-domain data and another only on the in-domain data in-
dependently. The results are shown in Table 2. On the other
hand, we experimented on the impact of domain adaptation
on the German to English systems. Namely, we compared
the system trained only on the out-of-domain data against
the adapted model.

One important observation is the usefulness of dropout.

1https://github.com/rsennrich/nematus

We notice that using dropout in large and out-of-domain data
does not help while an enormous improvement is observed
when we use dropout in much smaller and in-domain data.
Also when we look at the situation where we when continu-
ing the training on the in-domain data, dropout is very impor-
tant. In this case, we cannot improve the model, if we do not
use dropout. The system overfits to the training data and the
performance on the unseen test data even drops. In contrast,
if we use dropout in the adaptation phase, we can improve
the translation quality by 3 BLEU points.

One reason could explain this is that dropout helps to re-
duce overfitting when training on the small data. On the large
and well-covered data, however, it introduces unnecessary
noises and does not bring any positive impact.

Table 1: Effect of using dropout on German→English

System System Valid Test

Baseline Dropout 30.96 26.77
No Dropout 32.53 27.43

Adapted Dropout 35.35 30.66
No Dropout 30.56 25.18

Table 2: Effect of using dropout on English→German

System System Valid Test

Baseline Dropout 24.87 21.03
No Dropout 25.44 22.24

In-domain Dropout 24.35 20.62
No Dropout 19.86 17.75

As shown in Table 1, the adaptation to the TED do-
main is very helpful for the German-English translation sys-
tem. Table 3 confirms the essential of adaptation in our
English→German configurations. The non-adapted config-
urations are trained on the out-of-domain concatenation cor-
pus without dropout, and the adapted ones are continuously
trained on the in-domain TED data with dropout in every
layer of the networks.

Another interesting finding from Table 3 is while the con-
figuration trained on the large corpus is not beneficial by
using bigger vocabularies, its adaptation on the small, in-
domain data brings a great improvement over the adapted
configuration using small vocabularies (e.g. 26.72 versus
24.13 on tst2014 in term of BLEU scores).

In another line of research, we analyze the influence of
the baseline model on the adapted final model. We mea-
sure the performance of the baseline and adapted systems,
when different iterations of training are applied for the base-
line training. Therefore, the experiments should answer the
question if it is helpful to train the baseline model for many
iterations or if an initial model is sufficient for initializing the



Table 3: Effect of adaptation on English→ German NMT configurations

Configuration No adaptation Adaptation
Valid Test MSLT Valid Test MSLT

SmallVoc 25.74 22.54 35.06 28.08 24.13 36.27
BigVoc 25.95 22.51 35.93 31.08 26.72 37.61

adaptation process. The results are summarized in Table 4.

Table 4: Training length of baseline model

Iteration Baseline Adapted
Valid Test Valid Test

300K 31.54 27.15 34.85 29.97
450K 31.97 27.56 35.16 29.95
600K 32.67 28.35 35.35 30.66

We trained the baseline model for 300K, 450K and 600K
iterations. As shown in the table, this leads to an improve-
ment of 1.2 BLEU points on the initial model trained only
on the out-of-domain data. If we adapt these models by con-
tinuing training on the in-domain data, we can improve by
2 to 3 BLEU points. While the difference between the dif-
ferent models is lower, the model trained for 600K iterations
is still 0.6 points better. In order to achieve the best perfor-
mance, thus, it is important to train the baseline model till
convergence.

After analyzing the design decision when training an
adapted model, we performed further experiments for the
ensemble of different models. [3] shows that an ensemble
of various adapted configurations is usually helpful. En-
sembling also helps in our cases as showed in Table 5 for
German→English and Table 6 for English→German.

Table 5: Ensemble of German→English adapted models

System Valid Test TED Test MSLT
Baseline 32.67 28.35 33.21
+ Adapted 35.35 30.66 33.40
+ Ensemble (3 Models) 35.76 31.00 34.25
+ 1 Baseline 36.72 31.99 35.82
+ 2 Baseline 36.84 31.97 37.11
+ 3 Baseline 36.93 31.69 37.50
+ 4 Baseline 36.75 31.49 37.77

In German→English, we ensemble three adapted mod-
els. This could improve the translation quality by only 0.3
BLEU points. By further adding up to three baseline models,
we get further improvements by 1 BLEU point on the valida-
tion set and 0.7 on the test set. As shown in the final results

in Table 8 and 9, this finding was not consistent throughout
all models. However, the combination of adapted and non-
adapted models is very useful for MSLT data, which does not
exactly match our in-domain (TED) data.

Table 6: Ensemble of adapted English→German models

System Valid Test TED Test MSLT
Baseline 27.74 24.39 35.19
+ Adapted 29.89 25.46 36.32
+ Ensemble A4B0 30.58 26.09 37.28
+ Ensemble A3B1 30.83 26.40 38.62
+ Ensemble A2B2 30.99 26.10 39.11
+ Ensemble A1B3 30.10 26.00 38.88

In English→German, we conduct the similar experi-
ments of ensembling using the mix-source system. All of the
ensembles include 4 models, and they are different on which
adapted models and which baseline models are chosen. For
example, Ensemble A4B0 means the best four adapted mod-
els and none of the baseline models are chosen to be ensem-
bled. Likewise, Ensemble A2B2 means the best two adapted
models and the best two baseline models are chosen to be
ensembled. Similar in the German→English case, we ob-
serve that although the baseline configurations performed
much worse than the respective adapted ones, the ensemble
of some baseline and adapted models sometimes works bet-
ter than the ensemble of all adapted models (Ensemble A2B2
and Ensemble A3B1 are better than Ensemble A4B0 both on
TED and MSLT tasks). The improvements when using en-
sembles are considerable in this case: almost 1 BLEU points
on TED task and 2.79 BLEU points on MSLT task.

Table 7: Ensemble of adapted Models

Iteration Only Adapt Adapted + Baseline
Valid Test Valid Test

1 Adaptation 35.76 31.00 36.93 31.69
MultiAdapt 30K 35.67 31.14 37.01 31.70
MultiAdapt 150K 36.04 30.97 36.89 31.81

In the last experiment, we trained one baseline model
and adapted it by continue training on the in-domain data.



During the adaptation, we stored different models which
we combined in the ensemble model. The results for
German→English are shown in the first row in Table 7. A
different strategy would be to take different baseline models
and apply the adaptation on each of them. The results are
shown in the next two rows. As seen in the results, this does
not really improve the translation quality. Namely, it seems
to be sufficient to adapt one baseline model.

7.3. German→English

As described in Section 5, we combined different, already
ensembled systems by rescoring. The initial systems for the
TED task are shown in the first several rows of Table 8. This
table also shows how many systems are ensembled for each
combined system. As the initial systems, we used a baseline
system (SmallVoc), a system that generated the target sen-
tence in the reverse order (SmallVoc.rev), a pre-translation
system [8] and a system using a 80K vocabulary (BigVoc).
The best performance is reached by the BigVoc translation
system.

Table 8: System combination TED

System Base Adapt Valid Test
(1) SmallVoc 3 3 37.01 31.74
(2) SmallVoc.rev 1 3 36.56 31.28
(3) Pre-translation 0 4 36.43 31.41
(4) BigVoc 0 4 37.50 32.41
Sum (1+2+3+4) 4 14 38.95 33.40
(5) Inverse 0 4 34.43 29.11
ListNet (1+2+3+4+5) 4 18 39.22 33.69

Then we generated the joint n-best lists and rescored the
joint system using each system, represented as Sum in the
table. A log-linear combination of all systems with equal
weights for each system can improve the performance by 1
BLEU point to 33.40.

Table 9: System combination MSLT

System Base Adapt Test
(1) SmallVoc 4 3 37.90
(2) SmallVoc.rev 4 3 38.72
(3) Pre-translation 4 0 38.33
(4) BigVoc 4 2 38.80
Sum (2+3+4) 8 14 40.75
(5) Inverse 0 4 34.27
Sum (2+3+4+5) 16 12 40.93

In a second system, we also rescored the n-best list with
a translation system from English to German, named Inverse
in the table. This system performed significantly worse than

all other systems and reaches a BLEU score of 29.11. A
linear combination using equal weights on all systems did
not improve the performance. If we, in contrast, train the
weights using the ListNet algorithm [20], we are able get
further improvements of 0.3 BLEU points.

For the MSLT test set, we performed similar experiments.
In this task, we face the problem that we do not have a devel-
opment set. Since we saw in the performance on the develop-
ment and test data correlate quite well, we selected our final
submission based on the performance on the dev test set. As
shown in Table 9, for these systems it was beneficial to use
more baseline systems for the ensemble of each combination.
Again, we could improve the performance by 2 BLEU points
by using a combination of three system combinations. The
Inverse translation system performed worse, similar to the
experiments on TED. Due to lack of additional development
data for this task, we could not train the weights using the
ListNet-based rescoring. When using a linear combination
with equal weights, we are able to improve the performance
by additional 0.2 BLEU points.

7.4. English→German

In the TED task, for each SmallVoc and BigVoc configura-
tions, we also train and adapt the corresponding reversed
(.rev) and mix-source (.mixs) systems with the aforemen-
tioned adaptation scheme. The pre-translation systems (Pre-
translation and Pre-translation.mono) from the SmallVoc are
also trained and adapted. Pre-translation.mono indicates an
additional monolingual data is used for training the system.
For each system, we conduct several ensembles as described
in Section 7.2 and choose the best ensemble based on the
performance evaluated on the valid set. Table 10 reports the
scores of those best ensembled systems.

Table 10: English→German TED translation

System Base Adapt Test
(1) SmallVoc 2 2 26.63
(2) SmallVoc.rev 2 2 26.28
(3) SmallVoc.mixs 1 3 26.40
(4) Pre-translation 0 4 26.44
(5) Pre-translation.mono 0 2 27.03
(6) BigVoc 0 4 27.19
(7) BigVoc.rev 1 3 26.60
(8) BigVoc.mixs 1 3 26.31
Sum(2+4+5+6+8) 3 15 28.02

Then we generated the joint n-best lists and rescored
the joint system using each system. The best system is
the best log-linear combination of some individual systems
with equal weights. In this TED task, the combination of 5
different systems brings an 0.83-BLEU-point improvement
over the best ensembled individual system and 2.56-BLEU-
improvement over the best adapted one.



We conduct similar experiments for the MSLT task. As
shown in Table 11, the best ensemble is the ensemble of 2
adapted models and 2 baseline models from SmallVoc sys-
tem, scoring 39.30 BLEU points. Again, an improvement of
1.22 BLEU points can be obtained by using a combination
of four systems.

Those two best combination are our submitted systems to
the evaluation campaign.

Table 11: English→German MSLT translation

System Base Adapt MSLT test
(1) SmallVoc 2 2 39.30
(2) SmallVoc.rev 2 2 37.54
(3) SmallVoc.mixs 2 2 39.11
(4) Pre-translation 1 2 37.45
(5) Pre-translation.mono 1 4 38.28
(6) BigVoc 1 3 38.72
Sum(1+3+5+6) 6 11 40.52

8. Conclusions
In this paper, we described several innovative techniques that
we applied to our neural machine translation systems we sub-
mitted to the IWSLT 2016 Evaluation Campaign. In this
evaluation campaign, we participated in official MT and SLT
tasks for English→German and German→English.

For both of the translation directions, we obtained im-
provements in translation performance by applying the adap-
tation technique. Different systems, such as the one uses pre-
translation as an additional input source and the one trained
with reversed target side, are combined based on n-best lists.
The experiments show that reranking improves the transla-
tion performance further.
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