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Abstract

Deep Neural Networks (DNNs) are a key element of state-
of-the-art speech recognition systems. Being a data-driven
method, they require a significant amount of training data.
There exist scenarios in which such an amount of data is
not available for a particular language. Building systems
for such resource constrained tasks requires special tech-
niques. One common method is to use data from multiple
languages to train the acoustic model.

But there are limitations on knowledge transfer between
different languages. By the use of Language Feature Vec-
tors (LFVs), we try to mitigate these limitations by provid-
ing language information to DNNs. Similar to i-Vectors
for speaker adaptation, LFVs enable DNNSs to better cap-
ture and adapt to inter language characteristics. Previous
experiments have shown that providing LFVs to DNNs im-
proved system performance. In this paper, we show that
by adding LFVs the performance gap between mono- and
multilingual systems decreases.

1 Introduction

Systems for well resourced languages such as English or
German achieve good performance using state-of-the-art
methods for system building. In recent years, there has
been a rising demand to build systems for lesser resourced
languages. Large Vocabulary Continuous Speech Recog-
nition Systems (LVCSR) require a fair amount of training
data in order to archive good performance. This makes
the task of system building for under resourced languages
challenging. But there are different approaches to build
systems with only a limited amount of data.

One common technique is to use a mixture of data from
different languages in addition to the available data of the
target language for acoustic model training. We evalu-
ated various data mixing and training strategies in the past
[1]. Training neural networks on data from multiple lan-
guages yielded higher recognition accuracy. We recently
introduced language adaptive DNNs (LA-DNNs)[2] which
captured language specific cues and improved the system
performance. We extended our approach by transitioning
from an explicit to an implicit adaptation: Instead of mod-
elling the language information directly, we trained a neu-
ral network to extract a language feature vector (LFV) that
conveys language specific features [3]. We demonstrated
that these features carry a richer set of information com-
pared to just the language identity (LID). In addition to
that, we could apply this technique also to languages not
seen during training.

In this paper we pretend that English is a low resource
language. For building a LVCSR we therefore restricted
the amount of available data to 30h of transcribed audio.
In addition, we also used the task of phoneme boundary
detection to evaluate our proposed method. We performed
the phoneme boundary detection truly crosslingual, by not
using any data from the target language to train our system.

This paper is organized as follows: In Section 2, we
provide an overview of related work. In the next section,
Section 3, we outline our approach in detail. Section 4 then
describes our experimental setup and Section 5 the results.
We summarize our findings in the final section in which we
also provide an outlook to future work.

2 Related work

State-of-the-art LVCSR systems feature artificial neural net-
works (ANNs). Neural networks are being used in com-

ponents like audio pre-processing, language modelling or

acoustic modelling. In this paper, we focused on the use of
DNNs as part of the audio pre-processing pipeline as well

as the acoustic model.

2.1 GMM Based Multilingual Systems

Up until the emergence of neural networks as standard part
of LVCSR systems for acoustic modelling, using an ap-
proach based on GMM/HMM was common. Bootstrap-
ping the acoustic model multilingually introduces some
difficulties. This problem of bootstrapping multi- and cross-
lingual GMM/HMM systems has been addressed in the
past, e.g., in [4]. Various techniques have been explored to
use data from multiple languages for building GMM/HMM
based systems [5]. There also exist techniques to bootstrap
and build systems cross-lingually [6]. The recognition ac-
curacy of multilingually trained systems is not as good as
monolingually trained systems. But there exist scenarios in
which it is not feasible to build monolingual systems, e.g.,
if a system with a universal phoneme inventory is required.

2.2 Multilingual DBNFs

Deep Belief Network Features (DBNFs) benefit from be-
ing trained multilingually. Training a DBNF network in-
volves two steps: Pre-training and fine-tuning. The pre-
training step is language independent [7]. To fine-tune a
network, multiple alternatives exist to make use of data
from different languages. One possibility is to share the
hidden representations among different languages, but keep
the output layers language specific ([8], [9], [10], [11]).
Discriminating phonemes in different languages are related
tasks. Training DNNs multilingually can therefore be seen
as multitask learning [12].

2.3 Feature Augmentation

The use of i-Vectors [13] or Bottleneck Speaker Vectors
(BSV) [14] is a common approach to augment the acous-
tic input features in order to build speaker aware ANNSs.
Based on i-Vectors, it is also possible to train a speaker
adaptive neural network [15]. These different approaches
prove that ANNSs benefit from additional input features.
This principle can also also be applied to multilingual
scenarios. As described in section 3, presenting the lan-



guage information to ANNS leads to improvements in mul-
tilingual settings: Either the language identity information
[2] alone or high order features encoding a richer set of
language properties [3].

2.4 Phoneme Boundary Detection

Documenting unwritten languages is the goal of the BULB
project [16]. A first step in documenting unwritten lan-
guages is the discovery of the phoneme inventory of these
languages. One method to achieve this is to segment record-
ings into phoneme-like units and then further process these
units. To detect phoneme boundaries, it is possible to de-
tect acoustic changes in audio signals[17]. A set of metrics
exist to evaluate the detected boundaries [18]. We evalu-
ate the detected boundaries using precision, recall and F-
Score.

3 Language Feature Vectors

In the past, we demonstrated that using data from addi-
tional languages increased the recognition performance of
LVCSR systems [1]. We also showed that augmenting
acoustic features with a vector encoding the language iden-
tity (LID) further improved the performance [2]. But pro-
viding the language information using a one-hot encoding
did not reflect the characteristics different languages have.
We extended our previous approach by training a DNN to
extract LFVs that represent a richer set of language fea-
tures [3]. This network, if trained on a large enough set of
languages, is able to generalize so that it extracts meaning-
ful features even for languages not seen during training.

Initially, this network was built as a combination of two
networks: A network for extracting DBNFs and a second
network which is trained to discriminate languages. The
second stage network was built with DBNFs as input fea-
tures. To train this network, we used the language identity
as targets. The layers of this network featured 1600 neu-
rons. In order to obtain the LFVs, we introduced a bot-
tleneck layer as second last last of the network. It had a
size of only 42 neurons. This size is identical to the size of
the bottleneck we use to extract DBNFs. This bottleneck
forced the network to create a low dimensional represen-
tation of features encoding language characteristics. For
the extraction of the LFVs, we used the layers up until the
bottleneck layer and discarded the other layers.

In this paper, we attempt to simplify this approach by
using only one network. We provide the same set of acous-
tic input features to this network like for the DBNF net-
work. In [3] we determined the optimal context width to
span 690ms. In order to cover a window of approximately
this size, we fed a context of +/- 30 frames into this net-
work. Each frame is computed over a window of 32ms on
the raw audio and this window is shifted with 10ms over
the entire recording. We also evaluated additional network
hyper parameters. These include the size of the bottle-
neck layer and the size of the hidden layers. In addition
to that, we tried different training strategies by presenting
the training data to the network in a different way. Like
in [3], the network was trained using data from 9 differ-
ent languages; Arabic, German, French, Italian, Spanish,
Polish, Portuguese, Turkish and Russian.

4 Experimental Setup

We evaluated our proposed method in different scenarios.
To conduct our experiments, we used the Janus Recogni-
tion Toolkit (JRTk) [19] which features the IBIS single-
pass decoder [20]. We trained our neural networks using a
setup based on Theano [21].

4.1 Corpora

Similar to [3], we used the Euronews Corpus [22] to train
and evaluate our setup. It contained recordings from 10
languages: Arabic, English, French, German, Italian, Pol-
ish, Portuguese, Russian, Spanish and Turkish. A detailed
overview of available data and number of different record-
ings is shown in Table 1. Time-aligned transcriptions were
provided using a LVCSR system. The provided English
test set contained 37 recordings with a total length of 1.2h.

In addition to the Euronews corpus, we also used ap-
proximately 1h of transcribed recordings of Basaa. This
dataset contained only one speaker and was recorded in a
clean environment with 44.1kHz which we downsampled
to 16kHz. For details about this dataset, please refer to
[23].

Language | Audio Data | # Recordings

Arabic 72.1h 4,342
English 72.8h 4,511
French 68.1h 4,434
German 73.2h 4,436
Italian 77.2h 4,464
Polish 70.8h 4,576
Portuguese 68.3h 4,456
Russian 72.2h 4,418
Spanish 70.5h 4,231
Turkish 70.4h 4,385
Total \ 715.6h \ 44,253

Table 1: Overview of used datasets

4.2 Pronunciation Dictionaries

We created the pronunciation dictionaries using the MaryTTS
Text-to-Speech engine [24]. For each language, we created
pronunciation dictionaries with language specific phoneme
sets. In order to build multilingual systems, we merged
the different pronunciation dictionaries thereby creating a
large multilingual dictionary with a global phoneme set.

4.3 System Training

For bootstrapping our systems, we used a flat start ap-
proach where we first built context-independent (CI) sys-
tems. Based on these systems, we trained context-dependent
(CD) systems. We restricted ourselves to those languages
in the Euronews corpus where we could generate pronun-
ciation dictionaries with MaryTTS. These languages are
German, English, French, Italian, Turkish, Russian.

4.4 DBNF Training

We used CD systems to label the recordings on frame-level
basis for training the DBNF network. Acoustic input fea-
tures for DBNFs consisted of a combination of 1Mel, fun-
damental frequency variation (FFV) [25] and pitch [26].



We extracted IMel with 40 dimensions and tonal features
with a dimensionality of 14. This results in a feature vector
with 54 dimensions. A previous study has shown that the
use of tonal features leads to improvements even if the lan-
guage is non-tonal [27]. We stacked the input features us-
ing a context of +/- 6 frames as input to the neural network.
To this stack of 13 frames we added our 42-dimensional
LFVs.

The network for DBNF extraction consisted of 6 hid-
den layers. The second last hidden layer was a bottleneck
layer. While the other layers featured 1,000 neurons each,
the bottleneck layer was very narrow, having only a size
of 42 neurons. The network was pre-trained layer-wise,
using de-noising auto-encoders. For fine-tuning, we used
stochastic gradient descent with newbob scheduling.

4.5 Hybrid System Training

Based on DBNFs, we re-trained the GMM/HMM systems.
Using these second stage systems, we obtained labels to
train a second DNN on top of DBNFs. This DNN was used
to build a hybrid system. As input features for this system,
we used DBNFs stacked with a context of +/- 7 frames.
Previous experiments have shown that increasing the con-
text size to 7 for this network leads to improvements. We
again appended LFVs to the acoustic input features. The
DNN in our hybrid system featured 6 hidden layers with
a size of 1600 neurons each. The training procedure was
identical to the one for DBNFs.

4.6 LFV Network Training

We considered the problem of language detection related
to LVCSR. Therefore, we started with the same network
parameters as we would use for speech recognition. In this
paper, we would like to evaluate if parts of that setup can
be altered to better fit to the task of language recognition.
We assumed the language properties to be a static feature
over a longer period of time compared to phonemes. In
our recent work, we determined a context window length
of 690ms to be optimal for this task. In this paper, we
evaluated different network hyper parameters. We varied
the size of the hidden layers as well as the bottleneck.
Although the problem of language detection is related to
speech recognition, it might be possible that a different
network configurations lead to better results. We therefore
omitted the network for the extraction of DBNFs and fed
the acoustic input features directly into the LFV network.
To cover a context width similar to our existing setup, we
increased the size of the context window to +/- 30 frames.
We also evaluated a different training schedule for the
NNs. NN training is usually performed doing mini-batch
updates. Our standard training setup is based on pfiles'
for storing the training data. In order for the network to
generalize in an optimal way, the training data needs to be
shuffled. Our training setup does this by loading the data in
fixed chunks into memory and shuffling the data on a per
utterance basis in memory. While this works sufficiently
well to train NNs for speech recognition, the results when
performing language recognition might not be optimal.
We therefore altered our setup by shuffling the entire
pfile instead of only shuffling the part of the file that is
loaded into memory. By doing so, the network sees a larger
variety of speakers during each mini-batch. As evaluation
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metric for the different network configuration, we used the
framewise classification error on the validation set, called
validation error.

4.7 System Training

For evaluation, we built multilingual systems using data
from 6 languages (English, French, German, Italian, Rus-
sian and Turkish). Like in [3], we used only a subset of
30h per language of the available training data. This sub-
set was created on a per recording basis. We used a 4-gram
language model with a vocabulary size of 100k words for
testing. We evaluated our approach using a system with
a global phoneme set and pronunciation dictionary. With
this single dictionary, we bootstrapped a multilingual sys-
tem and trained both DBNF GMM/HMM as well as hybrid
systems with DBNFs.

For neural network training, we added LFVs to the in-
put features of each network. In case of DBNF hybrid
systems, the LFVs were added at two different places: At
the DBNF and at the DNN that computes phoneme pos-
teriors. As reference, we included numbers from systems
trained without any language information, LID and LFVs.
In addition to systems with a merged phoneme set, we also
built monolingual systems with multilingual trained neural
networks. We bootstrapped CD systems for 6 languages
monolingually. The DBNF networks were trained multi-
lingual by sharing the hidden layers but using one output
layer per language with language dependent phoneme tar-
gets. The same method was used for training the DNN of
hybrid systems.

4.8 Cross-lingual Phoneme Boundary Detec-
tion

To evaluate our proposed method in a cross-lingual setup,
we performed phoneme boundary detection cross-lingually.
We measured the accuracy of phoneme boundary detec-
tion using data from Basaa. In order to obtain phoneme
boundaries as reference, we used a multilingual system
and adapted the acoustic models using transcripts of the
recordings. We evaluated the F-score of the hypothesized
phoneme boundaries with respect to the reference bound-
aries. For the detection of boundaries, we used a mul-
tilingual system to ensure high phoneme coverage. We
used this system to recognize phonemes on the test data.
While the information about phoneme identities was dis-
carded, we retained and evaluted the detected phoneme
boundaries.

5 Results

We first evaluated different hyper parameters for language
feature vector extraction. After determining the optimal
setup for LFV extraction, we built various systems to eval-
uate our approach.

5.1 Hyper parameters

We varied the size of the hidden layers as well as the size
of the bottleneck. As shown in Table 2, reducing either the
size of the hidden layers or the bottleneck layer does not
increase the recognition accuracy.



HL size | BN size | Validation error

800 42 0.181
1600 42 0.172
1600 5 0.178

Table 2: Validation error for different Hidden Layer and
Bottleneck configurations for LFV extraction.

5.2 Network architecture

For the next evaluation, we omitted the DBNF network
and used an alternative method to randomize the utterances
throughout the entire pfile.

Type | Validation error
Baseline \ 0.172
noDBNF 0.218
noDBNF w/ shuffle 0.204

Table 3: Validation error for different network configura-
tions for LFV extraction.

As seen in Table 3, omitting the DBNF network to pre-
process the acoustic input features leads to an increased
validation error. The rise in the validation error could be
an indication that detecting the language identity is more
closely related to phoneme recognition than originally an-
ticipated. Different languages may be identified by distinc-
tive sequences of phonemes. Using DBNFs that encode
this phonetic information therefore leads to a better lan-
guage classification, but using the setup without an DBNF
has the advantage of being simpler and requiring less re-
sources. Using an alternate method of data shuffling prior
to training leads to a reduction of the validation error. This
indicates that the LFV network is more sensitive in terms
of speaker variability. In order to better discriminate be-
tween languages, it is beneficial to present the network data
from a larger set of speakers than just the ones included in
the current chunk loaded into memory.

5.3 Multilingual Setup

System | DBNF | Hybrid
w/o LI 214% | 19.1%
LID 20.7% 17.7%
LFVs 20.7% 16.2%

LFVs w/o DBNF | 20.7% | 17.7%

Table 4: Overview of results for systems with features.
The results are given in WER.

Based on the setup without DBNFs, we see results sim-
ilar to our setup using only the language identity informa-
tion. But LFVs even in this configuration without DBNFs
still have the advantage of being language independent, i.e.
they do not need to be retrained for every new language.
For better results, sticking to the approach with two net-
works is essential.

5.4 Monolingual comparison

In the next set of experiments, we compared the results
from the multilingual recognizers having a merged phoneme
set with the performance of recognizers with a language
dependent phoneme set. The results in Table 5 show the
differences between the systems of the two categories. Al-
though the systems with monolingual phoneme sets out-
perform the multilingually trained systems, the gap in per-
formance decreases by LFVs to 5.8% relative.

System | w/o LI | with LID | with LFV
Monolingual | 16.7% 16.6% 15.3%
Multilingual | 19.1% 17.7% 16.2%
Lossinperf. | 144% | 67% | 5.8%

Table S: WER for language dependent and merged
phoneme sets. without Language Information, with
Language Identity information and with Language
Feature Vectors

5.5 Cross-lingual Phoneme Boundary Detec-
tion

The final evaluation shows the performance of our approach

by detecting phoneme boundaries. We determined the ac-

curacy by computing precision, recall and the F-Score. Ta-
ble 6 shows the results.

System | Precision | Recall | F-Score
DNN 0.520 0.515 0.518
LFVs 0.542 0.532 0.537
LFVs w/o DBNF ‘ 0.537 ‘ 0.528 ‘ 0.532

Table 6: Results for cross-lingual phoneme segmentation.
Using LFVs leads to improvements.

6 Conclusion and Outlook

The creation of systems in resource constrained environ-
ments is a difficult task. But previous works have shown
that shortage in training data can be compensated. Multi-
ple techniques for applying data from other languages to
increase the performance for a target language exist.

We proposed a method for augmenting the input fea-
tures of neural networks. Similar to speaker adaptation
of neural networks, it is possible to adapt to different lan-
guages. Our experiments have shown that providing LFVs
to neural networks improve the performance of LVCSR
systems in a multilingual environment and clise the gap
to monolingual systems further. We also showed that the
use of DBNFs is essential.

We applied LFVs to the task of phoneme segmentation.
In this scenario, we also saw improvements which proves
the universal nature of LFVs.
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