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Abstract
In this paper we investigate the automatic detection of
phoneme boundaries in audio recordings with the help of
deep bidirectional LSTMs. This work is motivated by the
needs of the project BULB which aims to support linguists
in documenting unwritten languages. The automatic detec-
tion of phoneme boundaries in audio recordings of a new
language is part of the technical requirements of the BULB
project. For our first experiments with LSTMs for this task,
we worked on TIMIT and BUCKEYE and measured the
performance of our LSTMs using accuracy, precision, re-
call and F-measure. We then applied the trained networks
crosslingually to Basaa, one of the Bantu languages ad-
dressed in BULB.

With the LSTMs trained for this paper we achieve a
phoneme segmentation performance on TIMIT that, to the
best of our knowledge, outperforms the systems reported
in literature so far.

1 Introduction
Of the currently existing 7,000 living languages in the
world [1], a large number are only spoken by a few speak-
ers and are in danger of becoming extinct [2, 3].

Natural Language Processing (NLP) systems have
been mainly created for the few languages with a large
speaker base or great economic value, but are not available
for the long tail of smaller, less well-resourced languages,
especially not for those on the verge of extinction. Also,
most of these endangered languages have not been prop-
erly documented yet.

Hereby, the number of endangered languages is so
large that their comprehensive documentation by the com-
munity of documentary linguists will not be possible with-
out support through NLP technology. Therefore it is the
goal of the French-German ANR-DFG project Breaking
the Unwritten Language Barrier (BULB) to develop tools
to enable the efficient automatic processing of unwritten
languages. BULB will validate its tools on three mostly
unwritten African languages of the Bantu family: Basaa,
Myene and Embosi [4].

One of the technologies needed to reach BULB’s goals
is the automatic segmentation of recordings of an unwrit-
ten language into phonemes. As we do not know the
phoneme inventory of the target language, the use of multi-
lingual phoneme recognizers for this task is not advisable,
since the phoneme inventory of the multilingual recognizer
might not sufficiently cover the target phoneme inventory.
BULB therefore pursues a two step approach, inspired
by work in speech synthesis, of first detecting phoneme
boundaries, followed by classifying the detected segments
into phonemes [5].

In this paper we address the first step, i.e. phoneme
boundary detection, by using a deep bi-directional long

short-term memory (DBLSTM) neural network. For our
first experiments using BLSTMs, presented in this paper,
we trained and tested first on the TIMIT corpus and then
on the BUCKEYE corpus. This enables us to compare our
results to other results reported in literature. Then we also
applied the two English LSTMs to Basaa, one of the Bantu
languages addressed, and compared the results to previous
experiments on the same data using mono- and multilin-
gual phoneme recognizers.

2 Related work
The task of either discovering the phoneme inventory of an
unknown and under-resourced language or automatically
segmenting recordings of it into phonemes has been stud-
ied by different research groups in the past. One common
approach is to take a supervised, model based segmenta-
tion approach that has been trained either mono- or mul-
tilingually on known languages and to apply it to an un-
seen language. Using phoneme recognizers is a possible
approach for this. E.g., [6] used HMMs for automatic seg-
mentation and labeling of speech. Current HMM-based
models with extended postprocessing reaches boundary
accuracies up to 96,8 % with a 20ms tolerance on segment-
ing TIMIT [7]. [8] presented an HMM/SVM approach for
automatic phoneme segmentation that imitates the human
phoneme segmentation process.

Other approaches use features derived directly from the
audio signal, to identify phone or phoneme boundaries.
E.g., [9] estimated phoneme boundaries by analyzing the
acoustic change of audio signals. Their method is a two
step approach in which the information derived from the
speech signal is enriched by additional cues. [10] describes
an approach to discovering a proper set of subword-like
units, which in addition to segmenting the audio, also uti-
lizes a Dirichlet process mixture model for representing
individual acoustic units. [11] performed phoneme seg-
mentation based on acoustic clues on Mandarin. [12] ex-
amined phoneme-level segmentation of speech based on
a perceptual representation —the Spectro Temporal Ex-
citation Pattern (STEP)—and a dimensionality reduction
technique—the t-Distributed Stochastic Neighbour Em-
bedding (t-SNE). This method searches for the true pho-
netic boundaries in the vicinity of those produced by an
HMM-based segmentation.

[13] has investigated algorithms and metrics for the
task of unsupervised phoneme segmentation. Recently dif-
ferent kind of works have been done in the context of the
Zero Speech Challenge [14], which focuses on the unsu-
pervised discovery of subword units from raw speech. The
organizers provide a unified and open suite of evaluation
metrics.

With respect to cross-lingual experiments our general
approach is based on [5] and [15]. In these publications,



the authors were using an English phoneme recognizer for
determining phoneme boundaries as part of their work.
In [16] we applied mono- and cross-lingual HMM based
phoneme recognizers to unknown languages, especially to
Basaa, for phoneme boundary detection. In this work we
perform the phoneme boundary detection using an LSTM
based approach.

Another approach for founding phoneme boundaries
is unsupervised lexicon discovery. [17] reached with this
method a F1-score of 77 with a 20ms tolerance on TIMIT.

3 DBSLTMs for Phoneme Boundary
Detection

Recurrent neural networks (RNN) are widely used in se-
quence classification tasks for example in speech recog-
nition [18], machine translation [19] or segmentation of
DNA [20]. RNN’s are a special kind of artificial neural
network which are extended with a link in time [21]. The
output of nodes from a hidden layer in the past time step
are concatenated to the input of the nodes in the current
time step.

Unfortunately vanilla RNNs are not good in model-
ing longer dependencies because of the vanishing gradient
problem [22]. A common solution are Long-Short Term
Memories (LSTM) first described in [23] and extended by
peephole connection in [24].

They replace the ordinary activation function of an
RNN through a LSTM block. While in vanilla RNNs all
hidden states are fleeting, the LSTM stores hidden states
steadily. This hidden cell state is controlled by three gates
which adjust how much information gets preserved from
the past hidden cell state (forget gate), how much new in-
formation enters (input gate) and how much information
gets out (output gate), see Figure 1. The incoming signal
and the outgoing signal pass a nonlinear activation func-
tion. This is usually a tanh-function as opposed to the
gates which are sigmoid functions. All gates and the in-
put activation receive the same input signals. These are the
output from the layer below and the recurrent output from
the same layer one time step earlier. Because the hidden
state passes no activation function it is not affected by the
vanishing gradient problem.

Furthermore, bidirectional Long-Short Term Memo-
ries (BLSTM) network training improves the performance
further [25, 26]. In this setup layers are recurrent in both
directions in time, forward and backward, and are fed for-
ward together to the output layer. Another improvement
is to stack BLSTM layers to deep bidirectional LSTMs
(DBLSTM) [27]. A schematic illustration of this is pic-
tured in Figure 2.

In this work we detect phoneme boundaries in a novel
fashion with the use of DBLSTM. For this use case we
found that a network architecture with two hidden layers
works best. The first layer contains 200 LSTM bocks and
the second 50 LSTM blocks. The whole network contains
barely 150k weights and is trainable in a feasible time.
Networks with more layers or more blocks per layer did
not lead to better results and tended to overfit. Networks
with less weights showed poorer performance. As output
we use a softmax layer of size two, one for boundary and
another for no boundary. Thereby we are able to calculate
the network loss using a weighted cross entropy function.

Because of the rarer occurrence of boundaries the fea-
tures are highly imbalanced. We correct this imbalance

Figure 1: A LSTM block; the gates are implemented with
use of a sigmoid function and the input and output function
with tanh. The dotted lines are recurrent signals from the
previous state. The ’c’ in the middle symbolizes the inter-
nal cell state which gets information from the previous cell
state and the input signal and supplies the output function.

Figure 2: Deep bidirectional recurrent neural network
over three time steps.

with the higher weight of the boundary feature loss, see
Equation 1. The intuitive expectation that the weight
should be the inverse value of the boundary / no-boundary
ratio was wrong. This ratio is in the TIMIT corpus nearly
1/8 but experiments show that weights between 3 and 7
lead to better results. In this range a higher weight leads
to a faster convergence. Therefore we use a weight of 7 in
our experiments.

L(t,h) =
1
N

N

∑
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(1)
For network training we use back propagation through

time [28] with mini batch stochastic gradient decent. For
optimization we deploy AdaDelta [29]. Its an extension of
AdaGrad [30] with the same robustness but the benefit of a
smoother gradient adaption and no more need for manual



tuning of the learning rate.
We implement our model with use of the Theano

framework [31].

4 Data
We used three speech corpora to evaluate our networks. To
train our model and to compare our work with related work
we used two common phonetic speech corpora TIMIT [32]
and BUCKEYE [33]. To test our model on a less-resourced
language in a cross-lingual set-up we used a Basaa speech
corpus form BULB.

4.1 TIMIT Corpus
TIMIT is a phonemic speech corpus which contains
recordings of 630 speakers of eight major dialects of
American English, each speaking 10 phonetically-rich sen-
tences [32]. The corpus is divided into a training and test
set with a ratio of roughly 60/40. We divided the data on a
per-speaker basis into different sets. Although we selected
the speakers randomly, we ensured that each set contains
speakers of both genders as well as from each dialect. We
divided the TIMIT-TRAIN set at speaker level into a train-
ing and validation set with a ratio of 90/10. The training set
consists of 416 speakers, roughly 3.5h in length, divided in
4,160 unique sequences with a mean length of 3.1s and
averaging 37.3 boundaries. The validation set includes 46
speakers, totaling 0.4 hours of speech, 460 sequences with
a mean length of 3.1s and roughly 37.6 boundaries per se-
quence. The test set consists of 168 speakers with 1.4 hours
of speech, 168 sequences with a mean length of 3.1s and
roughly 37.2 boundaries per sequence.

4.2 BUCKEYE Corpus
Like TIMIT this corpus is an American English phone-
mic speech corpus with recorded interviews from 40 dif-
ferent speakers from Central Ohio, USA. We divided at
speaker level into training, validation and test sets with
an approximate ratio of 70/20/10. For simpler training
we split the long records (some are over 10 minutes) into
smaller sequences with a minimum length of 100 frames
and cut during noises. Thus, each sequence starts and
ends with maximum of 20 frames of noise and contains
at minimum 100 frames of speech. Our sets do not contain
non-speech-only sequences. So the BUCKEYE training
set contains 28 speakers speaking 24 hours of speech di-
vided into 25,533 sequences with a mean length of 3.4s
and roughly 28.3 boundaries per sequence. The valida-
tion set includes 4 speakers speaking 2.8 hours of speech
divided into 2,681 speech sequences with a mean length
of 3.7s and roughly 28.0 boundaries per sequence. The
test set contains 8 speakers, has a length of 6.16h, divided
into 6,001 speech sequences with a mean length of 3.7s
and roughly 30.4 boundaries per sequence. The reason for
less boundaries per sequences at nearly the same mean se-
quence length compared to the TIMIT corpus is that this
corpus contains more non-speech portions.

4.3 Basaa Corpus
Basaa (A43 in Guthrie’s classification [34]) is one of the
three Bantu languages of the BULB project. It is spo-
ken by approximately 300,000 speakers from the Centre

Figure 3: The upper plot is an example network output
of the boundary feature with a threshold of 0.6 and peak
detection. Below are the detected boundaries and in the
third plot shows the correct target boundaries with a 20ms
tolerance. The bottom plot displays the corrected boundary
detection which is used for measurement.

and Littoral regions in southern Cameroon [1]. The di-
alects of Basaa listed by Ethnologue [1] are the follow-
ing: Bakem, Bon, Bibeng, Diboum, Log, Mpo, Mbang,
Ndokama, Basso, Ndokbele, Ndokpenda, Nyamtam.

From a tonal perspective, Basaa is similar to other
Bantu languages such as Kinande (JD42), Sukuma (F21)
or Tiriki (E40) in that it displays a tone system that is both
equipollent and privative (see [35] and references therein),
as H, L and /0 tone bearing units are underlyingly distin-
guished. On the surface, and as a result of a number of
tonal processes, Basaa displays a 5-way opposition be-
tween H, L, LH, HL and ŤH tones.

Morphologically speaking, Basaa is in several respects
a typical member of the Bantu family: it displays a rich
inventory of noun class markers and verb extensions. A
number of phonological processes have however affected
the verb stem morphology and generally made it less
Bantu-like [36].

The Basaa data used in the present experiment are re-
spoken radio broadcasts. The original audio files were ob-
tained from the radio station CRTV-Centre and feature a
male native speaker of Basaa. His speech was phonetically
transcribed by a linguist and later carefully re-spoken by a
female native speaker of Basaa. The re-speaking sessions
were conducted in a quiet environment, using the Voice
Memo application of a smartphone.

The test set used in our experiments contains 0.4 hours
of speech divided into 345 sequences with a mean length
of 4.1s and roughly 31.8 boundaries per sequence.

5 Experiments
We conducted two sets of experiments. First we trained
our model on TIMIT and evaluated on the TIMIT test set
and then the Basaa corpus. Second we trained our model
on BUCKEYE and evaluated on the BUCKEYE test set
and again on Basaa.

5.1 Preprocessing
We oriented the preprocessing on related work and used
the same procedure for both corpora. We extract 12 Mel-
Frequency Cepstrum Coefficients and augment them with
the log-energy and an approximation of the first derivative.



TIMIT TRAINING Tolerance Accuracy Precision Recall F1-Score

Valid TIMIT 10ms 96.5 ± 0.03 87.2 ± 0.51 83.5 ± 0.47 85.1 ± 0.10
20ms 97.6 ± 0.04 91.5 ± 0.42 88.1 ± 0.64 89.7 ± 0.20

Test TIMIT 10ms 96.3 ± 0.03 86.0 ± 0.44 83.2 ± 0.49 84.6 ± 0.14
20ms 97.5 ± 0.04 91.1 ± 0.39 88.1 ± 0.60 89.6 ± 0.18

Test Basaa 10ms 88.9 ± 0.06 30.4 ± 0.22 33.4 ± 0.79 31.9 ± 0.43
20ms 91.3 ± 0.06 44.2 ± 0.29 48.6 ± 0.87 46.3 ± 0.39

Table 1: Results of training on TIMIT, postprocessing with threshold of 0.6, optimized on the validation set for F1-score.
For better reading all values are multiplied by 100.

BUCKEYE TRAINING Tolerance Accuracy Precision Recall F1-Score

Valid BUCKEYE 10ms 97.2 ± 0.03 83.6 ± 0.76 81.9 ± 0.61 82.5 ± 0.07
20ms 98.0 ± 0.02 88.7 ± 0.76 86.4 ± 0.68 87.5 ± 0.07

Test BUCKEYE 10ms 96.5 ± 0.04 81.9 ± 0.89 77.7 ± 0.70 79.7 ± 0.11
20ms 97.5 ± 0.03 87.8 ± 0.88 83.3 ± 0.82 85.5 ± 0.12

Test Basaa 10ms 89.7 ± 0.04 33.0 ± 0.23 31.9 ± 0.62 32.4 ± 0.40
20ms 91.9 ± 0.05 47.7 ± 0.33 46.2 ± 0.66 46.9 ± 0.38

Table 2: Results of training on BUCKEYE corpus, measurement with a threshold of 0.6 in respect to the best F1-score
on the validation set. For a better reading all values multiplied by 100.

This gives a vector of 26 features per time step. We choose
a time step size of 10ms and a window length of 25ms.
Experiments have shown that smaller step sizes as well as
more filter coefficients lead to better cross entropy losses
but not to better F1-scores. For the targets of the features
we unify all non-speech labels to noise. For training we
split sequences when they are longer than 5 seconds. In do-
ing so we cut only in noises and let each sequence start and
end with noise. If no noise occurs within 5 seconds then
we accept longer sequences. To improve the training time
we sort all the training sequences by length and construct
minibatches with sequences of nearly the same length. We
use minibatches with a size of 10. To train minibatches
with samples of different length we use masks.

5.2 Postprocessing Network Output
Based on [37] we used a peak picking method to derive
the actually predicted phoneme boundaries from the frame
wise peaks in a posteriori probability for frame bound-
aries from the DBSLTM. Additionally we used a variable
threshold to adjust when we accept a peak as boundary.
In a second step we adapted the output with respect to the
commonly used tolerance of 10ms and 20ms of the true
boundaries [9], as shown in Figure 3.

As quality measures we use accuracy, precision, recall
and F1-score. The often used correct detection rate is the
same as recall.

5.3 Experiments on TIMIT
We trained six models with different random initializations
about 20 epochs on the TIMIT training set. After training
we used these six models to determine the postprocessing
threshold on the validation as to optimize F1-score. Ta-
ble 1 shows the mean and standard deviation of the quality
measures of the six models for both, a tolerance of 10ms
and 20ms. With a higher threshold precision goes up to
0.98 with an F1-score of about 0.70 and a 20ms tolerance.

In contrast, lowering the threshold brings recall up to 0.93
with an F1-score of about 0.84 and a 20ms tolerance.

5.4 Experiments on BUCKEYE
Like in the TIMIT experiment we trained six models with
about 20 epochs and determined the postprocessing thresh-
old on the validation set of BUCKEYE with respect to the
maximum F1-score. Table 2 shows mean and standard er-
ror of our quality measures for the six models with both, a
tolerance of 10ms and 20ms. By lifting the threshold a pre-
cisions of up to 0.95 with an F1-score of 0.80 and a 20ms
tolerance could be obtained. Otherwise by lowering the
threshold a recall of up to 0.93 was possible at an F1-score
of 0.80 with a 20ms tolerance.

6 Conclusion
In this paper we presented the use of deep bidirectional
LSTMs for detecting phoneme boundaries. We trained
separate systems on TIMIT and BUCKEYE and tested
them on their respective tasks, but also applied them cross-
lingually to Basaa, one of the languages of interest in the
BULB project.

Our experiments outperform our previous method that
is based on phoneme recognizers and shows promise in
cross-lingual application. The results on TIMIT that we
present in this paper are, to the best of our knowledge, the
best phoneme segmentation results reported in literature so
far.
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