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ABSTRACT 
We present a novel keyword-spotting system that combines both 
neural network and dynamic programming techniques. Our sys- 
tem makes use of the strengths of TDNN neural networks. which 
include strong generalization ability, potential for parallel imple- 
mentations, robustness to noise, and time shift invariant 1eaming.- 
Dynamic programming models are used by our system because 
they have the useful capability of time warping input speech pat- 
terns. We have trained and tested our system on the Stonehenge 
Road Rally database, which is a 20 keyword vocabulary, speaker 
independent, continuous speech corpus. Currently, our system 
performs at a Figure of Merit (FOM) rate of 82.5%. FOM is the 
detection rate averaged from 0 to 10 False alarms per keyword 
hour. This measure is explained in detail below. 

1. INTRODUCTION 
Recently, there has been a surge of interest in the development of 
keyword spotting systems for continuous. speaker independent 
speech recognition[ 1.2.41. This paper presents one such system. It 
is an approach based on a hybrid neural network - dynamic pro- 
gramming scheme. 

Standard speech recognition systems usually require that all 
word8 praeated to the system be part of a known dictionary. Thus 
for many practical uses, the recognition task quickly becomes 
unmanageable given the number of different words that are 
present in unconstrained speech. keyword spotting systems 
bypass this bottleneck by attempting to recognize only a few 
selected ‘important’ keywords; they are designed to ignore the 
extraneous speech. 

Although many word spotting systems today use a hidden 
Markov model approach to recognition [1,2], neural networks, 
with their discriminatory ability, have gained a strong following. 
Other important strengths for speech recognition include the abil- 
ity to generalize, the potential for parallel implementations, and 
robustness to speaker variation and noise. Neural networks have 
already been shown to be good phoneme recognizers [3]. For the 
above reasons. we feel that they will also play a useful role in key- 
word spotting system [4]. Indeed, our system, while still under 
constant improvement, already shows recognition results on par 
with those of other word spotting systems [1.2,41. 

2. THE DATABASE 
With the hope of creating a standard word-spotting database, IIT 
and NISThave distributed a database called the ‘Stonehenge’ 
Road Rally task (and an additional extension called ‘Waterloo’). 
The database consists of approximately 140 speakers (both male 
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and female) recording conversations, read paragraphs, and/or read 
keyword sentences. This speech contains several (20) keywords, 
embedded in extraneous speech. Keywords can have variable suf- 
fixes, such as -5, -e&-ing. The task is to spot the occurrences of 
these twenty different keywords, while minimizing the number of 
false detections. The Stonehenge portion of the database was 
recorded at lOKHz using a high quality microphone, while the 
Waterloo extension was recorded over telephone lines (also at 
10KHz). The database labelling consists of markers at the begin- 
ning and ending of all keywords present. The speech is not 
labelled phonetically, nor is the extranmus speech labelled. 

3. SYSTEM ARCHITECTURE 
The present work is based upon the TDNN [3] and more recently 
the MS-TDNN [SI. A diagram of the basic network architecture is 
shown in figure 1. The keyword spotting network consists of an 
input layer and a hidden layer, connected to a state layer and an 
output layer for each word to be spotted. 
Conceptually. the system includes the following features: 

3.1. Weights 
The system uses TDNN style linked weights between the layers 
of the network. This lets the system learn shift invariant speech 
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patterns (i.e. phonemes) as the network is shifted through each 
part of the speech input signal. 

3.2. State Unit modelling 
State units are used to model keywords. instead of phonemes. 
This is done for several reasons. 

The database does not contain phonetically labelled speech. 
Since this is the case, ad hoc assumptions about phonetic 
boundaries would have to be made in order to train the sys- 
tem. 
A dictionary would be needed that gives the phonetic tran- 
scriptions of each keyword. Since speakers’ pronunciations 
for words differ greatly, system performance would depend 
on how well this dictionary matched the speaker variability. 
State units are believed to be more reliable in noisy speech, 
and when using small vocabularies. Since there are no 
shared states or phonemes, each state unit can model the 
important features for a specific keyword 

33. Dynamic Programming 
A Dynamic Time Warping (Mw) algorithm is used at the state 
layer level. This allows the system to map the different variable 
length occurrences of the same keyword to a single output unit. 
This is accomplished by assuming that the activation of each state 
in the state layer represents the likelihood of the corresponding 
feature being present in the input speech. By finding the score of 
the best path through the states, we are effectively finding the 
probability of a keyword occurrence. Since we allow a state to be 
active for several frames, we are normalizing the length of every 
possible keyword to a umstant number of states. 

3.4. Learning Algorithm 
Backpropagation is done at the word output level. This allows the 
network to optimize itself for word recognition, instead of lower 
level (phoneme or state) recognition. During training, we know 
when a keyword should occur. We do not know a priori the dura- 
tion of each state in this word (and cannot know, since the state 
representations evolve over time). For these reasons, the system 
must integrate the information of each state into a single quantity, 
i.e. the word output activation. Backpropagation can thus be used 
to minimize word errors. 

3.5. Sigmoidal Output units 
MS-TDNN style sigmoidal output units are used. The equations 
for this unit are: 

net-in = CW * (best DTW Score /Length of path) (1) 

Output Activation = Sigmoid(net-in) (2) 

where CW represents a constant weight multiplier. With a 
properly chosen CW. the output unit will aid recognition for the 
following reasons: 

It can prevent small deviations at the state level from affect- 
ing the overall classification performance. Since the sigmoid 
will begin to saturate before all states do, some variation in 

allow the network to spot a particular word. Thus the net- 
work will be able to concentrate on the cases that are still 
being categorized incorrectly, while not ignoring the cases 
that it gets correct. 

4. IMPLEMENTATION 

4.1. Speech Input 
The lOKHz sampled speech signal is presented to a preprocessing 
module, which converts the input speech into melscale frequency 
filterbank coefficients. using a fast fourier transform. The current 
system uses as input 15 melscale coefficients and 1 average power 
coefficient every 10 milliieconds. 

4.2. Weights 
The system incorporates TDNN style shift linked weights to 
model the time varying speech input shift invariantly. Each frame 
in the hidden layer is fully connected through two frames of input 
units spanning delays from -1 frame to +1 frame. The connections 
between the hidden layer and each word state layer is similarly 
made to be fully connected through three frames. spanning delays 
from -2 frames to 2 frames of hidden units. As the input speech is 
presented to the system, the weights are conceptually shifted one 
frame of speech at a time, giving new unit activations for each 
layer, at each frame. 

43. State Layers 
The state layers are used to represent the differing parts of the 
keywords. There is a state layer for each keyword, as well as a 
corresponding output layer. Note that these layers are not shared 
between keywords. This design decision was made for the several 
reasons discussed in section 3.2 

Each word has several states associated with it (typically eight 
states for the longer words). After several frames of word state 
unit activations have been computed, a simple DTW algorithm is 
used to 6nd the best path through these states (see figure 2). The 
DTW path has the following properties: 

Each keyword has its own DTW path, independent of other 
possible keywords. 
At each frame, the best path either stays in the same state, or 
moves to the next state. Thus no states are skipped. 
When moving between states, we subtract a state transition 
penalty from the accumulated score. This penalty is propor- 
tional to the activation of the next state. This is done so that 
a state will not transition to the next state immediately. It 
will wait until the next state has a positive activation. 
For each frame that the path stays in a particular state, we 
subtract a length penalty. This penalty is proportional to how 
long the path has been in this state. This is done so that a 
path will not be active for too long a duration. 

Figure 3 shows how this is accomplished. Starting at frame A l ,  
we accumulate DTW scores for each frame. until we have calcu- 
lated scores for at least ‘max’ frames. ‘Max’ will be the maximum 
duration of the keyword that we will allow our system to spot, and 

input speech will not affect the word level activations signif- 
icantly. 
Because of this saturation, a sigmoidal unit will limit the score 
amount of error that is back-propagated from the word level 
when enough frames generate positive state layer activity to Fig. 2. DTW Word State Model 
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Fig. 3. Calculating the Output Layer with DTW 
“in’ is the minimum possible duration of the keyword. Clecking 
the scores at the last state from frame “inl’ to ‘maxl’. one finds 
the best path ending at frame B 1. This score will be used to find 
the activation of the word output layer unit for frame Al. 
As in the MS-TDNN, this best path’s score first normalized by 

the path’s duration. This value is then multiplied by a constant 
weight and passed through a sigmoidal function and used as the 
activation of the word output layer for that frame. We then incre- 
ment the starting frame from A1 to A2. The above described 
DTW procedure for each word is repeated as new activations 
become available for each frame of speech. 

4.4. Word Output Layers 
The presence of a possible hit at the word output layer is decided 
by the activation of each output layer. If an output layer activation 
is above threshold for several succeeding (typically eight) frames, 
a possible hit occurs. Some simple post-processing is done to 
insure that only one keyword is ever detected at a single time, and 
that the most likely (most active) one is chosen if there is a possi- 
ble overlapping of hits. 

5. TRAINING 
The system is trained with an ordinary backpropagation algo- 
rithm. in two major phases: A preliminary bootstrapping phase, 
and a best path phase. Each phase has positive as well as discrim- 
inatory learning. 

5.1. Bootstrap ’Raining 
Before the DTW algorithm can be used to train the network, the 
network weights must be initialized to give plausible word state 
layer activations. This is accomplished by the bootstrap training 
phase. In this phase: 

Backpropagation is done from the state level. Since a best 
path through states with randomly initialized weights is vir- 
tually meaningless, word output activation calculations 
based on such a path would also be fruitless. 
Training is done on sections of the speech which contain a 
keyword and approximately one second of speech before 
and after this occurrence. This is done to help balance nega- 
tive and discriminatory training. 
During keyword occurrences, a linear DTW path is 
assumed. This means that state targets are taken to be ‘ON’ 
for equal times through all  states in the word sequentially. 

Discriminatory training is accomplished by setting the state 
targets to be ‘OFF’ at all times not in the path. 
Do to the amount of negative training available as compared 
to positive training, discriminatory training in the bootstrap 
phase is watered down. This means that it is given a smaller 
learning rate (approx l/6th) than the corresponding positive 
learning cases. If this were not done, the network would be 
overwhelmed by the amount of negative training. 

5.2. Best Path ’Raining 
After the initial bootstrapping phase has set the states to an 
approximate solution, a new training procedure is started that fine 
tunes the word states. In this phase: 

Btclqxopagation is &ne from the word output level. 
Positive training is done at each keyword occurrence. The 
best path is found between the known word beginning and 
ending in the state layer, and the word output unit is effec- 
tively mec ted  to the states in this path. The output unit 
target is set to ‘ON for this frame and the error is backprop- 
agated through this path. 
Discriminatory training is accomplished by finding the best 
path wherever a false hit is about to occur, setting the word 
target to ‘OFF’, and backpropagating the error from the 
word output unit through this path. to the rest of the net- 
work. 

Note: For both bootstrap and best path phases, training is only 
performed on base keywords. Words with suffixes (-s, -ed, -ing) 
are not used as training examples during training, but are still 
tested for during the test phase. Although this severely limits the 
number of training examples for some words, it was done to keep 
the system complexity down. 

6. RESULTS 
A meaningful comparison of results with other groups’ attempts 
at building word spotting systems requires several things, includ- 
ing a standard test set and a standard scoring procedure for proper 
evaluation of results. A standard is currently under development 
that addresses these issues. 

6.1. Data Set 
Our current training corpus for the neural network word-spotter 
consists of conversational speech of 24 males from the Stone- 
henge database, read keyword paragraphs of 35 males from the 
Stonehenge database, and read keyword paragraphs of 14 males 
fiom the Waterloo extension set Our Testing set consists of con- 
versations of 8 males (not in the training set) from the Stonehenge 
database. We have tested the system using both the original 
Stonehenge speech. and a bandpass filtered version of the corpus 
designed to simulate telephone quality speech. 

6.2. Performance Measurements 
The system performance is measured in two ways; a detection 
rate (measured as a percentage) and a false alarm rate per key- 
word per hour (fa/(kw*hr)). The detection rate is calculated by 
finding the number of correctly spotted keyword occurrences and 
dividing by the number of keyword occurrences actually present. 
The false alarm rate is calculated by first finding the number of 
keyword insertions found by the system. This is then normalized 
by dividing by the number of unique keywords (our system has 20 
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Test Data Set I Perfo”e(F0M) Keyword 

Wideband 82.5 % 

Telephone Bandpassed 81.3 % 

Table 1. Experimental Results 
keywords) and by the total amount of test speech given the syS- 
tem. 

By changing the threshold of the word-output units. one of 
these measures can be increased at the expense of the other. A 
proposed standard to combine these two values is to find the Fig- 
ure Of Merit (FOM). We find the detection rate at all false alarm 
rates from 0 to 10 fa/@w*hr). The FOM is then the detection rate 
averaged over the false alarm rates f” 0 to 10 fa/(kw*hr). Tests 
on our system are summarized in Table 1. These results indicate 
that our system’s recognition performance compares favorably 
with results obtained by other word spotting systems [ 1.2.41 in the 
literature. The fact that the results for the bandpassed data are 
very close to the wideband data results indicate that the system is 
useful for spotting keywords in low quality, noisy speech environ- 
ments, as well as in high quality recording conditions. 

boonsbom 
conway 
interstate 
middleton 
mountain 
look 
Pimary 
secondary 
Sheffield 
westchester 
backtrack 
thicket 
retrace 
waterloo 
springfield 
Chester 
minus 
road 
track 
want 

7. DISCUSSION 

7.1. Balanced lkaining 
The ratio of keyword occurrences to extraneous speech is fairly 
small in this database. This implies that the word spotting system 
has much more discriminatory data than positive examples from 
which to train itself. Since neural networks seem to work best 
when the number of negative and positive training cases is bal- 
anced, we have d e d  several features to our system with this idea 
inmind 
During the bootstrap training phase: 

The learning rate for the negative training cases is only a 
fraction of the learning rate for the positive cases. 
Training is done only on short sections of speech containing 
the keyword. Approximately one second of extraneous 
speech is taken before and after each keyword. 

All training speech is used, and positive training is done 
whenever a keyword is present. 
Negative training is done only when the word output layer 
activation is above a certain Threshold. This directly limits 
the amount of negative training that is performed. 

During the best path training phase: 

7.2. Error Analysis 
As was expected. our system performed much better on the 

longer keywords than on the shorter ones. As seen in Table 2. the 
best results were obtained on the words “retrace“, “waterloo” and 
“springfield” while the system performed worst on ‘‘look’’ and 
“want”. This is due in part to several facts. First, these short words 
have less training examples in the speech database than most of 
the longer words. Compounding this problem is the fact that they 
are usually used with suffixes, and our system does not learn on 
cases with added suffixes. Also. they are by nature more confus- 

Perf. (FOM) 
~~ 

91.5% 
78.9% 
89.7% 
96.9% 
65.1% 
9.1% 
92.3% 
92.3% 
96.2% 
89.4% 
NIA 
82.7% 
100% 
100% 
100% 
73.2% 
72.2% 
67.0% 
8 I .O% 
4.3% 

Table 2. Individual performance scores for all keywords, 
using bandpassed speech test set. 
able than the longer words. Finally, our system is geared more 
towards longer words, because of nature of the state layer. 

73. CONCLUSION 
Our novel speaker independent continuous speech word spotting 
system integrates both neural networks and dynamic program- 
ming techniques in an attempt to utilize the strengths of both. Our 
system pexforms well on the fairly noisy, poor quality database 
known as Stonehenge. Our research on this system is far from 
complete. Many issues can still be addressed and further improve- 
ments are expected. 
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