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ABSTRACT

Documenting unwritten languages is a challenging task, even
for trained specialists. To help linguists in better and faster
documenting new languages is the goal of the French-German
ANR-DFG project BULB. To discover the phonetic inven-
tory of a language the project follows three steps: estimating
phoneme boundaries, classifying articulatory features (AFs)
for each individual segment and clustering the segments into
a phoneme inventory. In this work, we focus on estimating
the phoneme boundaries and the extraction of AFs, but also
perform a first simple clustering based on the recognized AFs.
We demonstrate that our Deep Bidirectional LSTM-based ap-
proach for identifying phoneme boundaries achieves state-of-
the-art performance and evaluate AF extraction based on feed
forward neural networks.

Index Terms— Articulatory Features, DBLSTMs, Multi-
lingual, Phoneme Segmentation, Language Documentation

1. INTRODUCTION

There are 7,000 living languages in the world. With the ex-
ception of a few well researched and ressourced languages,
there exists a long tail of languages that are not documented,
only spoken by a few speakers and in danger of becoming
extinct [1]. Documentation is required in order to preserve
the cultural heritage of these languages. With the vast ma-
jority of these languages being unwritten, the documentation
process is even more time consuming. Utilizing Natural Lan-
guage Processing (NLP) systems could help in accelerating
this process.

For this reason, the French-German ANR-DFG project
Breaking the Unwritten Language Barrier (BULB) was ini-
tiated to develop technologies that would assist documen-
tary linguists in charting unknown and unwritten languages.
BULB aims at building tools based on these technologies and
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validating them on three mostly unwritten African languages
of the Bantu family: Basaa, Myene and Embosi [2]. Recently,
we proposed methods for automatic phoneme segmentation
[3, 4]. In this work, we now combine these approaches with
articulatory feature detection and evaluate this setup using
data from Basaa.

Our paper is organized as follows: In the next section,
we provide an overview of related work in the field. Section
3 describes our approach to phoneme segmentation and sec-
tion 4 outlines the extraction of articulatory features (AFs).
The experimental setup is presented in section 5, followed by
the results in section 6. This paper concludes with section 7
where we also provide an outlook on future work.

2. RELATED WORK

2.1. Phoneme Segmentation

Segmenting recordings into single phonemes is a first step in
discovering the phoneme set of an unknown language prior to
documenting it. Methods for scenarios where no data from
the target language is available are being explored in the Zero
Speech Challenge [5]. One approach is to use a speech recog-
nition system to recognize phonemes [6] and then discard
their identity, only retaining the phoneme boundaries. Since
such a system usually has a limited phoneme inventory, deal-
ing with unknown languages that introduce new phonemes
may prove difficult. While [6] only used an English ASR sys-
tem for detecting phoneme boundaries this way, [3] evaluated
the effect of using different monolingual and multilingual sys-
tems. Recent work using neural networks for directly classi-
fying phoneme boundaries, instead of recognizing phoneme
sequences, achieved even superior performance [7, 4].

2.2. Articulatory Feature Extraction

Articulatory features represent the target of the articulators
in the vocal tract when pronouncing a specific phone. The
combination of AFs determines the identity of that specific
phone spoken, i.e., phones are just a short-hand for bundles



of AFs. The use of articulatory features for speech recogni-
tion has been proposed in the past: [8] proposed the use of
AFs as additional detectors for ASR. [9, 10] has shown that
articulatory features can be recognized more robustly across
languages than phonemes. The authors have shown that the
phoneme coverage of multilingual AF recognizers on a new
language in general is also larger compared to multilingual
phoneme recognizers. Neural network based setups also ben-
efit from AFs [11, 12].

2.3. Language Feature Vectors

Documenting unknown languages implies the lack of tran-
scribed recordings. Since we want to perform phoneme
segmentation and AF detection on these languages, tech-
niques handling such cross-lingual scenarios are required. In
the field of automatic speech recognition (ASR), there exist
methods like i-Vectors or bottleneck speaker vectors (BSVs)
[13] to adapt neural networks to different speakers. These
methods show that neural networks benefit from additional
input modalities. In the notion of BSVs, we have shown that
this principle can also be applied in a multi- or cross-lingual
scenario. While providing the language identity informa-
tion (LID) alone leads to improvements [14], using language
feature vectors (LFVs) instead leads to even bigger gains
[15, 16]. The advantage of LFVs compared to LID is that
they are applicable to unseen languages as well.

2.4. Phoneme Discovery

The unsupervised discovery of linguistic units is the topic of
ongoing research. There exist HMM based approaches like
[17]. In the context of the Zero Resource Speech Challenge
[5], there are more recent approaches using neural networks
[18], but also GMM based methods [19].

3. PHONEME SEGMENTATION

3.1. LVCSR based

One way to segment audio into phoneme-like units is to use
phoneme recognition. For this we used the Janus Recognition
Toolkit (JRTk) [20] which features the IBIS single-pass de-
coder [21]. We modified a multilingually trained system for
large vocabulary continuous speech recognition (LVCSR) to
recognize individual phonemes [3]. The boundaries of these
hypothesized phonemes were retained while the phoneme la-
bels were discarded [6].

3.2. DBLSTM based systems

In addition to LVCSR based systems, we also evaluated a
different approach based on neural networks [4]. Using a
standard pre-processing pipeline, we extracted 40 dimen-
sional lMel and 14 dimensional tonal features to train a deep

bi-directional LSTM (DBLSTM) network with two layers to
detect phoneme boundaries. The first layer contained 300
LSTM-nodes and the second layer 100 nodes, each node
featured peephole connections. We used back propagation
through time with mini batch stochastic gradient decent up-
dates. The optimization was performed using AdaDelta,
an extension to AdaGrad with the advantage of having a
smoother gradient adaption with no need for manual tuning
of the learning rate. The ratio of frames marked as “bound-
ary” to “no boundary” was 1:8. In order to deal with this
imbalance in the class distribution, we increased the weight
of the “boundary” loss.

4. ARTICULATORY FEATURE EXTRACTION

To infer the phoneme inventory of an unknown language,
the first step is to extract articulatory features (AFs) for each
phoneme-like segment. Based on JRTk, we built an LVCSR
system to generate phoneme labels for the recordings using
a resolution of 10ms. The training of the LVCSR system
required a pronunciation dictionary, which we created using
MaryTTS. HMM-based ASR systems typically model each
phoneme using 3 states (begin, middle, end) to account for
co-articulation. Previous work has shown, that using only
the middle frames for training AF detectors leads to the best
results [22].

With the AF definitions embedded in MaryTTS, we estab-
lished a mapping from phonemes to AFs. We used 7 different
types of AFs, as shown in Table 1, with each type having
different targets, e.g. “ctype” has 6 targets: Stop, fricative,
affricative, liquid, nasal and approximant. The types fall into
two categories: AFs for vowels (with prefix v) and consonants
(with prefix c). As each type only applies to one category, we
added an additional class that represented “does not apply”.
We trained feed forward neural networks for estimating AFs.

Type # Classes Description

cplace 8 Place of articulation
ctype 6 Type of articulation
cvox 2 Voiced

vfront 3 Tongue x position
vheight 3 Tongue y position
vlng 4 Type of vowel
vrnd 2 Lips rounded

Table 1. Overview of AF types used

The neural network architecture used is based on LVCSR sys-
tems, featuring 5 hidden layers with 1,600 neurons each. To
pre-process the audio, we used our standard pipeline with a
frame-size of 32ms and a frame-shift of 10ms to extract fea-
tures. Using a context of +/- 6 frames, we fed these features
into the network. To prevent co-adaptation between language



specific combinations of AFs, we trained individual networks
for each AF.

5. EXPERIMENTAL SETUP

5.1. Corpora

We used training data from the Euronews corpus [23] for our
experiments. It consists of recordings from TV broadcast
news in 10 different languages, with 70h of data per language.
Depending on individual experiments, we only used a subset
of these languages. In addition, we used 2h of Basaa record-
ings. This data set contains of recordings of utterances that
were re-spoken by a single speaker in a clean environment.
For further details about this data set, please refer to [3].

5.2. Phoneme Boundary Detection

The systems for phoneme boundary detection were trained
using data from 5 languages (FRench, GErman, ITalian,
RUssian, TUrkish). We selected these languages based on
the availability of pronunciations from MaryTTS. To evaluate
the system performance, we used English data. For neural
network training, the data from each language was divided
into two sets: a training set containing 90% of the data and a
validation set containing 10%. To generate reference bound-
aries, we used an LVCSR system to force align the transcripts
to the audio. For evaluation of the hypothesized boundaries,
we used precision, recall and F1 score. In order to determine
whether a predicted boundary matches a boundary in the
reference, we allow for a margin of error of 20ms, which is
common in literature [24].

5.3. Articulatory Feature Extraction

To train and evaluate AF extraction, we narrowed the set of
languages to 4 (EN, FR, GE, TR) because the phoneme and
AF definitions for Russian and Turkish in MaryTTS differed
to some extend from those of the other 4 languages.

6. RESULTS

6.1. Phoneme Segmentation

We evaluated our approach for phoneme segmentation us-
ing two different conditions. Both setups were trained on
the same set of data from Euronews (5 languages: FR, GE,
IT, RU, TR). For the first evaluation, we detected phoneme
boundaries using English in-domain data from Euronews with
matching acoustic conditions (see Table 2, left columns). The
results for GMM, DNN and LFV were taken from [3, 15] and
are provided for reference. GMM corresponds to a context-
independent LVCSR system based on GMM/HMMs. DNN
represents a context-dependent LVCSR system with a hybrid

DNN/HMM acoustic model and Deep Belief Network Fea-
tures (DBNF) based pre-processing. The setup of the sys-
tem labelled LFV is identical to DNN, but with the addition
of LFVs to the acoustic input features [15]. The DBLSTM
system corresponds to the setup described in Section 3.2. It
produced the results with the highest score, outperforming
all LVCSR based systems. A possible reason for this is that
LVCSR systems are being trained to recognize the most likely
word sequence, but not individual words or phonemes at pre-
cise points in time. The DBLSTM on the other hand was
trained to recognize phoneme boundaries at precise points
in time. Using the same setups, we also estimated phoneme

System Precision Recall F-Score
EN BAS EN BAS EN BAS

GMM 0.63 0.47 0.67 0.54 0.65 0.50
DNN 0.65 0.52 0.70 0.52 0.67 0.52
LFV 0.67 0.54 0.73 0.53 0.70 0.54
DBLSTM 0.74 0.68 0.84 0.72 0.79 0.69

Table 2. Results for cross-lingual phoneme segmentation on
English (EN left columns) and Basaa (BAS right columns).

boundaries on Basaa data. Although the scores (Table 2, right
columns) are lower compared to our segmentation on English
data, this experiment proves that our setup is also suited for
languages other than English. The lower F-score (0.68 vs.
0.79) could be explained by different acoustic conditions, as
the Basaa data was re-spoken in a quiet room in contrast to
TV broadcast news which quite frequently feature ambient
noises like background music. In order to minimize these dif-
ferences, training with data covering multiple conditions is
necessary.

6.2. AF extraction cross-/multilingual

Setup cplace ctype cvox vfront vrnd

BL 3L 8.37 8.18 7.79 7.16 6.15
EN CL 15.93 15.60 14.29 14.07 9.49

BL 4L 8.56 8.42 8.10 7.50 6.01
EN ML 8.34 8.01 8.22 7.71 5.23

Table 3. Classification error of AFs using 70h of GE, FR, TR
(3L) or 70h of GE, EN, FR, TR (4L). Evaluation on training
languages (BL 3L and BL 4L) or cross- (CL) / multilingually
(ML) on English. A selection of AFs is shown.

We evaluated our setup by training networks for AF de-
tection using 70h of data from 3 languages (GE, FR, TR) and
testing cross-lingual on English (EN CL). The results for a
subset of AFs are shown in the upper part of Table 3. For ref-
erence, we included the classification error of a multilingual



system trained on all 4 languages (Baseline 4L) as well as the
classification error of this system only on English (EN ML).
In the cross-lingual case, the error increased throughout dif-
ferent AFs, which can be explained by the AF mapping estab-
lished by MaryTTS not being completely language indepen-
dent. There exist some minor differences between languages
that may account for this increase. As shown in Section 6.3,
the recognition quality of the AFs is still good enough for de-
tecting phonemes of the target language. Further techniques
in both data normalization and cross-lingual adaptation are
required to increase the recognition accuracy.

6.3. Phoneme Discovery
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Fig. 1. Multilingual phoneme mapping: Mapping AFs to En-
glish phoneme targets. System was trained on GE, EN, FR
and TR.
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Fig. 2. Crosslingual phoneme mapping: Mapping AFs to
English phoneme targets based on detected phoneme bound-
aries. System was trained on GE, FR and TR.

In order to discover the phoneme inventory of an unknown
language, we combined both techniques. First, we segmented
the audio into phoneme-like units using the DBLSTM based
setup. Second, we extracted AFs based on these segments.
By stacking the outputs of each AF network, we generated a
36 dimensional feature vector. Since we do not have a sub-
phoneme state-level alignment to divide the frames into begin,

middle and end states, we approximated this by averaging the
features over the inner third of frames for each phoneme.

We clustered the per segment AFs using KMeans cluster-
ing. This method requires the number of classes as parameter.
For this work, we assumed the class count to be known for the
target language, enabling us to assess how good the phoneme
set could be reconstructed given the amount of phonemes.
Additional research is required to determine the number of
classes automatically.

We compared two setups: As baseline, we used a multi-
lingual system, trained using data from 4 languages (GE, EN,
FR, TR) and evaluated the mapping on English. As shown
in Figure 1, the mapping of the inferred phonemes to actual
phonemes can be achieved to a great extend, although there
are a few classes that produce ambiguous matches. The sys-
tem we are comparing against was trained on 3 languages
(GE, FR, TR) to extract AFs. Figure 2 shows the result af-
ter clustering and mapping of the phonemes. There are a
few more outliers introducing more ambiguity, but a mapping
similar to our multilingual approach could be established.

This experiment demonstrated, that by combination of
phoneme segmentation and AF extraction a phoneme set can
be discovered. With this method, it is possible to support
linguists in the documentation of unwritten languages. Using
an iterative approach with the human in the loop, it is possible
fine-tune the amount of hypothesized phonemes by manually
examining mappings with low confidence scores.

7. CONCLUSION AND OUTLOOK

In this work, we evaluated methods aimed at discovering
phoneme inventories of unwritten languages. First, we ad-
dressed the problem of segmenting recordings into phoneme-
like units. Using a DBLSTM based setup resulted in the
best classification performance. Second, we clustered these
phoneme-like units based on AFs. As shown in the confusion
matrices, the resulting classes correspond to a great extent to
the actual phonemes present in the target language. Future
work includes improving the performance of AFs to achieve
a better and more accurate phoneme clustering.
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[10] S. Stüker, F. Metze, T. Schultz, and A. Waibel, “Inte-
grating Multilingual Articulatory Features into Speech
Recognition,” in EUROSPEECH, Geneve, Switzerland,
2003, pp. 1033–1036, ISCA.

[11] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals,
“Unsupervised Cross-Lingual Knowledge Transfer in
DNN-based LVCSR,” in Spoken Language Technology
Workshop (SLT), 2012 IEEE. IEEE, 2012, pp. 246–251.

[12] Markus Müller, Sebastian Stüker, and Alex Waibel, “To-
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