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ABSTRACT

In this paper we investigate the possibility of translating continu-

ous spoken conversationsin a cross-talk environment. This is a task | Speech Recognizer |
known to be difficult for human translators due to several factors. It
is characterized by rapid and even overlapping turn-taking, a high
degree of co-articulation, and fragmentary language. We describe
experiments using both push-to-talk as well as cross-talk recording
conditions. Our results indicate that conversational speech recog-
nition and translation is possible, even in a free crosstalk environ-
ment. To date, our system has achieved performances of over 8Q%®iscourse
acceptable translations on transcribed input, and over 70% accepfr°¢s5f
able translations on speech input recognized with a 70-80% word
accuracy. The system’s performance on spontaneous conversatiofgiscourse
recorded in a cross-talk environment is shown to be as good andyemoy &
even slightly superior to the simpler and easier push-to-talk sce-

nario.
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1. Introduction | Speech Sythesizer |
Below, we describe the JANUS system [7] and show its applica-
tion to the problem of the translation of conversational dialogues in
a cross-talk environment. Switching the recording conditions from
push-to-talk to cross-talk creates several complicating factors, mak- Figure 1: The JANUS System

ing the task more difficult, yet also more realistic. Conversational

speech in a cross-talk environment is characterized by rapid and ht lation in the\BIUS tem i ided by th |
even overlapping turn-taking, a high degree of co-articulation, an peech fransiafion In system Is guided by the genera
fragmentary language. principle that spoken utterances can be analyzed and translated as

a sequential collection of semantic dialogue units (SDUs), each of

We begin with an overview of the JANUS translation system, inWhich roughly corresponds to a speech-act. SDUs are semantically
cluding a description of the individual modules and their functioncoherent pieces of information. The interlingua representation in

We then describe our evaluation methodology, and conclude with®r System was designed to capture meaning at the level of such
summary of our current results. SDUs. Each semantic dialogue unit is analyzed into an interlin-

gua representation. For both parsers, segmentation into SDUs is
A component diagram of our system can be seen in Figure 1. Tlaghieved in a two-stage process, partly prior to and partly during
main system modules are speech redtigm parsing, discourse parsing.
processing, and generation. Each module is language indepen-
dent in the sense that it consists of a general processor that can'B@rder to efficiently process multiple spch hypotheses, we have
loaded with language specific knowledge sources. In an attempt&gapted our parsers to process speettioés, which are output by
achieve both robustness and translation accuracy when faced wii¢ récognizer. The fice representation is efficienebause com-
speech disfluencies and recdtgm errors, we use two different MON portions of different hypotheses are represented only once in
parsing strategies: a GLR parser designed to be more accurate, &ty lattice. This allows the parser to analyze multipjpotheses

a Phoenix parser designed to be more robust. for a given input. In order to disambiguate among theskiphe hy-
potheses, our strategy has been to apply a late stage disambiguation,



which utilizes knowledge from all the machine translation compo3. The Robust GLR and Phoenix Translation

nents - acoustic and language models, parser scores, and contextual Modules

information obtained from discourse analysis. Each of these com-

ponents provides a score for each possible analysis of an ambigugasUS employs two robust translation modules with complemen-

input. One current research topic is the development of methods feiry strengths. The GLR module gives more complete and accurate

combining these scores in a way that achieves optimal performaneenslations whereas the Phoenix module is more robust over the
disfluencies of spoken language. The two modules can run sepa-

2. Speech Recognition rately or can be combined to gain the strengths of both.

The first main component in our speech-to-speech translation syBhe GLR module is composed of the GLR* parser [2][3], the LA-
tem is the speech recognizer. Its job is to decode the speech of a uskerph morphological analyzer and the GenKit generator. The
and turn it into text to be passed to the parsing/translation moduldSLR* parser is based on Tomita’s Generalized LR parsing algo-
Our baseline JANUS-II recognizers use one or more streams of irithm [5]. GLR* skips parts of the utterance that it cannot incorpo-
put features derived from Mel-scale or PLP filters processed usingte into a well-formed sentence structure. Thus, it is well-suited to
Linear Discriminant Analysis (LDA). The acoustic units are con-domains in which non-grammatiitt is common. The parser con-
text dependent 3-state Triphones, modeled via continuous densitycts a search for the maximal subset of the original input that is
HMMs. Explicit noise models are added to help the system copsovered by the grammar. This is done using a beam search heuris-
with breathing, lip-smack, and other human and non-human noists that limits the combinations of skipped words considered by
inherent in a spontaneous speech task. the parser, and ensures feasible time and space bounds. JANUS
GLR grammars are designed to produce feature structures that cor-
While speech recogtion systems readily achieve wortcura- respond to a frame-based language-independent representation of
cies of 90+% on read speech, conversational speech poses a mygh meaning of the input utterance. For a given input utterance,
more difficult problem, and generally results in higher word erroghe parser produces a set of interlingua texts, or ILTs. The GLR*
rates. Our JANUS-II recogtion system has been applied to vari- parser also includes several tools designed to address the difficulties
ous conversational speech tasks, and now achieve Word Accurac@ﬁjarsing spontaneous speech, including a statistical disambigua-
of 90+% on the japanese spontaneous scheduling task (JSST), §8n module, a self-judging parse dita heuristic, and the ability
80% on GSST and ESST (German and English respectively), and@segment multi-sentence utterances. Targeguage generation
WER of 38.4% on the Switchboard LVCSR task. is done using GenKit, a unification-based generation system. With

. . . well-developed generation grammars, GenKit results in very accu-
Some of the recentimprovements that have been introduced into QUfe translation for well-specified ILTs.

system include:

The JANUS Phoenix translation module [4] is an extension of the
) ) _ Phoenix Spoken Language System [6]. It consists of a parsing mod-
¢ MLLR Codebook Adaptation - An unsupervised adaptation je and a generation module. Unlike the GLR method which at-
technique for use in speaker adaptation. tempts to construct a detailed ILT for a given input utterance, the
Phoenix approach attempts to only identify the key semantic con-
¢ Decision tree acoustic model clustering A technique to au-  cepts represented in the utterance and their underlying structure.
tomatically find the appropriate number and placement of parhe Phoenix parsing grammar specifies patterns which represent
rameters in our acoustic models. concepts in the domain. Each concept, irrespective of its level in the
hierarchy, is represented by a separate grammar file. These gram-
e Dictionary Learning - Due to the variability, dialect vari- mars are compiled into Recursive Transition Networks (RTNs). The
ations, and coarticulation phenomena found in spontaneogsrser matches as much of the input utterance as it can to the pat-
speech, pronunciation dictionaries have to be modified andrms specified by the RTNs. The parser can ignore any number
fine-tuned for each language. To eliminate costly manual lesf words in between top-level concepts, handling out-of-domain or
bor and for better modeling, we resort to data-driven ways oftherwise unexpected input. The parser has no restrictions on the
discovering such variants. order in which slots can occur. This may add to the ambiguity in
the segmentation of the utterance into concepts. The parser uses a
e Morpheme Based Language Models For languages char- disambiguation algorithm that attempts to cover the largest number
acterized by a richer morphology, use of inflections and comoef words using the smallest number of concepts. Generation in the
pounding (compared with English), more suitable units thaPhoenix module is accomplished using a simple strategy that se-
the 'word’ are used for dictionaries and language models. quentially generates target language text for each of the top level
concepts in the parse analysis. Each concept has one or more fixed
¢ Phrase Based and Class Based Language Model8Vords phrasings in the target language. The result is a meaningful but
that belong to word classes (such as days of the week), or freemewhat telegraphic translation.
quently occurring phrases (e.gut-of-town, I'm-gonna-be,
sometime-in-the-nexare discovered automatically by clus- Although both GLR* and Phoenix were specifically designed to
tering techniques and added to a dictionary as special word#gal with spontaneous speech, each of the approaches has some
phrases or mini-grammars. clear strengths and weaknesses. Because each of the two translation



methods appears to perform better on different types of utterancesPerfect | Fluent translation with all information conveyed
they may hopefully be combined in a way that takes advantage d fOK All important information translated correctly but son

. . unimportant details missing or translation is awkward
the strengths of each of them. One strategy that we have invest OK tagged| The sentence or clause is out-of-domain

oD

gated is to use the Phoenix module as a back-up to the GLR mog and no translation is given.

ule. The parse result of GLR* is translated whenever it is judged Bad Unacceptable translation

by the parse quality heuristic to be 6@d”. Whenever the parse

result from GLR* is judged as “Bad”, the translation is generated Figure 2: Evaluation Grade Categories

from the corresponding output of the Phoenix parser. Results of us-

ing this combination scheme are presented in Section 6. We are in Transcription | Output of Speech-recogion

the process of investigating some more sophisticated methods for || GLR* 84.1% 46.9%

combining the two translation approaches. Phoenix 78.6% 61.7%
Combined 86.2% 60.9%

4. Lattice Parsin
attice Farsing Figure 3: End-to-end Translation Performance Results

Speech recogtion errors hinder the ability of the parser to find a

correct analysis for the utterance. This is re_flected in the dispari%ss, where knowledge can be exploited to the fullest. Since it is
between our performance results on transcribed and speech recgs iple to procesall hypotheses produced by each of the system
nized input. Processing rhiiple speech hypothesesinstead of a sin-¢ 1y onents, context s also used locally to prune out unlikely alter-
gle top-best hypothesis has the potential of detecting a hypothegigies. A post-parsing procedure selects thekigracked parses
yvlth fewer recognltlon errors, whicthsuld lead to animprovement ¢ the list of parsesk(is an adjustable constant). These parses
in the overall translation performance. will correspond to different paths through thetige. Each parse

is first unpacked and disambiguated. Next, the path of lattice words

Parsing the speechttize directly attempts to efficientigccomplish . : . : .
9 P e directly ¢ p g plish %ssouated with each of the parsesis retrieved and the acoustic score
the same results as parsing a list of hypotheses. Each word in t

lattice is parsed only once, Atiugh it may contribute to many dif- Of this path is calculated and attached to the parse. The final disam-

: . _biguation combines all knowledge sources obtained: the acoustic
ferent hypotheses. Thettige parser ppduces a large set of possible . . ; .
. . . score, the parser score, and information obtained from the discourse
parses of various complete word paths through titeeéa This set

of parses can be scored and ranked according to an optimized Cdorc_)cessoi‘. The best scoring hypothesis is then sent o the speech

m . . g -
o ; synthesizer. This hypothesis is also sent back to the discourse pro-
bination of the parser score and recognizer score.

cessor so it can update its internal structures and the discourse state.

The lattices produced by our speech recognizer are too large and .
redundant to be parsed directly. We apply four steps to make them 6. Evaluation Methods and Results

more tractable. The first step involves cleaning the lattice by map- | of uati hods i id inaful and
ping all non-human noises and pauses into a generic pause. The 8¢ goal of our evaluation methods is to provide a meaningful an

sulting lattice contains onlyriguistically meaningful information. accurate_ measure of the (_:am’bOf our system as a whole. We
The lattice is then broken at points where theagh signal con- accomplish this by periodically testing our system on sets of “un-

tains long pauses, which are highly indicative of sentence bound€®" data. The d_ata chosen for testing consists of dialogues by
aries, yielding a set of sub-lattices. Each of the sub-lattices is th eakers whose voices were not used for training or development of

re-scored by the language model. Finally, thitidas are pruned oth the speech recognizer and the translation components. We per-

to a size that the parser can process in reasonable time and sp:;%rén e\éaluatlon[s onthe end-to-en_d sys;\em_ fr_?m spefch_ra@gn
The re-scoring raises the probability that the corhsgiothesis will through target language generation. A similar evaluation is con-

not be lost during the pruning stage. The resulting sub-lattices agéwted using transcribed input instead of speech recognized input.
sequentially passed on to the parser This allows us to isolate performance deficiencies that are solely

due to speech recotjion errors. The evaluations are scored by an
The lattice parsing version of GLR* extended the parser to effedddependentgrader. We employ a consistent set of criteria for judg-
tively deal with multiple spech hypotheses represented in the fornind the quality of the utterances as well as their relevance to the
of a lattice. In order to correctly consider only valid hypothese§urrent domain. Each SDU is assigned a separate grade. A grading
in the lattice, the parser uses a procedure for determining the catssistant program helps the scorer in assigning SDU level scores,
nectivity of two points in the lattice. Enhanced ambiguity packingabulates and saves the results. Figure 2 lists the possible grades and

allows the parser to efficiently represent the collection of sub-parsé criteria for assigning them. The translation modules attempt to
found for various parts of thetiice. We are also in the process of detect out-of-domain SDUs (in this case, SDUs that are not about

developing a lattice-parsing version of the Phoenix parser. scheduling meetings) and avoid giving them erroneous translations.
An SDU that is recognized as out-of-domain and not translated is
5. Late-stage Disambiguation given the score "OK tagged".

Animportant feature of our translation approach s to allow multiple! € results in Figure 3 show the performance of the GLR and the

hypotheses to be processed through the system, and to use context

to disambiguate between alternatives in the final stage of the pro- ‘We are still experimenting with the weights assigneccéh of the
scores in this combination.




Phoenix Spanish-English translation modules on a recent test set. _ Push-to-talk| Cross-talk
The test set consisted of 15 dialogues recorded in a cross-talk set- Speech Recogion

. . . . Word Accuracy 71% 70%
ting (see following subsection), with a total of 349 utterances. The T r<afon Performanca

resulrt]s shown areffor |n-dog1|a|n SD|US' only. 'Lhehnun:}bers rep(;rted GLR* Transcribed data 77% 83%
are the percent o ac_cepta e translations, which is the sum of per- Phoenix Transcribed dath ~ 74% 81%
fect and OK translations. Results are shown for both transcribed GLR* SR data 44% 65%
and speech recognized versions of the input, and using either the Phoenix SR data 52% 73%

GLR* or the Phoenix parser. In this evaluation, only the top-best

hypothesis of the speech recognizer was used. The speech recofiigure 4: End-to-end Translation Performance on Push-to-talk and
tion average word accuracy on this test set was 62.1%. As can B#oss-talk Data

seen, while GLR* achieves better translation results on transcribed

data, the Phoenix parser was better in overcoming errors due @mbined. Lattice parsing offers the potential of overcoming many
speech recogtion. The results in the last row of Figure 3 reflectSpeech recogtion errors. However, this requires the development
the combination of the GLR* and Phoenix systems as described @ better methods for pruning thettizes without the loss of the
Section 3. In a separate evaluation of the lattice processing configPothesis with the best word accuracy.

uration of the system, we noted about a 3% improvement in end-

to-end translations when processing lattices rather than the top-b&4! current and future research efforts concentrate on improved
speech hypothests methods for combining the scores of our different knowledge

sources, improving the method by which we combine the two trans-

6.1. Comparison of Push-to-talk and Cross- lation engines, and the automatic detection of out-of-domain seg-
talk Performance ments and utterances.
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