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Abstract. Cumulative error limits the usefulness of context in applica-
tions utilizing contextual information. It is especially a problem in spon-
taneous speech systems where unexpected input, out-of-domain utter-
ances and missing information are hard to fit into the standard structure
of the contextual model. In this paper we discuss how our approaches
to recognizing speech acts address the problem of cumulative error.
We demonstrate the advantage of the proposed approaches over those
that do not address the problem of cumulative error. The experiments
are conducted in the context of Enthusiast, a large Spanish-to-English
speech-to-speech translation system in the appointment scheduling do-
main [10, 5, 11].

1 The Cumulative Error Problem

To interpret natural language, it is necessary to take context into account. How-
ever, taking context into account can also generate new problems, such as those
arising because of cumulative error. Cumulative error is introduced when an
incorrect hypothesis is chosen and incorporated into the context, thus provid-
ing an inaccurate context from which subsequent context-based predictions are
made. For example, in Enthusiast, a large Spanish-to-English speech-to-speech
translation system in the appointment scheduling domain [10, 5, 11], we model
the discourse context using speech acts to represent the functions of dialogue
utterances. Speech act selection is strongly related to the task of determining
how the current input utterance relates to the discourse context. When, for in-
stance, a plan-based discourse processor is used to recognize speech acts, the
discourse processor computes a chain of inferences for the current input utter-
ance, and attaches it to the current plan tree. The location of the attachment
determines which speech act is assigned to the input utterance. Typically an in-
put utterance can be associated with more than one inference chain, representing
different possible speech acts which could be performed by the utterance out of
context. Focusing heuristics are used to rank the different inference chains and
choose the one which attaches most coherently to the discourse context [3, 8].
However, since heuristics can make wrong predictions, the speech act may be



misrecognized, thus making the context inaccurate for future context-based pre-
dictions.

Unexpected input, disfluencies, out of domain utterances, and missing infor-
mation add to the frequency of misrecognition in spontaneous speech systems,
leaving the discourse processor in an erroneous state which adversely affects the
quality of contextual information for processing later information. For example,
unexpected input can drastically change the standard flow of speech act se-
quences in a dialogue. Missing contextual information can make later utterances
appear not to fit into the context.

Cumulative error can be a major problem in natural language systems us-
ing contextual information. Qur previous experiments conducted in the context
of the Enthusiast spontaneous speech translation system show that cumulative
error can significantly reduce the usefulness of contextual information [6]. For
example, we applied context-based predictions from our plan-based discourse
processor to the problem of parse disambiguation. Specifically, we combined
context-based predictions from the discourse processor with non-context-based
predictions produced by the parser module [4] to disambiguate possibly multiple
parses provided by the parser for an input utterance. We evaluated two different
methods for combining context-based predictions with non-context-based predic-
tions, namely a genetic programming approach and a neural network approach.
We observed that in absence of cumulative error, context-based predictions con-
tributed to the task of parse disambiguation. This results in an improvement of
13% with the genetic programming approach and of 2.5% with the neural net
approach compared with the parser’s non-context-based statistical disambigua-
tion technique. However, cumulative error affected the contribution of contextual
information. In the face of cumulative error, the performance decreased by 7.5%
for the neural net approach and by 29.5% for the genetic programming approach
compared to their respective performances in the absence of cumulative error,
thus dragging the performance statistics of the context-based approaches below
that of the parser’s non-context-based statistical disambiguation technique. The
adverse effects of cumulative error in context have been noted in NLP in gen-
eral. For example, Church and Gale [2] state that “it is important to estimate
the context carefully; we have found that poor measures of context are worse
than none.” However, we are not aware of this issue having been raised in the
discourse processing literature.

In the next section, we describe some related work on processing sponta-
neous dialogues. Section 3 gives a brief description of our system. We discuss the
techniques we used to reduce the cumulative error in discourse context for the
task of speech act recognition in Section 4. Lastly, we evaluate the effects of the
proposed approaches on reducing cumulative error.

2 Related Work

There has been much recent work on building a representation of the discourse
context with a plan-based or finite state automaton-based discourse processor



[1, 9, 3, 7, 8, b]. Of these, the Verbmobil discourse processor [7] and our En-
thusiast discourse processor are designed to be used in a wide coverage, large
scale, spontaneous speech system. In these systems, the design of the dialogue
model, whether plan-based or a finite state machine, is grounded in a corpus
study that identifies the standard dialogue act sequences. When the recognized
dialogue act is inconsistent with the dialogue model, the systems can rely on a
repair procedure to resolve the inconsistency as described in [7].

The Verbmobil repair model [7], however, does not address cumulative error
in discourse context. In Verbmobil, every utterance, even if it is not consistent
with the dialogue model, is assumed to be a legal dialogue step. The strategy
for error recovery, therefore, is based on the hypothesis that the assignment of a
dialogue act to a given utterance has been incorrect or rather that the utterance
has multiple dialogue act interpretations. The semantic evaluation component
in Verbmobil, which computes dialogue act information via the keyword spot-
ter, only provides the most plausible dialogue act. The plan recognizer relies on
information provided by the statistical module to find out whether additional
interpretations are possible. If an incompatible dialogue act is encountered, the
system employs the statistical module to provide an alternative dialogue act,
which is most likely to come after the preceding dialogue act and which can be
consistently followed by the current dialogue act, thereby gaining an admissible
dialogue act sequence. Thus the system corrects context as the dialogue goes
along. As we mentioned earlier, contrary to the assumption made in Verbmobil,
in spontaneous speech not all utterances fit adequately into the standard dia-
logue model because of missing information or unexpected input in addition to
misrecognition. Moreover, updating context based on the current dialogue state
without an evaluation of the current state cannot reduce cumulative error for
future predictions and is likely to introduce cumulative error into the context.

3 System Description

Enthusiast is composed of four main modules: speech recognition, parsing, dis-
course processing, and generation. Each module is domain-independent and
language-independent but makes use of domain specific and language specific
knowledge sources for customization.

The hypothesis produced by the speech recognizer about what the speaker
has said is passed to the parser. The GLR* parser [4] produces a set of one
or more meaning representation structures which are then processed by the dis-
course processor. The output of the parser is a representation of the meaning of
the speaker’s sentence. Our meaning representation, called an interlingua text
(ILT), is a frame-based language-independent meaning representation. The main
component of an ILT are the speech act (e.g., suggest, accept, reject), the
sentence type (e.g., state, query-if, fragment), and the main semantic frame
(e.g., free, meet). An example of an ILT is shown in Figure 1.

Development of our discourse processing module was based on a corpus of 20
spontaneous Spanish scheduling dialogues containing a total of 630 utterances.



YO PODRIA MARTES EN LA MANANA

(I could meet on Tuesday in the morning)

((SENTENCE-TYPE *STATE)

(FRAME *MEET)

(SPEECH-ACT *SUGGEST)

(A-SPEECH-ACT (*MULTIPLE* *SUGGEST *ACCEPT

*STATE-CONSTRAINT))
(WHO ((FRAME *1)))
(WHEN
((WH -) (FRAME *SIMPLE-TTME)

(DAY-OF-WEEK TUESDAY)
(TIME-OF-DAY MORNING)))

(ATTITUDE *POSSIBLE))

Fig.1. An Interlingua Text (ILT)

We identify a total of fourteen possible speech acts in the appointment scheduling
domain [8] (Figure 2). The discourse processing module disambiguates the speech
act of each utterance, updates a dynamic memory of the speakers’ schedules, and
incorporates the utterance into discourse context.

Speech Act Example Utterance

Accept Thursday I'm free the whole day.
Acknowledge OK, I see.

Address Wait, Alex.

Closing See you then.

Confirm You are busy Sunday, right?

Confirm-Appointment
Deliberation

Opening

Reject
Request-Clarification
Request-Response
Request-Suggestion
State-Constraint
Suggest

So Wednesday at 3:00 then?

Hm, Friday in the morning.

Hi, Cindy.

Tuesday I have a class.

What did you say about Wednesday?
What do you think?

What looks good for you?

This week looks pretty busy for me.
Are you free on the morning

of the eighth?

Fig.2. Speech Acts Covered by Enthusiast

We use four processing components for speech act recognition: a grammar
prediction component, a statistical component, a finite state machine, and a
plan-based discourse processor. The grammar prediction component assigns a
set of possible speech acts to an ILT based on the syntactic and semantic in-
formation in the interlingua representation. The resulting set of possible speech
acts is inserted into the a-speech-act slot of the ILT (See Figure 1). The final
determination of the communicative function of the ILT, the speech act, is done



by the other three components. The statistical component predicts the following
speech act using knowledge about speech act frequencies in our training corpus.
The statistical component is able to provide ranked predictions in a fast and
efficient way. To cater to the sparse data problem, bigram speech act probabili-
ties are smoothed based on backoff models [12]. The finite state machine (FSM)
describes representative sequences of speech acts in the scheduling domain. It is
used to record the standard dialogue flow and to check whether the predicted
speech act follows idealized dialogue act sequences. The FSM consists of states
and transition arcs. The states represent speech acts in the corpus. The tran-
sitions between states can have the symbols: S (for the same speaker), ¢ (for
change of speaker), or null (no symbol); the null symbol represents the cases
in which the transition is legal, independent of whether the speaker changes or
remains the same*. A graphical representation of the major parts of the FSM
appears in Figure 3. We extended the FSM so that at each state of the finite
state machine we allow for phenomena that might appear anywhere in a dia-
logue, such as acknowledge, address, confirm, request-clarification, and
deliberation. The plan-based discourse processor handles knowledge-intensive
tasks exploiting various knowledge sources, including the grammar component
predictions and linguistic information. Details about the plan-based discourse
processor can be found in [8]. The finite state machine and the statistical com-
ponent have recently been implemented as a fast and efficient alternative to the
more time-consuming plan-based discourse processor. In our future design of the
discourse processing module, we may adopt a layered architecture similar to the
one proposed in Verbmobil. In such an architecture, the finite state machine
would constitute a lower layer providing an efficient way of recognizing speech
acts, while the plan-based discourse processor, at a higher layer, would be used
to handle more knowledge intensive processes, such as recognizing doubt or clar-
ification sub-dialogues and robust ellipsis resolution. In this paper, we discuss
the cumulative error problem in the context of the finite state machine and the
statistical component.

4 Speech Act Recognition

For the task of speech act recognition, we use a combination of grammatical,
statistical, and contextual knowledge. The finite state machine encodes the pre-
ceding context state, tests the consistency of the incoming utterance with the
dialogue model and updates the current state. Given the current state, the finite
state machine can provide a set of speech acts that are likely to follow. The
speech act of the following input utterance should be a member of this set if
the input utterance follows the standard dialogue flow. This set of speech acts is
compared with the set of possible speech acts (a-speech-act) proposed by the
grammar component for the same input utterance. The intersection of the finite
state machine predictions and the grammar component predictions should yield

* Our corpus analysis showed that certain dialogue act sequences are possible only for
the same speaker and others are possible only for different speakers.



onfirm-appointment

The state opening istheinitial state. Thestate closing isthefinal state.
All other states are non-final states.

Fig. 3. The Main Component of the Finite State Machine

the speech acts which are consistent both with the input semantic representation
and with the standard dialogue flow. Oftentimes, an utterance can perform more
than one legal function. Bigram speech act probabilities are then used to select
the most probable one from the intersection set.

An empty intersection between the two sets of predictions signals an incon-
sistency between the non-context-based grammar predictions and the context-
based FSM predictions. The inconsistency can result from unexpected inputs,
missing information, out of domain utterances, or simply misrecognized speech
act. We tested two approaches for dealing with the conflicting predictions: a
jumping context approach and a hypothesis tree approach. We describe the two
approaches below.

Jumping context approach

The rationale behind the jumping context approach is that while we recognize
the predictive power of a statistical model, a finite state machine, or a plan-based
discourse processor, we abandon the assumption that dialogue act sequences are
always ideal in spontaneous speech. Instead of trying to incorporate the current
input into the dialogue context, we accept that speech act sequences can at times
be imperfect. Instead of following the expectations provided by the context, we
assume there is an inaccurate context and there is a need to re-establish the
state in the discourse context. In such cases, we trust the grammar predictions
more, assessing the current position using syntactic and semantic information.
When there is more than one speech act proposed by the grammar component,
we use speech act unigrams to choose the most likely one in the corpus. The
context state will then be updated accordingly using the grammar prediction. In
the graph representation of the finite state machine, this corresponds to allowing
empty arc jumps between any two states. Note that this jump from one state to
another in the finite state machine is forced and abnormal in the sense that it



is designed to cater to the abrupt change of the flow of dialogue act sequences
in spontaneous speech. Thus it is different from transitions with null symbols,
which record legal transitions between states. The algorithm for this approach
is described in Figure 4. We demonstrate later that this approach gives better
performance than one which trusts context in the case of conflicting predictions.

context-state = ’start
FOR each input ilt
context-predictions = predictions from the FSM
given context-state
grammar-predictions = a-speech-act in input ilt
Intersect context- and grammar-predictions
IF intersection is not empty,
use bigrams to rank the speech acts in intersection
return the most probable follow up speech act
ELSE ;;; use grammar predictions
IF more than one speech act in a-speech-act
use unigrams to rank the possible speech acts
return the most probable speech act
ELSE return a-speech-act
update context-state using the returned speech act

Fig.4. Algorithm for Jumping Context Approach

As an example, consider the dialogue excerpt in Table 1. After speaker S2
accepts S1’s suggestion and tries to close the negotiation, S2 realizes that they
have not decided on where to meet. The utterance no after the closing chau does
not fit into the dialogue model, since the legal dialogue acts after a closing are
closing, confirm-appointment or request-suggestion (see Figure 3). When
the standard dialogue model is observed (marked by Strict Context in Table 1),
the utterance no is recognized as closing since closing is the most probable
speech act following the previous speech act closing. If upon seeing this conflict
we instead trust the grammar prediction (marked by Jumping Context in Table
1), by recognizing no as a reject, we bring the dialogue context back to the
stage of negotiation. Trusting the grammar, however, does not imply that we
should abandon context altogether. In the test set in the experiments discussed
in the next section, context represented by the FSM has shown to be effective
in reducing the number of possible speech acts assigned by the grammar com-
ponent.

Hypothesis tree approach

The rationale behind the hypothesis tree approach is that instead of producing
a single speech act hypothesis at the time an utterance is passed to the dis-
course processor, we delay the decision until a later point. In doing so, we hope
to reduce cumulative error due to misrecognition because of early commitment
to a decision. Specifically, we keep a set of possible speech act hypotheses for



[Dialogue Utterances | Strict Context [Jumping Context

S1: QUE TE PARECE EL LUNES NUEVE ENTONCES suggest suggest
(HOW IS MONDAY THE NINTH FOR YOU THEN)

S2: PERFECTO accept accept
(PERFECT)

CHAU closing closing
(BYE)

NO closing reject
(NO)

ESPERATE address address
(WAIT)

NO closing reject
(NO)

ESPERATE address address
(WAIT)

ALGO PASO MAL no parse no parse
(SOMETHING BAD HAPPENED)

DONDE NOS VAMOS A ENCONTRAR request-suggestion| request-suggestion
(WHERE ARE WE GOING TO MEET)

S1: NO reject reject
(NO)

ESPERATE address address
(WAIT)

S1 acknowledge acknowledge
(YES)

DONDE NOS ENCONTRAMOS request-suggestion| request-suggestion
(WHERE ARE WE MEETING)

Table 1. An Example Dialogue

each input utterance as contextual states for future predictions. Each context
state may in turn be followed by more than one speech act hypothesis for the
subsequent utterance, thus yielding a tree of possible sequences of speech act hy-
potheses. The hypothesis tree is expanded within a beam so that only a certain
total number of branches are kept to avoid memory explosion. When the turn
shifts between speakers, the hypothesis path with the highest probability (cal-
culated by multiplying speech act bigram probabilities in that path) is chosen
as the best hypothesis for the sequences of ILTs in that turn. Each ILT is then
updated with its respective speech act in the chosen hypothesis. For each new
turn, the last context state in the best hypothesis of the previous turn is used as
the starting root for building new hypothesis tree. Figure 5 gives the algorithm
for the hypothesis tree approach.

As in the jumping context approach, the predictions of speech acts for each
utterance are the combined result of the context-based FSM predictions and
non-context-based grammar predictions. The intersection of both predictions
gives the possible speech acts which are consistent with both the dialogue model
and the default functions of the input utterance. When there is no intersec-
tion, we face the decision of trusting the context-based FSM predictions or the
non-context-based grammar predictions. We demonstrate later that, for the hy-
pothesis tree approach, again, trusting grammar predictions gives better results



than strictly following context predictions at the time of conflicting predictions.

hypothesis-tree = ’(((start)))
ILTS = nil
FOR each input ilt
IF still in the same turn
push ilt into ILTs
FOR each path in the hypothesis-tree
context-state = last state in the path
get speech act predictions for input ilt
update hypothesis-tree
ELSE ;;; turn shifts
choose the path with the highest probability
update ilts in ILTS with their respective speech act
prediction in the chosen path
ILTS = nil
context-state = last state in the chosen path
hypothesis-tree = (((context-state)))
push ilt into ILTS
get speech act predictions for input ilt
update hypothesis-tree
rank the paths in the hypothesis-tree and
trim the tree within a beam.

Fig.5. Algorithm for the Hypothesis Tree Approach

5 Evaluation

We developed the finite state machine and the statistical module based on the
corpus of 20 dialogues mentioned in Section 3. We tested them on another 10
unseen dialogues, with a total of 506 dialogue utterances. Each utterance in both
the training and testing dialogues is tagged with a hand-coded target speech act
for the utterance. Qut of the 506 utterances in the test set, we considered only
the 345 utterances that have possible speech acts (in the a-speech-act slot)
proposed by the non-context-based grammar component.®

We conducted two tests on the set of 345 utterances for which the a-speech-
act slot is not empty. Test 1 was done on a subset of them, consisting of 211
dialogue utterances for which the grammar component returns multiple possible
speech acts: we measured how well the different approaches correctly disam-
biguate the multiple speech acts in the a-speech-act slot with respect to the

® For 161 utterances, the grammar component doesn’t return any possible speech act.
This is because the parser does not return any parse for these utterances or the
utterances are fragments. Although it is possible to assign speech acts to the frag-
ments based on contextual information, we found that, without adequate semantic
and prosodic information, the context predictions for these fragments are usually not
reliable.



hand-coded target speech act. Test 2 was done on the whole set of 345 utter-
ances, measuring the performance of the different approaches on the overall task
of recognizing speech acts.

We evaluate the performance of our proposed approaches, namely the jump-
ing context approach and the hypothesis tree approach, in comparison to an
approach in which we always try to incorporate the input utterance into the
discourse context (marked by Strict Context in Table 2). These approaches are
all tested in the face of cumulative error®. We also measured the performance
of randomly selecting a speech act from the a-speech-act slot in the ILT as a
baseline method. This method gives the performance statistic when we do not
use any contextual information provided by the finite state machine.

|Appr0aches |Test 1|Test 2|
|Rand0m from Grammar | 38.6% | 60.6% |
Strict Context (Trusting FSM) 52.4% | 65.5%
Jumping Context (Trusting Grammar)| 55.2% | 71.3%
Hypothesis Tree Trusting FSM 48.0% | 56.5%
Hypothesis Tree Trusting Grammar 50.0% | 60.6%

Table 2. Evaluation: Percent Correct Speech Act Assignments

Table 2 gives some interesting results on the effect of context in spoken dis-
course processing. Since Test 1 is conducted on utterances with multiple possible
speech acts proposed by the non-context-based grammar component, this test
evaluates the effects on speech act disambiguation by different context-based ap-
proaches. All four approaches employing context perform better than the non-
context-based grammar predictions. Test 1 also demonstrates that it is imper-
ative to estimate context carefully. Our experiments show that when context-
based predictions and non-context-based predictions are inconsistent with each
other, trusting the non-context-based grammar predictions tend to give better
results than trusting context-based FSM predictions. In particular, the jumping
context, approach gives 2.8% improvement over the strict context approach in
which context predictions are strictly followed, and trusting grammar predic-
tions gives 2% improvement over trusting FSM predictions in the hypothesis
tree approach. To our surprise, the jumping context approach and the strict
context approach do better than the hypothesis tree approaches in which more
contextual information is available at decision time. This seems to suggest that
keeping more contextual information for noisy data, such as spontaneous speech,
may actually increase the chances for error propagation, thus making cumulative

6 We found it hard to test in absence of cumulative error. Because of missing infor-
mation and unexpected input, it is hard even for the human coder to provide an
accurate context.



error a more serious problem. In particular, at the point where grammar and
context give conflicting predictions, the target speech act may have such a low
bigram probability with respect to the given context state that it gives a big
penalty to the path of which it is a part.

Test 2 is conducted on utterances with either ambiguous speech acts or unam-
biguous speech acts proposed by the grammar component. When an ILT has one
unambiguous possible speech act, we can assume that the grammar component is
highly confident of the speech act hypothesis, based on the syntactic and seman-
tic information available”. Note again that the jumping context approach does
better than the strict context approach for dealing with conflicting predictions.
The hypothesis tree approach, however, does not improve over the non-context-
based grammar approach, regardless of whether the grammar predictions are
trusted or the context predictions are trusted. This observation seems to sup-
port our belief that reestablishing a context state in case of prediction conflicts
is an effective approach to reducing cumulative error. Keeping a hypothesis tree
to store more contextual information is not as effective as reestablishing the con-
text state, since more contextual information cannot stop error propagation. As
decisions are made at a later point, certain target speech acts may be buried in
a low probability path and will not be chosen.

6 Conclusion

In this paper we have discussed our effort to minimize the effect of cumulative
error in utilizing discourse context. We challenged the traditional assumption
that every utterance in a dialogue adheres to the dialogue model and that the
process of recognizing speech acts necessarily results in a speech act that can
be best incorporated into the dialogue model. We showed that in spontaneous
speech, the ideal dialogue flow is often violated by unexpected input, missing in-
formation or out of domain utterances in addition to misrecognition. To model
dialogue more accurately, this fact should be taken into account. We experi-
mented with two approaches to reducing cumulative error in recognizing speech
acts. Both approaches combine knowledge from dialogue context, statistical in-
formation, and grammar prediction. In the case of a prediction conflict between
the grammar and the context, instead of blindly trusting the predictions from
the dialogue context, we trust the non-context-based grammar prediction. Our
results demonstrate that reestablishing a context state by trusting grammar
predictions in case of prediction conflicts is more robust in the face of cumula-
tive error. Our future work includes exploring different smoothing techniques for
the context model in order to quantify the effectiveness of context in different
situations.

" The fact that in 134 utterances there is no speech act ambiguity explains the good
performance of the random approach.
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