
GLR* :A ROBUST PARSERFOR SPONTANEOUSLY SPOKEN LANGUAGEAlon LavieCenter for Machine TranslationCarnegie Mellon UniversityPittsburgh, PA 15232USAEmail: lavie@cs.cmu.eduAbstractThis paper describes GLR*, a parsing system based on Tomita's Generalized LR parsingalgorithm, that was designed to be robust to two particular types of extra-grammaticality:noise in the input, and limited grammar coverage. GLR* attempts to overcome these forms ofextra-grammaticality by ignoring the unparsable words and fragments and conducting a searchfor the maximal subset of the original input that is covered by the grammar. The parser iscoupled with a beam search heuristic, that limits the combinations of skipped words consideredby the parser, and ensures that the parser will operate within feasible time and space bounds.The developed parsing system includes several tools designed to address the di�culties ofparsing spontaneous speech: a statistical disambiguation module, an integrated heuristic forevaluating and ranking the parses produced by the parser, and a parse quality heuristic, thatallows the parser to self-judge the quality of the parse chosen as best.To evaluate its suitability to parsing spontaneous speech, the GLR* parser was integratedinto the JANUS speech translation system. Our evaluations on both transcribed and speechrecognized input have indicated that the version of the system that uses GLR* produces about30%more acceptable translations, than a corresponding version that uses the original non-robustGLR parser.1 IntroductionThe analysis of spoken language is widely considered to be a more challenging task than the analysisof written text. All of the di�culties of written language (such as ambiguity) can generally be foundin spoken language as well. However beyond these di�culties, there are additional problems thatare speci�c to the nature of spoken language in general, and spontaneous speech in particular. Themajor additional issues that come to play in parsing spontaneous speech are speech dis
uencies,the looser notion of grammaticality that is characteristic of spoken language, and the lack of clearlymarked sentence boundaries. The contamination of the input with errors of a speech recognizercan further exacerbate these problems.Most natural language parsing algorithms are designed to analyze \clean" grammatical input.By the de�nition of their recognition process, these algorithms are designed to detect ungrammaticalinput at the earliest possible opportunity, and to reject any input that is found to be ungrammatical



in even the slightest way. This property, which requires the parser to make a complete and absolutedistinction between grammatical and ungrammatical input, makes such parsers fragile and of littlevalue in many practical applications. Such parsers are thus unsuitable for parsing spontaneousspeech, where completely grammatical input is the exception more than the rule.This paper describes GLR*, a parsing system based on Tomita's Generalized LR parsing al-gorithm, that was designed to be robust to two particular types of extra-grammaticality: noisein the input, and limited grammar coverage. GLR* attempts to overcome these forms of extra-grammaticality by ignoring the unparsable words and fragments and conducting a search for themaximal subset of the original input that is covered by the grammar.Because GLR* is an enhancement to the standard GLR context-free parsing algorithm, gram-mars, lexicons and other tools developed for the standard GLR parser can be used without mod-i�cation. GLR* uses the standard SLR(0) parsing tables that are compiled in advance from thegrammar. It inherits the bene�ts of GLR in terms of ease of grammar development, and, to a largeextent, e�ciency properties of the parser itself. In the case that an input sentence is completelygrammatical, GLR* will normally return the exact same parse as the GLR parser.Although it should prove to be useful for other practical applications as well, GLR* was designedto be particularly suitable for parsing spontaneous speech. Grammars developed for spontaneousspeech can concentrate on describing the structure of the meaningful clauses and sentences that areembedded in the spoken utterance. The GLR* parsing architecture can facilitate the extraction ofthese meaningful clauses from the utterance, while disregarding the surrounding dis
uencies.2 Foundation: GLR ParsingThe GLR* parsing algorithm is based on the Generalized LR (GLR) parsing algorithm that wasdeveloped by Tomita. The GLR parsing algorithm evolved out of the LR parsing techniques thatwere originally developed for parsing programming languages in the late 1960s and early 1970s [1].LR parsers parse the input bottom-up, scanning it from left to right, and producing a rightmostderivation. LR parsers are driven by a table of parsing actions that is pre-compiled from thegrammar. For the limited class of LR grammars, these compiled parsing tables are deterministic,resulting in an extremely e�cient linear-time parser. LR parsers come in several variants. Thecommon core of all of them is a basic Shift-Reduce parser, which is fundamentally no more thana �nite-state pushdown automaton (PDA). The parser scans a given input left to right, word byword. At each step, the LR parser may either shift the next input word onto the stack, reduce thecurrent stack according to a grammar rule, accept the input, or reject it. An action table that ispre-compiled from the grammar guides the LR parser when parsing an input. The action tablespeci�es the next action that the parser must take, as a function of its current state and the nextword of the input.Tomita's Generalized LR parsing algorithm [4] extended the original LR parsing algorithm tothe case of non-LR languages, where the parsing tables contain entries with multiple parsing actions.The algorithm deterministically simulates the non-determinism introduced by the con
icting actionsin the parsing table by e�ciently pursuing in a pseudo-parallel fashion all possible actions. Theprimary tool for performing this simulation e�ciently is the Graph Structured Stack (GSS). TheGSS is a data-structure that e�ciently represents the multiple parsing stacks that correspond todi�erent sequences of parsing actions. Two additional techniques, local ambiguity packing andshared parse forests, are used in order to e�ciently represent the various parse trees of ambiguoussentences when they are parsed. Local ambiguity packing collects multiple sub-analyses of thesame category type, all of which derive the same substring, into a single structure. Further parsing



actions may then refer to the single structure that represents the entire collection of sub-parses,rather than to each of the packed sub-parses separately. Shared packed forests allow commonsub-parses of di�erent analyses to be shared via pointers.The Generalized LR Parser/Compiler [5] is a uni�cation based practical natural language systemthat was designed around the GLR parsing algorithm at the Center for Machine Translation atCarnegie Mellon University. The system supports grammatical speci�cation in an LFG framework,that consists of context-free grammar rules augmented with feature bundles that are associated withthe non-terminals of the rules. Feature structure computation is, for the most part, speci�ed andimplemented via uni�cation operations. This allows the grammar to constrain the applicabilityof context-free rules. A reduction by a context-free rule succeeds only if the associated featurestructure uni�cation is successful as well. The Generalized LR Parser/Compiler is implementedin Common Lisp, and has been used as the analysis component of several di�erent projects atthe Center for Machine Translation at CMU in the course of the last several years. GLR* wasimplemented as an extension to the uni�cation-based Generalized LR Parser/Compiler.3 The GLR* Parsing AlgorithmThe GLR* parsing algorithm [3] was designed to be robust to two particular types of extra-grammaticality: noise in the input, and limited grammar coverage. It attempts to overcome theseforms of extra-grammaticality by ignoring the unparsable words and fragments and conducting asearch for the maximal subset of the original input string that is covered by the grammar.GLR* accommodates skipping words of the input string by allowing shift operations to beperformed from inactive state nodes in the GSS 1. Shifting an input symbol from an inactive stateis equivalent to skipping the words of the input that were encountered after the parser reachedthe inactive state and prior to the current word that is being shifted. Since the parser is LR(0),previous reduce operations remain valid even when words further along in the input are skipped,since the reductions do not depend on any lookahead.Similar to the GLR algorithm, GLR* parses the input in a single left-to-right scan of the input,processing one word at a time. The processing of each input word is called a stage. Each stageconsists of two main phases, a reduce phase and a shift phase. The reduce phase always precedesthe shift phase. The outline of each stage of the algorithm is shown in Figure 1. RACT(st) denotesthe set of reduce actions de�ned in the parsing table for state st. Similarly, SACT(st,x) denotesthe shift actions de�ned for state st and symbol x, and AACT(st,x) denotes the accept action.The last stage of the algorithm, in which the end-of-input symbol \$" is processed, is some-what di�erent. The READ, DISTRIBUTE-REDUCE and REDUCE steps are identical to those of pre-vious stages. However, a DISTRIBUTE-ACCEPT step replaces the DISTRIBUTE-SHIFT step. In theDISTRIBUTE-ACCEPT step, accept actions are distributed to all state nodes st in the GSS (activeand inactive), for which AACT(st,$) is true. Pointers to these state nodes are then collected intoa list of �nal state nodes. If this list is not empty, GLR* accepts the input, otherwise, the input isrejected. Finally, the GET-PARSES step creates a list of all symbol nodes that are direct descendentsof the �nal state nodes. These symbol nodes represent the set of complete parses found by theparser, and contain pointers to the roots of the parse forest.Due to the word skipping behavior of the GLR* parser, local ambiguities occur on a much morefrequent basis than before. In many cases, a portion of the input sentence may be reduced to anon-terminal symbol in many di�erent ways, when considering di�erent subsets of the input that1An inactive state node is one that is internal in the GSS, thus not at the top of any of the represented \stacks".



(1) READ:Read the next input token x.(2) DISTRIBUTE-REDUCE:For each active state node st, get the set of reduce actionsRACT(st) in the parsing table, and attach it to the activestate node.(3) REDUCE:Perform all reduce actions attached to active state nodes.Recursively perform reductions after distributing reduceactions to new active state nodes that result from previousreductions.(4) DISTRIBUTE-SHIFT:For each state node st in the GSS (active and inactive),get SACT(st,x) from the parsing table.If the action is defined, attach it to the state node.(5) SHIFT:Perform all shift actions attached to state nodes of the GSS.(6) MERGE:Merge active state nodes of identical states into a singleactive state node.Figure 1: Outline of a Stage of the Unrestricted GLR* Parsing Algorithmmay be skipped. Since the ultimate goal of the GLR* parser is to produce maximal (or close tomaximal) parses, the process of local ambiguity packing can be used to discard partial parses thatare not likely to lead to the desired maximal parse. Local ambiguities that di�er in their coverageof an input segment can be compared, and when the word coverage of one strictly subsumes thatof another, the subsumed ambiguity can be discarded. It should be noted that due to the non-locale�ects of uni�cation, such pruning carries the danger of discarding a non-maximal local ambiguityin favor of an analysis that later on fails to be incorporated into a complete parse due to uni�cationfailure. However, our experience has shown that this is an extremely rare situation that for allpractical purposes can be ignored.The complexity analysis of the unrestricted GLR* algorithm proves that the asymptotic timecomplexity of the algorithm is O(np+1), where n is the length of the input, and p is the length ofthe longest grammar rule. This complexity bound is similar to that of the original GLR parsingalgorithm. However, in practice the performance of the two parsers rapidly diverges. Whereas, onaverage, GLR time and space requirements increase not much more than linearly as a function ofthe sentence length, the performance of unrestricted GLR* appears to be closer to that predictedby the worst case complexity analysis. This suggests that e�ective search heuristics are required toensure that the algorithm performs within feasible time and space bounds.



Sentence Length
2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e 
(s

ec
o

n
d

s)

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0
1

beam = 0
beam = 5
beam = 10
beam = 20
beam = 30
beam = 50

Time Performace of GLR* with Various BeamsFigure 2: Time Performance of GLR* with Various Beam Widths as a Function of Sentence Length3.1 The Search Control HeuristicsSince the purpose of GLR* is to �nd only maximal (or close to maximal) parsable subsets of theinput, we can drastically reduce the amount of search by limiting the amount of word skipping thatis considered by the parser. We developed and experimented with two heuristic search techniques.With the k-word Skip Limit Heuristic, the parser is restricted to skip no more than k consecutiveinput words at any point in the parsing process. With the Beam Search Heuristic, the parser isrestricted to pursue a \beam" of a �xed size k of parsing actions, which are selected accordingto a criterion that locally minimizes the number of words skipped. There exists a direct tradeo�between the amount of search (and word skipping) that the parser is allowed to pursue and thetime and space performance of the parser itself. For a given grammar and/or domain, the goal isto determine the smallest possible setting of the control parameters that allows the parser to �ndthe desired parses in an overwhelming majority of cases.We conducted empirical evaluations of parser behavior with di�erent settings of the searchcontrol parameters. The results show that time and space requirements of GLR* increase as thecontrol parameters are set to higher values. This increase however is gradual, and in the caseof the beam parameter, even with considerably high settings, parser performance remains in thefeasible range, and does not approach the time and space requirements experienced when runningthe unrestricted version of GLR*. A comparison of the performance �gures of the two heuristiccontrol mechanisms revealed a clear advantage of using the beam search, versus the simpler skipword limit heuristic. Figure 2 shows the average parsing time as a function of input string lengthwith various settings of the beam width parameter. The performance numbers were determinedusing an HP-735 Apollo workstation applied to a benchmark corpus of 552 utterances parsed witha compiled grammar for the English Scheduling domain.



4 Statistical DisambiguationThe abundance of parse ambiguities for a given input is greatly exacerbated in the case of theGLR* parser, due to the fact that the parser produces analyses that correspond to many di�erentmaximal (or close to maximal) parsable subsets of the original input. It is therefore imperativethat the the parser be augmented with a statistical disambiguation module, which can assist theparser in selecting among the ambiguities of a particular parsable input subset.Our probabilistic model is based on a similar model developed by Carroll [2], where probabilitiesare associated directly with the actions of the parser, as they are de�ned in the pre-compiled parsingtable. Because the state of the LR parser partially re
ects the left and right context of the parsebeing constructed, modeling the probabilities at this level has the potential of capturing contextualpreferences that cannot be captured by probabilistic context-free grammars. The probabilisticmodel assigns a probability to every possible transition from each possible state of the parser.These probabilities are not conditional on the sequence of input words, or on previous states of theparser. The relative probabilities of the input words at various states is implicitly represented viathe action probabilities themselves.4.1 Training the ProbabilitiesThe correctness of a parse result in our parsing system is determined according to the featurestructure associated with the parse and not the parse tree itself. We are therefore interested inparse disambiguation at the feature structure level. To allow adequate training of the statisticalmodel, we collect a corpus of sentences and their correct feature structures. Within the JANUSproject, a large collection of sentences and their correct feature structures had been already con-structed for development and evaluation purposes, and was thus available for training the statisticalmodel. For other domains (such as ATIS), we developed an interactive disambiguation procedurefor constructing a corpus of disambiguated feature structures.Once we have a corpus of input sentences and their disambiguated feature structures, we cantrain the �nite-state probabilistic model that corresponds to the LR parsing table. In order forthis to be done, a method was developed by which a correct feature structure of a parsed sentencecan be converted back into the sequence of transitions the parser took in the process of creatingthe correct parse. Using this method, we process the training corpus and accumulate counters thatkeep track of how many times each particular transition of the LR �nite-state machine was takenin the course of correctly parsing all the sentences in the training corpus. After processing theentire training corpus and obtaining the counter totals, the counter values are treated as actionfrequencies and converted into probabilities by a process of normalization. A smoothing techniqueis applied to compensate for transitions that did not occur in the training data.4.2 Runtime Parse DisambiguationStatistical disambiguation for the uni�cation-based GLR/GLR* parsing system is performed as apost-process, after the entire parse forest has been constructed by the parser. At runtime, thestatistical model is used to score the alternative parse analyses that are produced by the parser.Once computed, these scores can be used for disambiguation, by unpacking the analysis thatreceived the best probabilistic score from the parse forest.Due to ambiguity packing, the set of alternative analyses and their corresponding parse treesare packed in the parse forest. For packed nodes, a statistical score is attached to each of thealternative sub-analyses that are packed into the node. The packed node itself is then assigned the



\best" of these scores, by taking a maximum. This score will then be used to compute the scoresof any parent nodes in the forest. According to this scheme, the score that is attached to a rootnode of the forest should re
ect the score of the best analysis that is packed in it. However, dueto some e�ects of packing and uni�cation, the score assigned to a parse node is not guaranteed tobe the actual true probability of the best sub-analysis rooted at the node. However, the score isalways a close over-estimate of this probability.The actual task of parse disambiguation is performed at the end of the parsing process byunpacking the best scoring analysis from the parse forest. The unpacking is done \top-down",starting from the best scoring root node in the forest, and selecting one or more of the alternativepacked ambiguities at each packed parse node. This results in a collection of unpacked parse trees.A uni�cation consistency procedure veri�es the validity of each of the unpacked parse trees, andthe correct probability of each of the trees is computed. The best scoring tree and its correspondinganalysis can then be selected.4.3 Performance Evaluation of Statistical DisambiguationWe conducted an evaluation to assess the e�ectiveness of the statistical disambiguation model andcompared it to the principle-based disambiguation method of Minimal Attachment. The evaluationwas conducted using the December-94 version of the Spanish analysis grammar developed for theJANUS/Enthusiast project. The probabilities were trained on a corpus of \target" (correct) ILTsof 15 push-to-talk dialogs and 15 cross-talk dialogs, amounting to a total of 1687 sentences. Wethen evaluated the performance of the statistical disambiguation module on a unseen test set of11 push-to-talk dialogs and 5 cross-talk dialogs, amounting to a total of 769 sentences. 524 outof the 769 sentences (68.1%) are parsable with one of the analyses returned by the parser beingcompletely correct (thus matching the \target" ILT speci�ed for the sentence). 213 of these 524sentences (40.6%) are ambiguous. The statistical disambiguation module chose the correct parse in140 out of the 213 sentences, thus resulting in a success rate of 65.7%. For comparison, we applieda Minimal Attachment disambiguation procedure to the same test set. With Minimal Attachment,the correct parse was chosen in only 79 out of the 213 sentences, resulting in a success rate of 37.1%.Thus, the statistical disambiguation method outperformed the Minimal Attachment method in thiscase by about 29%.It should be noted that our training observed only a small fraction of the actual transitionsallowed by the grammar. The parsing table for the Spanish grammar contained 2437 states and atotal of 43023 actions. In the course of training the probabilities, only 2274 actions were observed,in 987 of the states. Thus, the training observed only 5.3% of all possible actions, and for 59%of the states, no actions were observed. With this in mind, statistical disambiguation performedremarkably well. This leads us to believe that even extremely small amounts of correct training datacan establish structural preferences for resolving the most frequently occurring types of ambiguity.5 Parse Evaluation HeuristicsTo complement the GLR* parser, we developed an integrated framework that allows di�erentheuristic parse evaluation measures to be combined into a single evaluation function, by which setsof parse results can be scored, compared and ranked. The framework is designed to be general, andindependent of any grammar or domain to which it is being applied. It allows di�erent evaluationmeasures to be used for di�erent tasks and domains. The evaluation framework includes tools foroptimizing the performance of the integrated evaluation function on a given training corpus.



5.1 The Parse Evaluation Score FunctionsWe developed a set of four evaluation measures for the JANUS scheduling domain and for the ATISdomain: a penalty function for skipped words, a penalty function for substituted words, a penaltyfunction for the fragmentation of the parse analysis, and a penalty function based on the statisticalscore of the parse.In its basic form, the penalty for skipping words assigns a penalty in the range of [0:95; 1:05] foreach skipped word. In order to deal with false starts and repeated words, a slightly higher penaltyis assigned to skipped words that appear later in the input. We further developed this penaltyscheme into one in which the penalty for skipping a word is a function of the saliency of the wordin the domain. To determine the saliency of words, we compared their frequency of occurrence intranscribed domain text with the corresponding frequency in \general" text.For the ATIS domain, we attempted to deal with substitution errors of the speech recognizerusing a confusion table. Empirically determined common misrecognitions are listed in the table.When working with a confusion table, whenever the GLR* parser encounters a word that appearsin the table, it attempts to continue with both the original input word and the possible \correct"word(s). A word substitution should incur some penalty, since we wish to choose an analysis thatcontains a substitution only in cases where this results in a better parse. We currently use a simplepenalty scheme, where each substitution is given a penalty of 1:0.In order to cope with the looser notions of grammaticality that are typical of spontaneous speech,our grammars allow parses to consist of fragments and incomplete sentences. This signi�cantlyincreases the degree of ambiguity of the grammar. In particular, utterances that can be analyzedas a single grammatical sentence, can often also be analyzed in various ways as collections offragments. Our experiments have indicated that, in most such cases, a less fragmented analysis ismore desirable. We thus developed a method for associating a numerical fragmentation value witheach parse. This fragmentation value is then used as a penalty score.Our statistical disambiguation model assigns a probability to every possible parser transitionsequence. Thus, transition sequences that correspond to parses of di�erent inputs are directlycomparable. This enables us to use parse probabilities as an evaluation measure. The parseprobability is converted into a penalty score, where statistically more likely parse trees receivelower penalties.5.2 The Parse Quality HeuristicWe developed a classi�cation heuristic that is designed to try and identify situations in which eventhe \best" parse result is inadequate. Our parse quality heuristic is designed to classify the parsechosen as best by the parser into one of two categories: \Good" or \Bad". The classi�cation is doneby a judgement on the combined penalty score of the parse that was chosen as best. The parse isclassi�ed as \Good" if the value of penalty score does not accede a threshold value. The thresholdis a function of the length of the input utterance, since longer input utterances can be expected toaccommodate more word skipping, while still producing a good analysis. The threshold parameterswere determined empirically.6 Parsing Spontaneous Speech using GLR*The GLR* parser has been integrated into JANUS [6], a practical speech-to-speech translationsystem, designed to facilitate communication between a pair of di�erent language speaking speakers,attempting to schedule a meeting.



6.1 Parsing Full Utterances with GLR*Speech translation in the JANUS system is guided by the general principle that spoken utterancescan be analyzed and translated as a sequential collection of semantic dialogue units (SDUs), each ofwhich roughly corresponds to a speech-act. SDUs are semantically coherent pieces of information.The interlingua representation in our system was designed to capture meaning at the level of suchSDUs. Each semantic dialogue unit is analyzed into an interlingua representation. The output ofthe speech recognizer is a textual hypothesis of the complete utterance, and contains no explicitrepresentation of the boundaries between its contained SDUs. Segmentation into SDUs is achievedin a two-stage process, partly prior to and partly during parsing.Segmentation decisions in our system can be made much more reliably during parsing, at whichpoint multiple sources of knowledge can be applied. Pre-parsing segmentation can, however, sig-ni�cantly reduce the amount of parse-time segmentation ambiguity, resulting in signi�cantly fasterparser performance. Thus, the goal of pre-parsing segmentation is to detect con�dent SDU bound-aries in the utterance, and then pre-break the utterance into sub-utterances that may still containmultiple SDUs. Each of these sub-utterances is then parsed separately. Pre-parsing segmentationat SDU boundaries is determined using acoustic, statistical and lexical information. The remainingsegmentation is performed during parsing. The analysis grammars contain rules that allow the in-put utterance to be analyzed as a concatenation of several SDUs. To further cut down the amountof segmentation ambiguity, we developed a powerful set of heuristics, including a statistical clauseboundary predictor, that constrain the segmentation possibilities that are considered by the parser.6.2 JANUS Performance EvaluationEvaluations were conducted on both the English and Spanish analysis grammars, and processingboth transcribed and speech recognized input. We compared the performance of the system incor-porating GLR* with a version that uses the original GLR parser. The results for both the Spanishand English are rather similar, and we thus summarize here only the English results.The test set consisted of 99 push-to-talk unseen utterances. The average utterance word lengthis about 33. The transcribed text was pre-broken into SDUs according to explicit markings in thetranscriptions. This produced a set of 360 SDUs (with an average length of about 9 words per SDU),each of which was parsed separately. The top-best speech recognized hypotheses were segmentedusing our pre-parsing segmentation procedure. This produced a set of 192 sub-utterances (some ofwhich contain multiple SDUs).On transcribed input, GLR succeeds to parse 55.8% of the SDUs, while GLR* succeeds inparsing 95.0% of the SDUs. This amounts to a gain of about 39% in the number of parsableSDUs. On the speech recognized input, GLR parses only 21.4% of the input sub-utterances, whileGLR* succeeds to parse 93.2%. In this case, the increase in parsable sub-utterances amounts toalmost 72%. On transcribed input, GLR* produced acceptable translations for 85.6% of the SDUs,compared with 54.2% for GLR. Thus, GLR* produces over 30% more acceptable translations. Thisis also the case when only the parses marked \Good" by the parse quality heuristic of GLR* areconsidered. The results on speech recognized input are rather similar. While GLR produced anacceptable translation only 17.2% of the time, GLR* did so in 47.9% of the time. Once again, thisamounted to an increase of about 30.0% in the number of acceptable translations. Similar resultswere achieved when only the parses marked \Good" by GLR* are considered.We also evaluated the e�ectiveness of the parse quality heuristic. On transcribed data, 92.7% ofthe parses marked \Good" by the parse quality heuristic produce acceptable translations. 10 out of12 SDUs marked by GLR* as \bad" (83.3%) result in a bad translation. On speech data, the e�ec-



tiveness of the parse quality heuristic is hindered by errors of the speech recognizer. Consequently,parses marked as \Good" by the parse quality heuristic, produced acceptable translations for only66.9% of the sub-utterances. However, when errors that are completely due to poor recognitionare considered acceptable, 96.2% of the parses marked \Good" by the parse quality heuristic arein fact acceptable. Parses marked \Bad" by the parse quality heuristic produced a bad translationin 93.5% of the time.7 ConclusionsOur performance evaluations of the GLR* parser within the JANUS system have indicated that theparser is highly suitable for analyzing spontaneously spoken language. The version of the JANUSsystem that uses GLR* produced about 30% more acceptable translations, than a correspondingversion that uses the original non-robust GLR parser. The parser appears to be equally well adjustedto handling both the dis
uencies typical of spoken language and limitations of grammar coverage.Manual inspection of the transcribed test input utterances shows that about one-third of the SDUscontain some dis
uencies, while the other two-thirds are grammatical. Due to grammar coveragelimitations, the non-robust GLR parser fails to parse about 30% of the \grammatical" SDUs. Byskipping over portions of the input, GLR* parses 97% of the SDUs. GLR* produced acceptabletranslations for 90.0% of the SDUs, compared with 67.5% for GLR. Thus, by overcoming limitationsin the grammar coverage, GLR* produces over 22% more acceptable translations. This appearsto indicate that using GLR* in conjunction with a grammar of reasonably adequate coverage canresult in very high levels of performance, where minor unimportant portions of the input that arenot covered by the grammar are detected by the parser and ignored. Thus, GLR* should proveto be very useful in overcoming grammar coverage problems in other tasks, where input is for themost part grammatical, but complete parsability is not crucial.References[1] A. V. Aho and S.C. Johnson. LR Parsing. Computing Surveys, 6(2):99{124, 1974.[2] J. A. Carroll. Practical Uni�cation-Based Parsing of Natural Language. PhD thesis, Universityof Cambridge, Cambridge, UK, October 1993. Computer Laboratory Technical Report 314.[3] A. Lavie. GLR*: A Robust Grammar-Focused parser for Spontaneously Spoken Language. PhDthesis, Carnegie Mellon University, Pittsburgh, PA, May 1996. Technical Report CMU-CS-96-126.[4] M. Tomita. An E�cient Augmented Context-free Parsing Algorithm. Computational Linguis-tics, 13(1-2):31{46, 1987.[5] M. Tomita. The Generalized LR Parser/Compiler - Version 8.4. In Proceedings of InternationalConference on Computational Linguistics (COLING'90), pages 59{63, Helsinki, Finland, 1990.[6] M. Woszczyna, N. Aoki-Waibel, F. D. Buo, N. Coccaro, T. Horiguchi, K., T. Kemp, A. Lavie,A. McNair, T. Polzin, I. Rogina, C. P. Ros�e, T. Schultz, B. Suhm, M. Tomita, and A. Waibel.JANUS-93: Towards Spontaneous Speech Translation. In Proceedings of IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP'94), 1994.


