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ABSTRACT 
Recognition of spelled names over the telephone line is essen- 
tial for applications such as telephone directory assistance, 
or automatic mail ordering. We present recognition results 
on the spelling section of the OGI Spelled and Spoken Word 
Telephone Corpus, using a Multi-State Time Delay Neural 
Network (MS-TDNN). Many applications allow for strong 
language modeling constraints. In our experiments we ex- 
amined the beneiiaal effects of reducing the search space to 
a list of last names, ranging from about 1000 to 14 million 
entries. We compare tree search methods and show that 
significant improvements can be achieved by enriching the 
search trees with probabilities. 

a sequence of phonemes; in a dynamic time warping proce- 
dure, an optimal alignment path is found for each word. The 
activations dong these paths are then collected in the word 
output units. The error derivatives are backpropagated from 
the word units through the alignment path and the front- 
end TDXN. For continuous recognition using no or n-gram 
language models, the standard "one stage dynamic program- 
ming search" is used. Algorithms for search in finite state 
grammars are described below. Training starts with a boot- 
strapping phase, which involves only the first three layers of 
the net and establishes a phoneme classification. Then the 
system is trained on "letter level", using the "classification 
figure of merit" (CFM) [4] error function for discriminative 
training. 

1. INTRODUCTION 3. LANGUAGE MODELS 
This paper presents recognition results on the OGI Spelled 
and Spoken Word Telephone Corpus, using a Multi-State 
Time Delay Neural Network (MSTDNN). While it is de- 
sirable to recognize spelled strings which are embedded in 
spontaneous speech [l], ("Smith please, thats SM-I-T-H"), 
the task here is to recognize letters only. Spelled letters over 
the telephone are easily confused. Current systems achieve 
in the order of 90% letter accuracy, which results in string 
(i.e. name) accuracies far below practical usefullness. For- 
tunately, many applications, most prominently telephone di- 
rectory assistance, allow for strong language modeling con- 
straints. We show haw very large, but conceptionally Simple 
tree structured finite state grammars (FSG) can achieve very 
good recognition results ranging from 89 to 98% name accu- 
racy for lists of 1000 up to 14 million last names. 

2. THE LETTER RECOGNIZER 
A connectionist recognizer, the Multi-State Time Delay Xeu- 
ral Network (MSTDNN) [3,5] is used for connected spded 
letter recognition. The MS-TDNN integrates the time-shift 
invariant architecture of a TDNN and a nonlinear time align- 
ment procedure (DTW) into a word-level classifier. The 
front-end TDNN uses sliding windows with time-delayed 
connections to compute a score for each phonemelike state 
in every frame. Each word to be recognized is modeled by 

Let S = ($1,. . . , sp} be a set of names or strings. In the 
following we examine techniques which confine the recogni- 
tion to the names in S. The advantage is a high increase 
in recognition accuracy. The drawback is that names not 
in S can not be recognized. In (21, a score (interpreted as 
probability) is computed for each letter. These scores are 
used in a tree search to retrieve names from a set of 50,000 
names. [I] compares several techniques, which use the con- 
straints either within the search or in a postprocessing step 
such as nearest neighbor search. In [6], a complex procedure 
using a mixture of techniques and several recognition passes 
is proposed. The approach presented below uses very large, 
but conceptionally simple finite state grammars (FSG) to 
exactly represent the names in S. 

3.1. Search in Finite State Graphs 
Each word to be recognized is represented by one acoustic 
model. Conventional search techniques handle sequences of 
words by concatenating the models 8s shown to the left in 
figure 1. In a FSG, word (in our case letter) sequences can 
be expliatly coded in a graph structure. Although the same 
letters use the same acoustic modeling, it is necessary to keep 
an individual copy for each node in the tree, since it repre- 
sents a different search history. Each node consumes memory 
and computing resources, therefore, the FSG should be kept 
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I I 
Figure 1: Conventional search (left) uses one instance of 
each word model. Search in finite state grammars needs mul- 
tiple copies, as examplified for a tree (middle) and minimal 
graph (right). 

as small as possible, which can be achieved by constructing a 
minimal graph. Although a tree can be several times as large 
as a minimal graph, it features one major advantage: Since 
each represented string s i  is uniquely determined by its final 
node, no backpointers are needed to identify the best letter 
sequence at the end of the search. 

The largest tree we are employing uses almost 2 million nodes 
t o  represent about 800,000 names, which makes a beam 
search strategy indispensable. A simple scheme is used in the 
time synchronous search: If S. has been the highest observed 
score, all nodes with scores s < s- - beam are deactivated. 
Depending on the beam size and the position in the tree, 
about 50 - 1000 nodes are active at each frame in time. The 
fact that no backpointers are needed keeps the search tree 
very simple. Essentially, in each node only one cell for each 
state of the corresponding acoustic model is needed to store 
the accumulated search score. Scores are forwarded within 
a node and to successor nodes, as illustrated in figure 2. 

I I 
Figure 2: Tree search: Acoustic scores are forwarded within 
nodes and across nodes. 

3.2. Search Tree and Probabilities 
Confining the search to  a given set S is a strong constraint, 
but there is one other source of information yet unconsid- 
ered. Common names such as "Smith" are very frequent, 
others rare. By counting their relative frequency, a prob- 
ability p(s ; )  can be assigned to each name si E S. P(s;) 
is most naturally incorporated into the tree by associating 
each final node representing si with p(s;) .  Theoretically, it 
should not matter where the probability mas is distributed 
in the tree, as long as the probability along a path to string 
si accumulates to p(s;) .  However, as the language model 
(LM) knowledge becomes only available at the very end of 

the search, the beam search may cut off eventually good can- 
didates too early. An example for a probability assignment 
of this and two other methods described below is illustrated 
in figure 3. 

3.3. Local Probabilities 
Let the string si E S consist of n; letters 

si = I;, l i ,  . . . li,; 

A partial path Zi l l i 2  . . . I;, uniquely defines a node in the tree. 
We denote the unique transition into this node as t i $ ,  i.e. 

t i  k 
t i , k  lil Ii, . . . 4 lik 

Instead of assigning p(s ; )  to a final node, we can involve 
the LM earlier in the search process by defining a 'local" 
probability alocoz(t) for each transition t: 

a l w a ~ ( t ; , k )  can be computed as the relative frequency by 
which a path is extended from its parent node into t i . k  as 
opposed to its sibling transitions. We note that the probabil- 
ities along the path to the final node representing si correctly 
accumulate to p(s ; ) :  

ani n a l o c a l ( t i , k )  = p(li ,  * p(li,  1 l i 1 )  . . * P(L;  1li1 *-l*,,;-i) 
k=l 

= p(Zi11i2 . . . Iini) =p(si) 

3.4. Early Probabilities 
The most likely string (i.e. final node) that can be reached 
from a partial path can serve as a measure for the potential 
"importance" of the path. We define P(t)  as the highest 
probability p(s i )  which can be reached from a transition t. 
B(.)  can be computed by propagating the maxima from the 
leaves to the root of the tree: 

Now starting from the root, the transition probabilities are 
defined as the "issing probability" towards p(s; ) :  

Again we note that the final probabilities are correct: 
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Figure 3 shows an example for each of the three methods, 
which in the experiments to be described will be refered to 
as “hal”, “local” and ‘early”. So far we have ignored that 
a string si can be a prefiv of another string s,, which invali- 
dates some of the above formulas. The problem can be fixed 
by using an explicit “end-of-string“ marker 1ini+> for each 
string s i .  r Total unique PP 

685 596 3.28 
1,000 870 3.52 
2,500 1,990 4.17 
5,000 4,078 4.50 
10,000 7,445 5.20 
25,000 15,571 6.11 
50,000 26,787 6.89 
100,000 44,714 7.71 
250,000 85,258 8.93 
500,000 135,550 9.93 

1,000,000 209,301 10.94 
2,000,000 313,320 11.97 
4,000,000 452,903 12.93 
8,000,000 630,718 13.83 
14,000,000 807,013 14.53 

I. I 

Figure 3: Final (left), local (middle) and early (right) as- 
signment of Probabilities for a tree representing the names 
(Bob, Boy, By) with the probabilities (i, $, $). 

Set 
Paining (SLN, SLP, SFP, ALP) 
Dev. Test (SLN, SLP, SFP, ALP) 
Test 1 (SLN) 
Test 2 (SLPI 

4. EXPERIMENTAL RESULTS 

Strings Letters 
4132 39687 
2063 15612 
685 4419 
305 1935 

4.1. Data Base 

Table 1: Sizes of Training, Crossvalidation and Test Sets 

4.2. The Name Lists 
A set of lists ranging fiom 1000 to 14 million names was 
used to evaluate the tree search procedure. To ensure that 
all names in the test set are represented’, we aeated the 
lists by filling up the SLN/SLP sets with randomly (without 
replacement) selected entries from a list of 14 million entries, 

‘together with some very infrequent cut-offs. Utterances con- 
taminated with any of the 6 transcribed noise dasses are used in 
the training and test sets. 

‘Over 40% of the 800,000 unique names in the 14 million list 
occur only once, 49 Names of the SLN test set are not in the list! 

which was obtained from directory listings from the north- 
east of the United States. Of course the lists contain many 
double names. The sizes of all lists, the number of unique 
entries and the perplexity of the SLN test set given a tree 
with and without probabilties is shown in table 2. 

PP (probs) 
2.65 
2.79 
3.13 
3.39 
3.66 
3.97 
4.20 
4.40 
4.61 
4.75 
4.87 
4.97 
5.06 
5.13 
5.17 

Table 2: Sizes of the names lists, and perplexity on the SLN 
test set using plain trees and trees with probabilities. 

4.3. Baseline Results 
16 Melscale FFT coefficients are computed every 10 msec. 
The MS-TDNX uses a hidden layer with 100 units, which cor- 
responds to a total of only about 34000 parameters (weights). 
Minimum phoneme duration constraints are computed from 
statistics on the training data and encoded in the acoustic 
letter models. The baseline recognition results using no LM, 
bi- and trigrams are shown in table 3. 

4.4. Tree Search 

A recognition test with a tree constructed from a list of 1 
million (209,301 unique) names was performed to compare 
the three Werent methods of assigning probabilities (find, 
local, early). Figure 4 demonstrates that for small be& 
sizes, assigning ”local” probabilities achieves the best results. 
As expected, with increasing beam size all three methods 
perform equally well, but the recognition becomes more time 
expensive. Figure 5 shows the recognition results on the 
SLN and SLP sets for lists of various sizes. The usage of 
probabilities in the tree comes with an astonishing perplexity 
reduction (see table 2), which is also rdected in significantly 
better recognition results. 

SLP, No LM 90.6 60.0 
SLN, No LM 88.2 53.7 - .. 
SLN, Bigrams 91.0 62.8 
SLN, Trigrams 92.5 70.2 

Table 3: Baseline results using no LM, bi- and trigrams. 
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Figure 4: String accuracy for a tree search in a list of 
1 million (200,000 unique) names. Three different methods 
for assigning probabilities in the tree are compared for dif- 
ferent beam sizes. The lower curve is the recognition time in 
seconds for one string. 
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Figure 5: String Accuracy using trees with and without 
probailities on the SLN and SLP test sets. 

5. SUMMARY 
We have tested the MS-TDNN letter recognizer on the 
spelled names provided in the OGI Spelled and Spoken Word 
Telephone Corpus. Without using any language modeling, 
the baseline result on SLP test set is 90.6% LA. As expected 
the SLN set is more difficult, 88.2% LA was achieved. These 
results are only about 2 - 3% worse than our results on high 
quality speech spellings [5, 11 probably because people tend 
to spell more careful under adverse telephone condition. Bi- 
and trigrams achieve only moderate improvements. If the 
search is constrained to a given set of names, high letter 
and string accuracies can be achieved. Enriching the search 
tree with probabilities proved to be astonishingly helpful. 
In lists in the order of 1000 names well above 95% string 
accuracy can be reached. Even in our largest list with 14 
million (800,000 unique) names, almost 90% string accuracy 
is achieved. The results are summarized in table 4. 

N 
SA 
53.7 
62.8 
70.2 
97.7 
94.4 
91.5 
89.3 
75.2 

Table 4: Letter and string accuracies for the SLN and SLP 
test set, given no language model, bi- and trigrams and trees 
enriched with probabilities. 
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