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Abstract. We describe and experimentally evaluate a sys-
tem, FeasPar, that learns parsing spontaneous speech. The
FeasPar architecture consists of neural networks and a search.
The neural networks learns the parsing task, and the search
improves performance by �nding the most probable and con-
sistent feature structure.
This paper focuses on the search component, and shows how
the search improves overall performance considerably. N-best
lists of feature structure fragments and agendas are used to
speed up the search.
To train and run FeasPar (Feature Structure Parser), only
limited handmodeled knowledge is required. FeasPar with
the search component performs better than a hand modeled
LR-parser in all six comparisons that are made. FeasPar is
trained, tested and evaluated in the Time Scheduling Domain,
and compared with the LR-parser. The handmodeling e�ort
for FeasPar is 2 weeks. The handmodeling e�ort for the LR-
parser was 4 months.

1 Introduction

In natural language processing, search is becoming a more
important role, as parsers get more robust and fault-tolerant.
The reason is obvious: parsers containing only (hard) rules
often have a limited robustness, and also fail to provide the

best parse or the N-best parses. Therefore, a mixture of 'hard'
and 'soft' rules (scores and penalties, probabilistic rules, and
constraints) is applied. In most parsers, the core consists of
hand modeled rules. With great success, these rules have been
annotated with 'soft' information[3, 10, 8, 6]. In this paper,
we present a parser, FeasPar, that learns to parse, instead of
having hand modeled rules. The FeasPar architecture consists
of neural networks and a search. The search �nds the best
feature structure based on the neural network outputs, and
feature structure constraints.

FeasPar requires only minor hand labeling, and learns the
parsing task itself. It generalizes well, and is robust towards
spontaneous e�ects and speech recognition errors. The parser
design is based on chunk features, and how they relate to each
other.

The parser is trained and evaluated with the Spontaneous
Scheduling Task, which is a negotiation situation, in which
two subjects have to decide on time and place for a meeting.
The subjects' calendars have con
icts, so that a few sugges-
tions have to go back and forth before �nding a time slot
suitable for both. The data sets are real-world data, contain-
ing spontaneous speech e�ects. The training set consists of
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560 sentences, the development test set of 65 sentences, and
the unseen evaluation set of 120 sentences. For clarity, the
example sentences in this paper are among the simpler in the
training set.

The parser produces feature structures, holding semantic
information. These feature structures are used as interlingua
in the speech-to-speech translation system JANUS[5]. Within
our research team, the design of the interlingua ILT was deter-
mined by the needs of uni�cation based parser and generator
writers. Consequently, the interlingua design was not tuned
towards connectionist systems. On the contrary, our parser
must learn the form of the output provided by a uni�cation
based parser.

This paper is organized as follows: First, a short tutorial
on feature structures, and how to build them. Second, we
describe the parser architecture and how it works. Then the
search algorithm is motivated and explained in detail. Finally,
results and conclusion follow.

2 Building a Feature Structure

Feature structures[4, 9] are used as output formalism for
FeasPar. Their core syntactic properties and terminology are:

1. A feature structure is a set of none, one or several feature
pairs.

2. A feature pair, e.g. (frame *clarify) , consists of a feature,
e.g. frame or topic, and a feature value.

3. A feature value is either:

(a) an atomic value, e.g. *clarify
(b) a complex value

4. A complex value is a feature structure.

In contrast to the standard feature structure de�nition
above, an alternative view-point is to look at a feature struc-
ture as a tree, where sets of feature pairs with atomic val-

ues make up the branches, and the branches are connected
with relations. Atomic feature pairs belonging to the same
branches, have the same relation to all other branches. Fur-
ther, when comparing the sentence with its feature structure,
it appears that there is a correspondence between parts of the
feature structure, and speci�c chunks of the sentence. In the
example feature structure of Figure 1, the following observa-
tions about feature pairs and relations apply:
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((speech-act *confirm)
(sentence-type *state)
(frame *clarify)
(topic ((frame *simple-time)

(day-of-week monday)))
(adverb perhaps)
(clarified ((frame *simple-time)

(day-of-week monday)
(day 27))))

Figure 1. Feature structure with the meaning \by monday i

assume you mean monday the twenty seventh"

� feature pairs:

feature pairs: corresponds to:

(day 27) \the twenty seventh"
((frame *simple-time)

(day-of-week monday)

(day 27))

\monday the

twenty seventh"

� relations: the complex value of the feature topic corre-
sponds to the chunk \by monday", and the complex value
of the feature clarified corresponds to \you mean monday

the twenty seventh".

Manually aligning the sentence with parts of the feature
structure, gives a structure as shown in Figure 2. A few com-

([]((speech-act *confirm)
(sentence-type *state)
(frame *clarify))
([]

([topic]((frame *simple-time))
([] by)
([]((day-of-week monday)) monday))

([] ([] i))
([]((adverb perhaps))

([] assume)))
([clarified]

([] ([] you))
([] ([] mean))
([]((frame *simple-time))

([]((day-of-week monday)) monday)
([] the)
([]((day 27)) ([rego] twenty

seventh)))))

Figure 2. Chunk parse: Sentence aligned with its feature
structure.

ments apply to this �gure:

� The sentence is hierarchically split into chunks.
� Feature pairs are listed with their corresponding chunk.
� Relations are shown in square brackets, and express how a
chunk relates to its parent chunk. Relations may contain
more than one element. This allows several nesting levels.

Once having obtained the information in Figure 2, produc-
ing a feature structure is straight forward, using the algorithm
of Figure 3. Summing up, we can de�ne this procedure as the
chunk'n'label principle of parsing:

1. Split the incoming sentence into hierarchical chunks.
2. Label each chuck with feature pairs and feature relations.
3. Convert this into a feature structure, using the algorithm

of Figure 3.

FUNCTION convert()
VAR

S: set;
C: chunk;

BEGIN
S := empty set;
assign(S,top_level_chunk);
return(S);

END;
PROCEDURE assign(VAR S: set;

C: chunk);
BEGIN
P := chunk_relation(C);
FOR each relation element PE in P

BEGIN
S' := empty set;
include (PE,S') in S;
S := S';

END;
FOR each feature pair FP in C

include FP in S;
FOR each chunk C' in C

assign(S,C);
END;

Figure 3. Algorithm for converting a parse to a feature
structure

3 Baseline Parser

The chunk'n'label principle is the basis for the design and
implementation of the FeasPar parser. FeasPar uses neural
networks to learn to produce chunk parses. It has two modes:
learn mode and run mode. In learn mode, manually modeled
chunk parses are split into several separate training sets; one
per neural network. In run mode, the input sentence is pro-
cessed through all networks, giving a chunk parse, which is
passed on to the converting algorithm shown in Figure 3. In
the following, the three main modules required to produce a
chunk parse are described:

The Chunker splits an input sentence into chunks. It con-
sists of three neural networks. In total, there are four levels
of chunks: word/numbers, phrases, clauses and sentence.

The Linguistic Feature Labeler attaches features and atomic
feature values (if applicable) to these chunks. For each feature,
there is a network, which �nds one or zero atomic values. Since
there are many features, each chunk may get no, one or several
pairs of features and atomic values. Since a feature normally
only occurs at a certain chunk level, the network is tailored
to decide on a particular feature at a particular chunk level.
A special atomic feature value is called lexical feature value.
It is indicated by '=' and means that the neural network only
detects the occurrence of a value, whereas the value itself is
found by a lexicon lookup. The lexical feature values are a
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true hybrid mechanism, where symbolic knowledge is included
when the neural network signals so.

The Chunk Relation Finder determines how a chunk relates
to its parent chunk. It has one network per chunk level and
chunk relation element. Further details on the baseline parser
can be found in [2, 1].

3.1 Lexicon and Neural Architecture

FeasPar uses a full word form lexicon. The lexicon consists of
three parts: one, a syntactic and semantic microfeature vector
per word, second, lexical feature values, and three, statistical
microfeatures.

Syntactic and semantic microfeatures are represented for
each word as a vector of binary values. The number and se-
lection of microfeatures are domain dependent and must be
made manually. For the English Spontaneous Scheduling Task
(ESST), the lexicon contains domain independent syntactic
and domain dependent semantic microfeatures. To manually
model a 600 word ESST vocabulary requires 3 full days.

Lexical feature values are stored in look-up tables, which
are accessed when the Linguistic Feature Labeler indicates a
lexical feature value. These tables are generated automatically
from the training data, and can easily be extended by hand
for more generality and new words. An automatic ambiguity
checker warns if similar words or phrases map to ambiguous
lexical feature values. Further information on the lexicon can
be found in [1].

All neural networks have one hidden layer, and are con-
ventional feed-forward networks. The learning is done with
standard back-propagation, combined with the constructive
learning algorithm PCL[7], where learning starts using a small
context, which is increased later in the learning process. This
causes local dependencies to be learned �rst. Further tech-
niques for improving performance are described in [1]. For
the neural networks, the average test set performance is 95.4
%.

4 Consistency Checking Search

The complete parse depends on many neural networks. Most
networks have a certain error rate; only a few networks are
perfect. When building complete feature structures, these net-
work errors multiply up, resulting in not only that many fea-
ture structures are erroneous, but also inconsistent and mak-
ing no sense. A search algorithm compensates for this. It is
based on two main information sources: First, probabilities
that originate from the network output activations; second, a
formal feature structure speci�cation, stating what combina-
tion of feature pairs is consistent. This speci�cation is already
available as an ILT speci�cation document.

4.1 Global Constraints

Additionally, a few other ILT constraints must be considered.
that are not modeled in the ILT speci�cation document. They
are called global constraints, and include two types:

1. Frame Constraint: An ILT is a feature structure, where
at each branch the feature frame has one and only one
value.

2. Compulsory Constraints: Not only a feature pair F1
may appear with another feature pair F2, but that F1 must

appear with F2, i.e. in some sense, F1 triggers F2.

4.2 Search Task

In combining the network output and the constraints, the
search �nds the feature structure with the highest probability,
under the given constraints being consistent. The outputs of
each neural network are normalized2to give a probabilistic
interpretation. Then they are sorted by probability. They can
now be viewed as an N-best list. Hence, the search input is
one N-best list per network. To combine these N-best lists
hierarchically to build an N-best list of feature structures,
forms the search task.

4.3 Search Complexity Precautions

The ESST baseline version of FeasPar had 37 Linguistic Fea-
ture Labeler Networks and 4 Chunk Relation networks. Each
network has up to 15 di�erent output values. It is crucial to
keep complexity and search times low. Therefore, the follow-
ing principles and constructs are applied:

Hierarchy of Feature Structure Fragments: A feature
structure is assembled using partial feature structures.
These are called fragments. The hierarchy corresponds to
the chuck hierarchy and in what sequence the fragments
are put together to form a complete feature structure (see
the algorithm in Figure 3).

Agendas: Agendas (one per fragment) are used to direct the
search, so that always the most probable of the unexamined
combination is examined �rst.

Lazy Evaluation: The Lazy Evaluation delays the expen-
sive calculations of fragments and agenda as long as possi-
ble. This is extremely important to reduce search time.

4.4 Search Principles

When building a feature structure, the search uses struc-
tures as shown in Figure 4: For the partial feature structure
of every chunk, it de�nes an N-best list of fragments. The
fragment parts correspond to chunk relation, chunk features,
and subchunks.

Example: The fragment example for chunktype=n in Figure
4 corresponds to the chunk:

([when](( frame *special-time))
([] in)
([] the)
([](( time-of-day =morning)) morning))

Building a fragment is an expensive operation. In order to
build fragments as few times as possible, an agenda is used in
parallel to each fragment list. Agenda calculations are much
cheaper than fragment calculations. The agenda and fragment
interact as follows:

The agenda keeps hold of possible fragment con�gurations.
It is sorted by log probability. Upon a request for a new frag-
ment, the next con�guration is fetched from the agenda, and

2 The outputs are linearly adjusted, so that they sum up to 1.
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agenda: 1.item: logP1

h elements
z }| {

fragment part1;1 fragment part1;2 ...... fragment part1;h

2.item: logP2 fragment part2;1 fragment part2;2 ...... fragment part2;n

. . .

. . .

. . .

fragment for chunktype=n:

h elements
z }| {

chunk relationtype=n i chunk featuretype=n i chunktype=n+1 0 ...... chunktype=n+1 j

fragment for chunktype=n relation i: segment 0 ...... segment jtype=n

fragment for chunktype=n features i: featuretype=n 0 ...... featuretype=n ktype=n

Examples:

fragment for chunktype=n: when( (frame *simple-time) () () (time-of-day *morning)

fragment for chunktype=n relation i: when( ()

fragment for chunktype=n features i: () ...... () (frame *simple-time) () ...... ()

Figure 4. Agenda and fragments. Double framed fragment parts indicates another fragment. Single framed fragment parts
indicates neural network output.

the fragment is built. If during fragment building, an incon-
sistency is detected, the building operation is abandoned, and
the next element on the agenda is used as con�guration. Then
a new fragment is built. This continues until a complete con-
sistent fragment has been built. This fragment is then stored
in the N-best list of its chunk, and returned.

During building, fragment parts must be fetched. These
are mostly fragments themselves (e.g. in Figure 4 fragment
for chunk relationtype=n i). If this fragment part has already
been calculated during the search, it is already available in
the N-best list. If not, a request for a new fragment is made.

The agenda itself is expanded as little as possible: When a
new agenda item has been accessed, those candidate agenda
items that may follow immediately are inserted in the agenda.
This avoids an combinatorial explosion, but ensures that no
con�guration is left out, or tried too late, with respect to logP.

The consistent constraints mentioned above, are derived as
follows: A feature structure formalism contains rules that ex-
press in which context what feature pairs may appear. Prior
to the parsing process, the program statically calculates for
every combination of two feature pairs, if the two feature pairs
may occur together or not. This information is consulted dur-
ing fragment building, as mentioned above.

Global constraints (see Section 4.1) can only be tested on
the complete feature structure. When the search returns a
complete feature structure for the upper most chunk, the
global constraints are tested on the feature structure. If a
test fails, the search is continued, until a complete feature
structure satisfying all global constraints have been found.

Even if all possible care is taken to speed up the search, the
worst-case search is too long. To prevent this, the search is
broken o� at a certain depth, and the search is repeated, this

time allowing one inconsistency. If this search gets too deep,
two inconsistencies are allowed, and so on.

4.5 Improvements

The following improvements are added to FeasPar in order to
gain performance:

Allowing Multiple Equal Feature Pairs: Occasionally,
when building a fragment during a search, more than one
subfragment contains the same feature pair, i.e. more than
one chunk is responsible for adding a particular feature
pair at a particular feature structure branch (even if it is
not supposed to happen, according to the principles of the
hand modeled alignment). The earlier Consistency Checker
Search does not accept this, but that one and only one in-
stance of a feature pair is produced for a particular branch.
A later version allows multiple feature pair instances.

Sloppy Lexical Feature Value: As described in Section 3
and Section 3.1, FeasPar uses lexical feature values. These
are collected from the training data and stored in the
lexicon. However, due to incompleteness or speech recog-
nizer errors, a situation may arise, where a natural lan-
guage chunk is not being stored in the lexical feature value
lookup table. In many cases however, a similar chunk may
be present, and could be used.

Constraint Relaxation: One important problem with the
search algorithm is that sometimes (1 % to 3 % of the anal-
yses), the search takes too long, 3and therefore has to be

3 In normal cases (97 % to 99 % of the analyses), the search takes
1 to 3 seconds. In the remaining few cases, the search can run for
10 minutes without completing.
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broken o�. This is due to the worst case scenario, where all
combinations must be searched to �nd a consistent con�g-
uration.
To escape from in�nite searches, is the purpose of the fol-
lowing break strategy: If a fragment N-best list exceeds a
�xed large number, e.g. 5000, then the search is stopped,
and an empty ILT is returned as a parse result. However,
since it is better to get a suboptimal analysis than no anal-
ysis at all, a constraint relaxation mechanism is added: If a
search is broken o�, then a new search is made, where one
constraint may be relaxed. If this doesn't give any parse
result, then two inconsistencies are allowed etc. (A maxi-
mum number of inconsistencies, e.g. 7, is there to prevent
in�niteness.)

5 Evaluation

FeasPar FeasPar GLR* parser
(with Search) (without Search) (4 months )

PM1 - T 71.8 % 33.8 % 51.6 %

FeasPar GLR* Parser
(with Search) (4 months)

PM1 - T 71.8 % 51.6 %
PM1 - S 52.3 % 30.3 %

PM2E - T 74 % 63 %
PM2E - S 49 % 28 %
PM3G - T 49 % 42 %
PM2G - S 36 % 17 %

Table 1. Comparing FeasPar with a GLR* parser hand
modeled for 4 months (Evaluation set (Set 3), S=speech data,

T=transcribed data).

FeasPar is compared with a handmodeled LR-parser. The
handmodeling e�ort for FeasPar is 2 weeks. The handmodel-
ing e�ort for the LR-parser was 4 months.

The evaluation environment is the JANUS speech transla-
tion system for the Spontaneous Scheduling Task. The sys-
tem have one parser and one generator per language. All
parsers and generators are written using CMU's GLR/GLR*
system[8]. They all share the same interlingua, ILT, which is
a special case of LFG or feature structures.

All Performance measures are run with transcribed (T)
sentences and with speech (S) sentences containing speech
recognition errors. Performance measure 1 is the feature ac-
curacy, where all features of a parser-made feature structure
are compared with feature of the correct handmodeled feature
structure. Performance measure 2 is the end-to-end transla-
tion ratio for acceptable non-trivial sentences achieved when
LR-generators are used as back-ends of the parsers. Perfor-
mance measure 2 uses an English LR-generator (handmodeled
for 2 years), providing results for English-to-English trans-
lation, whereas performance measure 3 uses a German LR-
generator (handmodeled for 6 months), hence providing re-
sults for English-to-German translations. Results for an un-
seen, independent evaluation set are shown in Figure 1.

As we see, FeasPar is better than the LR-parser in all six
comparison performance measures made.

6 Conclusion

We described and experimentally evaluated a system,
FeasPar, that learns parsing spontaneous speech. To train and
run FeasPar, only limited handmodeled knowledge is required
(chunk parses and a lexicon).
FeasPar is based on a principle of chunks, their features and
relations. The FeasPar architecture consists of two major
parts: A neural network collection and a search. The neural
networks �rst spilt the incoming sentence into chunks. Then
each chunk is labeled with feature values and chunk relations.
Finally, the search uses a formal feature structure speci�cation
as constraint, and outputs the most probable and consistent
feature structure. N-best lists of fragments and agendas are
used to speed up the search.
FeasPar was trained, tested and evaluated in the Time
Scheduling Domain, and compared with a handmodeled LR-
parser. The handmodeling e�ort for FeasPar was 2 weeks. The
handmodeling e�ort for the LR-parser was 4 months. FeasPar
performed better than the LR-parser in all six comparison
benchmarks that were made.
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