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ABSTRACT

Attempts at discourse processing of spontaneously spoken dialogue
face several difficulties: multiple hypotheses that resultfrom the
parser’s attempts to make sense of the output from the speechrec-
ognizer, ambiguity that results from segmentation of multi-sentence
utterances, and cumulative error — errors in the discourse con-
text which cause further errors when subsequent sentences are pro-
cessed. In this paper we will describe our robust parsers, our pro-
cedures for segmenting long utterances, and two approachesto dis-
course processing that attempt to deal with ambiguity and cumula-
tive error.

1. Introduction

In this paperwe describe how the JANUS [10] multi-lingual speech-
to-speech translation system addresses problems that arise in dis-
course processing of spontaneous speech. The analysis of spoken
dialogues requires discourse processors that can deal withambi-
guity and cumulative error – errors in the discourse contextwhich
cause further errors when subsequent sentences are processed.

The input to our discourse processing module is a set of interlin-
gua texts (ILTs) which are output by the parser. In an attemptto
achieve both robustness and translation accuracy when faced with
speech disfluencies and recognition errors, we use two different
parsing strategies: the GLR* parser designed to be more accurate,
and the Phoenix parserdesigned to be more robust. For both parsers,
segmentation into units of coherent meaning is achieved in atwo-
stage process, partly prior to and partly during parsing. The parsers
are described in Section 2 and the segmentation procedures are de-
scribed in Section 3.

We have also experimented with two approaches to discourse pro-
cessing: a plan inference approach, designed to keep a detailed
representation of the discourse context, and a finite state processor
augmented with a statistical component, designed to be fast. Both
discourse processors are robust over spontaneous speech. The plan
inference system uses graded constraints to assign penalties instead
of failing on unexpected input. The finite state approach incorpo-
rates a solution to the cumulative error problem. The discourse pro-
cessors and an evaluation of their performance in assigningspeech
acts are presented in Section 4. Much of our current researchdeals

((frame *free)
(who ((frame *i)))
(when ((frame *simple-time)

(day-of-week wednesday)
(time-of-day morning)))

(a-speech-act (*multiple* *suggest *accept))
(sentence-type *state)))

Sentence: I could do it Wednesday morning too.

Figure 1: An Example ILT

with combining the discourse processors with the other translation
components in a way that achieves optimal performance. Thisis
described in Section 4.1.

2. The Robust GLR and Phoenix Translation
Modules

JANUS employs two robust translation modules with complemen-
tary strengths. The GLR module gives more complete and accurate
translations whereas the Phoenix module is more robust overthe
disfluencies of spoken language. The two modules can run sepa-
rately or can be combined to gain the strengths of both.

The GLR module is composed of the GLR* parser [2][3], the LA-
Morph morphological analyzer and the GenKit generator. The
GLR* parser is based on Tomita’s Generalized LR parsing algo-
rithm [8]. GLR* skips parts of the utterance that it cannot in-
corporate into a well-formed sentence structure. Thus, it is well-
suited to domains in which non-grammaticality is common. The
parser conducts a search for the maximal subset of the original in-
put that is covered by the grammar. JANUS GLR grammars are
designed to produce feature structures that correspond to aframe-
based language-independent representation of the meaningof the
input utterance. For a given input utterance, the parser produces a
set of interlingua texts, or ILTs. An example of an ILT is shown
in Figure 1. The GLR* parser also includes several tools designed
to address the difficulties of parsing spontaneous speech, includ-
ing a statistical disambiguation module, a self-judging parse quality
heuristic, and the ability to segment multi-sentence utterances.

The JANUS Phoenix translation module [4] is an extension of the
Phoenix Spoken Language System [9]. It consists of a parsingmod-



Original utterance:
SÍ QUÉ TE PARECE TENGO EL MARTES DIECIOCHO Y EL MIÉRCOLES
DIECINUEVE LIBRES TODO EL D́IA PODŔIAMOS IR DE MATIŃE O
SEA EN LA TARDE VER EL LA PELÍCULA
(Roughly “Yes what do you think I have Tuesday the eighteenth and Wednesday the
nineteenth free all day we could go see the matinée so in the afternoon see the the
movie.”)

As decoded by the recognizer:
%NOISE% SI1 QUE1 TE PARECE %NOISE% TENGO EL MARTES
DIECIOCHO Y EL MIE1RCOLES DIECINUEVE LIBRES TODO EL DI1A
PODRI1AMOS IR DE MATINE1 %NOISE% O SEA LA TARDE A VER LA

Parsed:
%<S> si1 que1 te parece tengo el martes dieciocho y el
mie1rcoles diecinueve libres todo el di1a podri1amos *IR
*DE -MATINE1 o sea la tarde a ver LA % </S>
Parse Tree (� Semantic Representation):

[respond] ( [yes] ( SI1 ))

[your_turn] ( QUE1 TE PARECE )

[give_info] ( [my_availability] ( TENGO [temp_loc]
( [temporal] ( [point] ( [date] ( EL [d_o_w] ( MARTES ))
[date] ( [day_ord] ( DIECIOCHO ) [conj] ( Y ) EL [d_o_w]
( MIE1RCOLES )) [date] ( [day_ord] ( DIECINUEVE )))))
LIBRES ))

[give_info] ( [my_availability] ( [temp_loc]
( [temporal] ( [range] ( [entire] ( TODO )EL [unit]
( [t_unit] ( DI1A )))))PODRI1AMOS ))

[suggest] ( [suggest_meeting] ( [temp_loc] ( [temporal]
( O SEA [point] ( LA [t_o_d] ( TARDE ))))A VER ))

Generated:
English = <Yes what do you think? I could meet Tuesday
eighteenth and Wednesday the nineteenth I could meet
the whole day do you want to try to get together in the
afternoon >

Figure 2: A Phoenix Spanish-to-English Translation Example

ule and a generation module. Unlike the GLR method which at-
tempts to construct a detailed ILT for a given input utterance, the
Phoenix approach attempts to only identify the key semanticcon-
cepts represented in the utterance and their underlying structure. It
allows the ungrammaticalities that often occur between phrases to
be ignored and reflects the fact that syntactically incorrect sponta-
neous speech is often semantically well-formed. An exampleof out-
put from the Phoenix parser is shown in Figure 2. The parsed speech
recognizer output is shown with unknown (- ) and unexpected (* )
words marked. These segments were ignored by the parser.

The Phoenix parsing grammar specifies patterns which represent
concepts in the domain. Each concept, irrespective of its level in the
hierarchy, is represented by a separate grammar file. These gram-
mars are compiled into Recursive Transition Networks (RTNs). The
parser matches as much of the input utterance as it can to the pat-
terns specified by the RTNs. The parser can ignore any number
of words in between top-level concepts, handling out-of-domain or
otherwise unexpected input. The parser has no restrictionson the
order in which slots can occur. This may add to the ambiguity in
the segmentation of the utterance into concepts. The parseruses a
disambiguation algorithm that attempts to cover the largest number
of words using the smallest number of concepts. The result isa
meaningful but somewhat telegraphic translation.

Although both GLR* and Phoenix were specifically designed to
deal with spontaneous speech, each of the approaches has some
clear strengths and weaknesses. Because each of the two translation
methods appears to perform better on different types of utterances,
they may hopefully be combined in a way that takes advantage of
the strengths of each of them. One strategy that we have investi-
gated is to use the Phoenix module as a back-up to the GLR mod-
ule. The parse result of GLR* is translated whenever it is judged by
a parse quality heuristic to be “Good”. Whenever the parse result
from GLR* is judged as “Bad”, the translation is generated from
the corresponding output of the Phoenix parser. Results of using
this combination scheme are presented in Section 4.2. We arein
the process of investigating some more sophisticated methods for
combining the two translation approaches.

3. Segmentation

Spoken utterances are often composed of several sentences and/or
fragments. Our interlingual approach to translation requires that
utterances be broken down into units of coherent meaning or dis-
course function. We call these units Semantic Dialogue Units
(SDUs). Utterance segmentation in our system is a two stage pro-
cess. In the first stage, the utterance is broken down into smaller
segments or “chunks” based on acoustic, statistical and lexical cues.
The smaller segments are then passed on to the parsers, whichfur-
ther segment them into SDUs using their own internal criteria.

The acoustic cues we use in the pre-parsing segmentation proce-
dure include silence information and human and non-human noises
which we have found to be indicative of some SDU boundaries. The
statistical component of the segmentation procedure is a confidence
measure that attempts to capture the likelihood of a SDU boundary
between any pair of words in the utterance. Assume these words
are[w1w2 � w3w4], where the potential SDU boundary being con-
sidered is betweenw2 andw3. The likelihood of an SDU bound-
ary at this point is determined using an estimated probability that is
based on a combination of three bigram frequencies:F ([w1w2�]),F ([w2 � w3]) andF ([�w3w4]), representing the frequency of an
SDU boundary occuring to the right, in between, or to the leftof
the appropriate bigram. Breaks are predicted at points where the
estimated probability exceeds a threshold that was arrivedat ex-
perimentally. The third component of the pre-parsing segmenta-
tion procedure is a set of lexical cues. These cues are language-
and domain-specific words or phrases that have been determined
through linguistic analysis to have a very high likelihood of pre-
ceding or following an SDU boundary. These phrases alone do not
trigger SDU boundary breaks. They are combined with the statisti-
cal component. The occurrence of a lexical cue triggers a “boost”
increment to the probability of an SDU boundary, as determined by
the statistical component.

4. Discourse Processing

The discourse processing module in Janus disambiguates thespeech
act of each SDU, updates a dynamic memory of schedules, and in-
corporates the SDU into discourse context. We have experimented
with two approaches to discourse processing: a plan inference sys-
tem (based on work by Lambert [1]) and a finite state processor



Unsegmented Speech Recognition:

(%noise% si1 mira toda la man5ana estoy disponible
%noise% %noise% y tambie1n el fin de semana si podri1a
hacer mejor un di1a fin de semana porque justo el once
no puedo me es imposible va a poder fin de semana)

Pre-broken Speech Recognition:

(si1)
(mira toda la man5ana estoy disponible %noise% %noise%

y tambie1n el fin de semana)
(si podri1a hacer mejor un di1a fin de semana)
(porque justo el once no puedo me es imposible va a

poder fin de semana)

Parser SDU Segmentation (of Pre-broken Input):

(((si1))
((mira) (toda la man5ana estoy disponible) (y tambie1n)

(el fin de semana))
((si podri1a hacer mejor un di1a fin de semana))
((porque el once no puedo) (me es imposible)

(va a poder fin de semana)))

Translation:

"yes --- Look all morning is good for me -- and also
-- the weekend --- If a day weekend is better ---
because on the eleventh I can’t meet --
That is bad for me can meet on weekend"

Figure 3: Segmentation of a Spanish Full Utterance

augmented with a statistical component. The plan-based approach
handles knowledge-intensive tasks, exploiting various knowledge
sources. The finite state approach provides a fast and efficient alter-
native to the more time-consuming plan-based approach. Currently,
the two discourse processors are used separately. We intendto com-
bine these two approaches with a layered architecture, similar to the
one proposed for Verbmobil [6], in which the finite state machine
would constitute a lower layer providing an efficient way of rec-
ognizing speech acts, while the plan-based discourse processor, at
a higher layer, would be used to handle more knowledge-intensive
processes, such as recognizing doubt or clarification sub-dialogues
and robust ellipsis resolution. The performance of each approach in
assigning speech acts is presented in Section 4.2.

The plan-based discourse processor [7] takes as its input the best
parse returned by the parser. The discourse context is represented
as a plan tree. The main task of the discourse processor is to relate
the input to the context, or the plan tree. In general, plan infer-
ence starts from the surface forms of sentences from which speech
acts are then inferred. Multiple speech acts can be inferredfor one
ILT. A separate inference chain is created for each potential speech
act performed by the associated ILT. Preferences for picking one
inference chain over another were determined by a set of focusing
heuristics, which provide ordered expectations of discourse actions
given the existing plan tree. The speech act is recognized inthe
course of determining how the inference chain attaches to the plan
tree.

The finite state machine (FSM) discourse processor [5] describes
representative sequences of speech acts in the scheduling domain.
It is used to record the standard dialogue flow and to check whether

the predicted speech act follows idealized dialogue act sequences.
The states in the FSM represent speech acts in the domain. The
transitions between states record turn-taking information. Given
the current state, multiple following speech acts are possible. The
statistical component (consisting of speech act n-grams) is used to
provide ranked predictions for the following speech acts.

One novel feature of the finite state approach is that we incorpo-
rate a solution to the cumulative error problem. Cumulativeerror
is introduced when an incorrect hypothesis is chosen and incorpo-
rated into the context, thus providing an inaccurate context from
which subsequent context-based predictions are made. It isespe-
cially a problem in spontaneous speech systems where unexpected
input, out-of-domain utterances and missing information are hard
to fit into the standard structure of the contextual model. Toreduce
cumulative error, we focus on instances of conflict between the pre-
dictions of the FSM and the grammar. Our experiments show that
in the case of a prediction conflict between the grammar and the
FSM, instead of blindly trusting the predictions from the dialogue
context, trusting the non-context-based grammar predictions gives
better performance in assigning speech acts. This corresponds to
a jump from one state to another in the finite state machine. Sec-
tion 4.2 reports the performance of the FSM with jumps determined
by the non-context-based predictions of the grammar.

4.1. Late Stage Disambiguation

The robust parsing components discussed in Section 2 employa
large flexible grammar to handle such features of spoken language
as speech disfluencies, speech recognition errors, and the lack of
clearly marked sentence boundaries. This is necessary to ensure
the robustness and flexibility of the parser. However, as a side-
effect, the number of ambiguities increases. An important feature
of our approach to reducing parse ambiguity is to allow multiple
hypotheses to be processed through the system, and to use context
to disambiguate between alternatives in the final stages of the pro-
cessing, where knowledge can be exploited to the fullest. Local
utterance-level predictions are generated by the parser. The larger
discourse context is processed and maintained by the discourse pro-
cessing component, which has been extended to produce context-
based predictions for resolving ambiguity. The predictions from
the context-based discourse processing approach and thosefrom the
non-context-based parser approach are combined in the finalstage
of processing.

We experimented with two methods of automatically learningfunc-
tions for combining the context-based and non-context-based scores
for disambiguation, namely a genetic programming approachand a
neural net approach. While we were able, in the absence of cumu-
lative error, to get an improvement of both combination techniques
over the parser’s non-context-based statistical disambiguation tech-
nique, in the face of cumulative error, the performance decreased
significantly. We are in the process of incorporating our cumulative
error reduction technique in the task of disambiguation.



Approaches Per cent correct

Random from Grammar 38.6%
FSM Strict Context 52.4%
FSM Jumping Context 55.2%
Plan-Based DP 53.8%

Table 1: Approaches to Speech Act Assignment

4.2. Evaluation

The results in Table 1 show the the performance of the two dis-
course processing approaches, namely the plan-based approach and
the finite state machine approach for the task of assigning speech
acts. The FSM processor with the cumulative error reductionmech-
anism is marked byFSM Jumping Context, and the FSM without
jumping is marked byFSM Strict Context. The choice of randomly
selecting a speech act from the non-context-based predictions of the
grammar indicates the performance of the system when we do not
use any contextual information.

We tested the discourse processors on ten unseen dialogues,with
a total of 506 utterances. Out of the 506 utterances in the test set,
we considered only 211 utterances for which the grammar returns
multiple possible speech acts. We measured how well the different
approaches correctly disambiguate the multiple speech acts with re-
spect to hand-coded target speech acts.

Table 1 demonstrates the effect of context in spoken discourse pro-
cessing. Since the test was conducted on utterances with multiple
possible speech acts proposed by the non-context-based grammar
component, it evaluates the effectiveness of the various context-
based approaches in disambiguating speech acts. All of the ap-
proaches employing context perform better than the non-context-
based grammar predictions. The evaluation also demonstrates that it
is imperative to estimate context carefully. The FSM jumping con-
text approach, which attempts to reduce cumulative error, gives bet-
ter performance than the the FSM strict context approach. Itis even
better than the more knowledge-intensive plan-based approach. We
expect that performance of plan-based approach will improve when
we introduce a solution to the cumulative error problem.

5. Conclusions and Future Work

In this paper, we described how our system addresses problems that
arise in discourse processing of spontaneous speech. First, we de-
scribed two different robust parsing strategies — the GLR* parser
and the Phoenix parser, and the procedures that both parsersuse
to segment the input into units of coherent meaning representa-
tion that are also of an appropriate size for discourse processing.
Then we described two approaches to discourse processing — the
plan inference approach and the finite state approach. In describing
the finite state approach, we presented one solution to the cumula-
tive error problem. Finally, we described our method of latestage
disambiguation where the context-based predictions from our dis-
course processors are combined with the non-context-basedpredic-
tions from the parsers. Our future efforts will concentrateon find-
ing improved methods for combining different knowledge sources
effectively for the disambiguation task, treating cumulative error in

the plan-based discourse processor, and improving the effectiveness
of contextual information in constraining the speech translation pro-
cess.
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