
Blind separation of delayed and convolvedsources.Te-Won LeeMax-Planck-Society, GERMANY,AND Interactive Systems GroupCarnegie Mellon UniversityPittsburgh, PA 15213, USAtewon@cs.cmu.edu Anthony J. BellComputational Neurobiology,The Salk Institute10010 N. Torrey Pines RoadLa Jolla, California 92037, USAtony@salk.eduRussell H. LambertDept of Electrical EngineeringUniversity of South California, USArlambert@sipi.usc.eduAbstractWe address the di�cult problem of separating multiple speakerswith multiple microphones in a real room. We combine the workof Torkkola and Amari, Cichocki and Yang, to give Natural Gra-dient information maximisation rules for recurrent (IIR) networks,blindly adjusting delays, separating and deconvolving mixed sig-nals. While they work well on simulated data, these rules failin real rooms which usually involve non-minimum phase transferfunctions, not-invertible using stable IIR �lters. An approach thatsidesteps this problem is to perform infomax on a feedforward archi-tecture in the frequency domain (Lambert 1996). We demonstratereal-room separation of two natural signals using this approach.1 The problem.In the linear blind signal processing problem ([3, 2] and references therein), Nsignals, s(t) = [s1(t) : : : sN (t)]T , are transmitted through a medium so that anarray of N sensors picks up a set of signals x(t) = [x1(t) : : : xN (t)]T , each of which



has been mixed, delayed and �ltered as follows:xi(t) = NXj=1M�1Xk=0 aijksj(t�Dij � k) (1)(Here Dij are entries in a matrix of delays and there is an M -point �lter, aij ,between the the jth source and the ith sensor.) The problem is to invert thismixing without knowledge of it, thus recovering the original signals, s(t).2 Architectures.The obvious architecture for inverting eq.1 is the feedforward one:ui(t) = NXj=1M�1Xk=0 wijkxj(t� dij � k): (2)which has �lters, wij , and delays, dij , which supposedly reproduce, at the ui, theoriginal uncorrupted source signals, si. This was the architecture implicitly assumedin [2]. However, it cannot solve the delay-compensation problem, since in eq.1 eachdelay, Dij , delays a single source, while in eq.2 each delay, dij is associated with amixture, xj .Torkkola [8], has addressed the problem of solving the delay-compensation prob-lem with a feedback architecture. Such an architecture can, in principle, solve thisproblem, as shown earlier by Platt & Faggin [7]. Torkkola [9] also generalised thefeedback architecture to remove dependencies across time, to achieve the deconvo-lution of mixtures which have been �ltered, as in eq.1.Here we propose a slightly di�erent architecture than Torkkola's ([9], eq.15). Hisarchitecture could fail since it is missing feedback cross-weights for t = 0, ie: wij0.A full feedback system looks like:ui(t) = xi � NXj=1M�1Xk=0 wijkuj(t� dij � k): (3)and is illustrated in Fig.1. Because terms in ui(t) appear on both sides, we rewritethis in vector terms: u(t) = x(t)�W0u(t) �PM�1k=1 Wku(t� k), in order to solveit as follows: u(t) = (I+W0)�1(x(t) �M�1Xk=1 Wku(t� k)) (4)In these equations, there is a feedback unmixing matrix, Wk, for each time pointof the �lter, but the `leading matrix', W0 has a special status in solving for u(t).The delay terms are useful since one metre of distance in air at an 8kHz samplingrate, corresponds to a whole 25 zero-taps of a �lter. Reintroducing them gives us:u(t) = (I+W0)�1(x(t) � net(t)); neti(t) = NXj=1M�1Xk=1 wijku(t� dij � k)) (5)
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Figure 1: The feedback neural architecture of eq.9, which is used to separate anddeconvolve signals. Each box represents a causal �lter and each circle denotes atime delay.3 Algorithms.Learning in this architecture is performed by maximising the joint entropy, H(y(t)),of the random vector y(t) = g(u(t)), where g is a bounded monotonic nonlinearfunction (a sigmoid function). The success of this for separating sources dependson four assumptions: (1) that the sources are statistically independent, (2) thateach source is white, ie: there are no dependencies between time points, (3) thatthe non-linearity, g, has a derivative which has higher kurtosis than the probabilitydensity functions (pdf's) of the sources, and (4) that a stable IIR (feedback) inverseof the mixing exists; ie: that a is minimum phase (see section 5).Assumption (1) is reasonable and Assumption (3) allows some tailoring of our algo-rithm to �t data of di�erent types. Assumption (2), on the other hand, is not truefor natural signals. Our algorithm will whiten: it will remove dependencies acrosstime which already existed in the original source signals, si. However, it is possibleto restore the characteristic autocorrelations (amplitude spectra) of the sources bypost-processing. For the reasoning behind Assumption (3) see [2]. We will discussAssumption 4 in section 5.In the static feedback case of eq.5, when M = 1, the learning rule for the feedbackweightsW0 is just a co-ordinate transform of the rule for feedforward weights, Ŵ0,in the equivalent architecture of u(t) = Ŵ0x(t). Since Ŵ0 � (I +W0)�1, wehave W0 = Ŵ�10 � I, which, due to the quotient rule for matrix di�erentiation,di�erentiates as: �W0 = �(Ŵ�1)�Ŵ(Ŵ�1) (6)The best way to maximise entropy in the feedforward system is not to follow theentropy gradient, as in [2], but to follow its `natural' gradient, as reported by Amariet al [1]: �Ŵ / @H(y)@Ŵ ŴTŴ (7)This is an optimal rescaling of the entropy gradient [1, 3]. It simpli�es the learning



rule and speeds convergence considerably. Evaluated, it gives [2]:�Ŵ0 / (I+ ŷuT )Ŵ0; ŷi = @@yi @yi@ui (8)Substituting into eq.7 gives the natural gradient rule for static feedback weights:�W0 / �(I+W0)(I+ ŷuT ); (9)This reasoning may be extended to networks involving �lters. For the feedforward�lter architecture u(t) =PM�1k=0 Ŵkx(t� k), we derive a natural gradient rule (fork > 0) of: �Ŵk / ŷuTt�kŴk (10)where, for convenience, time has become subscripted. Performing the same coordi-nate transforms as for W0 above, gives the rule:�Wk / �(I+Wk)ŷuTt�k (11)(We note that learning rules similar to these have been independently derived byCichocki et al [4]). Finally, for the delays in eq.5, we derive [2, 8]:�dij / @H(y)@dij = �ŷi M�1Xk=1 @@twijku(t� dij � k) (12)This rule is di�erent from that in [8] because it uses the collected temporal gradientinformation from all the taps. The algorithms of eq.9, eq.11 and eq.12 are the oneswe use in our experiments on the architecture of eq.5.4 Simulation results for the feedback architectureTo test the learning rules in eq.9, eq.11 and eq.12 we used an IIR �lter system torecover two sources which had been mixed and delayed as follows (in Z-transformnotation): A11(z) = 0:9 + 0:5z�1 + 0:3z�2A21(z) = �0:7z�5 � 0:3z�6 � 0:2z�7A12(z) = 0:5z�5 + 0:3z�6 + 0:2z�7A22(z) = 0:8� 0:1z�1 (13)The mixing system, A(z), is a minimum-phase system with all its zeros inside theunit circle. Hence, A(z) can be inverted using a stable causal IIR system since allpoles of the inverting systems are also inside the unit circle. For this experiment, wechose an arti�cially-generated source: a white process with a Laplacian distribution[fx(x) = exp(�jxj)]. In the frequency domain the deconvolving system looks asfollows: � U1(z)U2(z) � = 1D(z) � W11(z) W21(z)W12(z) W22(z) �� X1(z)X2(z) � (14)where D(z) =W11(z)W22(z)�W12(z)W21(z)). This leads to the following solutionfor the weight �lters: W11(z) = A22(z) W22(z) = A11(z)W21(z) = �A21(z) W12(z) = �A12(z) (15)



The learning rule we used was that of eq.9 and eq.11 with the logistic non-linearity,yi = 1= exp(�ui). Fig.2A shows the four �lters learnt by our IIR algorithm. Thebottom row shows the inverting system convolved with the mixing system, provingthat W �A is approximately the identity mapping. Delay learning is not demon-strated here, though for periodic signals like speech we observed that it is subjectto local minima problems [8, 9].
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Figure 2: Top two rows: learned unmixing �lters for (A) IIR learning on minimum-phase mixing, and (B) FIR freq.-domain learning on non-minimum phase mixing.Bottom row: the convolved mixing and unmixing systems. The delta-like responseindicates successful blind unmixing. In (B) this occurs acausally with a time-shift.5 Back to the feedforward architecture.The feedback architecture is elegant but limited. It can only invert minimum-phase mixing (all zeros are inside the unit circle meaning that all poles of theinverting system are as well). Unfortunately, real room acoustics usually involvesnon-minimum phase mixing.There does exist, however, a stable non-causal feedforward (FIR) inverse for non-minimum phase mixing systems. The learning rules for such a system can be formu-lated using the FIR polynomial matrix algebra as described by Lambert [5]. Thismay be performed in the time or frequency domain, the only requirements beingthat the inverting �lters are long enough and their main energy occurs more-or-less in their centre. This allows for the non-causal expansion of the non-minimumphase roots, causing the roughly symmetrical \
anged" appearance of the �lters inFig.2B.For convenience, we formulate the infomax and natural gradient infomax rules [2, 1]in the frequency domain: �W /W�H + �t(ŷ)XH (16)�W / (I+ �t(ŷ)UH)W (17)where the H superscript denotes the Hermitian transpose (complex conjugate). Inthese rules, as in eq.14, W is a matrix of �lters and U and X are blocks of multi-



sensor signal in the frequency domain. Note that the nonlinearity ŷi = @@yi @yi@ui stilloperates in the time domain and the �t is applied at the output.6 Simulation results for the feedforward architectureTo show the learning rule in eq.17 working, we altered the transfer function in eq.13as follows: A11(z) = 1 + 1:0z�1 � 0:75z�2: (18)This system is now non-minimum phase, having zeros outside the unit circle. Theinverse system can be approximated by stable non-causal FIR �lters. These werelearnt using the learning rule of eq.17 (again, with the logistic non-linearity). Theresulting learnt �lters are shown in Fig.2B where the leading weights were chosento be at half the �lter size (M=2). Non-causality of the �lters can be clearly ob-served for w12 and w21, where there are non-zero coe�cients before the maximumamplitude weights. The bottom row of Fig.2B shows the successful separation byplotting the complete unmixing/mixing transfer function: W �A.7 Experiments with real recordingsTo demonstrate separation in a real room, we set up two microphones and recorded�rstly two people speaking and then one person speaking with music in the back-ground. The microphones and the sources were both 60cm apart and 60cm fromeach other (arranged in a square), and the sampling was 16kHz. Fig.3A showsthe two recordings of a person saying the digits \one" to \ten" while loud musicplays in the background. The IIR system of eq.5, eq.9 and eq.11 was unable toseparate these signals, presumably due to the non-minimum-phase nature of theroom transfer functions. However, the algorithm of eq.17, converged after 30 passesthrough the 10 second recordings. The �lter lengths were 256 (corresponding to16ms). The separated signals are shown in Fig.3B. Listening to them conveys asense of almost-clean separation, though interference is audible. The results on thetwo people speaking were similar.An important application is in spontaneous speech recognition tasks where the bestrecognizer may fail completely in the presence of background music or competingspeakers (as in the teleconferencing problem). To test this application, we fed into aspeech recognizer, ten sentences recorded with loud music in the background and tensentences recorded with a simultaneous speaker interference. After separation, therecognition rate increased considerably for both cases. These results are reportedin detail in [6].8 ConclusionsStarting with `Natural gradient infomax' IIR learning rules for blind time delayadjustment, separation and deconvolution, we showed how these worked well onminimum-phase mixing, but not on non-minimum-phase mixing, as usually occursin rooms. This led us to an FIR frequency domain infomax approach suggestedby Lambert [5]. The latter approach shows much better separation of speech andmusic mixed in a real-room. Based on these techniques, it should now be possibleto develop real-world applications.
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