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Abstract 

We present a Time Delay Neural Network (TDNN) approach to pho­
neme recognition which is characterized by two important properties: 
1:) Using a 3 layer arrangement of simple computing units, it can rep­
resent arbitrary nonlinear decision surfaces. The TDNN learns these 
decision surfaces automatically using error back-propagatio11[l]. 2.) 
The time-delay arrangement enables the network to discover acoustic­
phonetic features and the temporal relationships between them inde­
pendent of position in time and hence not blurred by temporal shifts 
in the input. For comparison, several discrete Hidden Markov Mod­
els (HMM) were trained to perform the same task, i.e., the speaker­
dependent recognition of the phonemes" B", ''D", and "G" extracted 
from varying phonetic contexts. The TDNN achieved a recognition 
rate of 98:5 % correct, compared to 93.7 % for the best of our HMMs. 
We show that the TDNN "invented" well-known acoustic-phonetic 
features (e.g., F2-rise, F2-fall, vowel-onset) as useful abstractions. 
It also developed alternate internal representations to link different 
acoustic realizations to the same -concept. 

1 Introduction 

In recent years, the advent of new learning procedures and the avail­
ability of high speed parallel supercomputers have given rise to a re­
newed interest in connectionist models of intelligence[l]. These mod­
els are particularly interesting for cognitive tasks that require massive 
constraint satisfaction 1 i.e. 1 the parallel evaluation of many clues and 
facts and their interpretation in the light of numerous interrelated con­
straints.· Because of the far-reaching implications to speech recogni­
tion, neural networks have recently been compared with other pattern 
recognition classifiers[2] and explored as alternative to other speech 
recognition techniques (see [2,3] for review). Some of these studies re­
port very incouraging performance results[4], but others show neural 
nets as underperforming existing techniques. One possible explana­
tion for the mixed comparative performance results so far might be 
given by the inability of many neural network architectures to deal 
properly with the dynamic nature of speech. Various solutions to this 
problem, however, are now beginning to emerge[5:6,7 ,8] and continued 
work in this area is likely to lead to more powerful speech recognition 
systems in the future. 

To capture the dynamic nature of speech a network must be able 
to 1.) represent temporal relationships between acoustic events, while 
at the same time 2.) provide for invariance under translation in time. 
The specific movement of a formant in time, for example, is an im­
portant cue to determining the identity of a voiced stop, but it is 
irrelevant whether the same set of events occurs a. little sooner or 
later in ·the course of time. ~tithout translation invariance a neural 
net requires precise segmentation, to align the input pattern properly. 
Since this is· not always possible in practice, learned features tend 
to get. blurred (in order to accommodate slight misalignments) and 
their performance deteriorates. In the present paper, we describe a 
Time Delay Neural Network (TDNN), which addresses both of these 
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aspects. We demonstrate through extensive performance evaluation 
that superior recognition results can be achieved. 

2 Time Delay Neural Networks 

To be useful for speech recognition; a layered feed forward neural net­
work must have a number of properties. First, it should have multiple 
layers and sufficient interconnections between units in each of these 
layers. This is to ensure that the network will have the ability to 
learn complex non-linear decisio.n surfaces[2]. Second, the network 
should have the ability to represent relationships between events in 
time. These events could be spectral coefficients, but might also be the 
output of higher level feature detectors. Third, the actual features or 
abstractions learned by the network should be invariant under transla­
tion in lime. Fourth, the learning procedure should not require precise 
temporal alignment of the l.abels that are to be learned. Fifth, the 
number of weights in the network should be small compared to the 
amount of training data so that the network is forced to encode the 
training data by extracting regularity. In the following, we describe a 
TDN'.'l' architecture that satisfies all of these criteria and is designed 
explicitly for the recognition of phonemes, in particular, the voiced 
stops )' D", "D,, and 1' G". 

2.1 A TDNN for Phoneme Recognition 

The basic unit used in many neural networks computes the weigh­
ted sum of its inputs and then passes this sum through a non-linear 
function, most commonly a threshold or sigmoid function[2,l]. In our 
TDNN, this basic unit is modified by introducing delays D1 through 
DN as shown in Fig.l. The J inputs of such a unit now will be multi­
plied by several weights, one for each delay and one for the undelayed 
input. For N = 2, and J = 16, for example, 48 weights will be needed 
to compute the weighted sum of the 16 inputs, with each input now 

Figure 1: A Time Delay Neural Network (TDNN) unit 
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measured at three different points in time. In this way a TDK N unit 
has the ability to relate and compare current input with the past his­
tory of events. The sigmoid function was chosen as the non-linear 
output function F due to its convenient mathematical properties[l,9]. 

For the recognition of phonemes, a three layer net is constructed. 
Its overall architecture and a typical set of activities in the units are 
shown in Fig.2. 

At the lowest level, 16 melscale spectral coefficients serve as input 
to the network. Input speech, sampled at 12 kHz, was hamming 
windowed and a 256-point FFT computed every 5 msec. Melscale 
coefficients were computed from the power spectrum[3] and adjacent 
coefficients in time collapsed resulting in an overall 10 msec frame rate. 
The coefficients of an input token (in this case 15 frames of speech 
centered around the hand labeled vowel onset) were then normalized 
to lie between -1.0 and +1.0 with \he average at 0.0. Fig.2 ,hows 
the resulting coefficients for the speech token "DA" as input to the 
network, where positive values are shown as black and negative values 
as grey squares. 

This input layer is then fully interconnected to a layer of 8 time 
delay hidden units, where J = 16 and K = 2 (i.e., 16 coefficients 
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Figure 2: The TDNN architecture (input: "DA") 

over three frames with time delay 0, 1 and 2). An alternative way 
of seeing this is depicted in Fig.2. It shows the inputs to these time 
delay units expanded out spatially into a 3 frame window, which is 
passed over the input spectrogram. Each unit in the first hidden layer 
now receives input (via 48 weighted connections) from the coefficients 
in the 3 frame window. The particular delay choices were motivated 
by earlier studies[3]. 

In the second hidden layer, each of 3 TDNN units looks at a 5 
frame window of activity levels in hidden layer 1 (i.e., J = 8, N = 
4). The choice of a larger 5 frame window in this layer was motivated 
by the intuition that higher level units should learn to make decisions 
over a wider range in time based on more local abstractions at lower 
levels. 

Finally, the output is obtained by integrating (summing) the ev­
idence from each of the 3 units in hidden layer 2 over time and con­
necting it to its pertinent output unit (shown in Fig.2 ovr.r 9 frames 
for the "D" output unit). In practice, this summation is implemented 
simply as another TDNK unit which has fixed equal weights to a row 
of unit firings over time in hidden layer 2. 

When the TDNN has learned its internal representation, it per­
forms recognition by passing input speech over the TDNN units. In 
terms of the illustration of Fig.2 this is equivalent to passing the time 
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delay windows over the lower level units' firing patterns. At the lowest 
level, these firing patterns simply consist of the sensory input, i.e., the 
spectral coefficients. 

Each TDNN unit outlined in this section has the ability to encode 
temporal relationships within the range of the N delays. Higher layers 
can attend to larger time spans, so local short duration features will be 
formed at the lower ]ayer and more complex longer duration features 
at the higher layer. The learning procedure ensures that each of the 
units in each layer has its weights adjusted in a way that improves 
the network's overall performance. 

2.2 Learning in a TDNN 

Several learning techniques exist for optimization of neural net­
works[l ,2]. For the preoent network we adopt the Back-propagation 
Leaming Procedure[l,9]. This procedure iteratively adjusts all the 
weights in the network so as to decrease the error obtained at its 
output units. To arrive at a translation invariant network, we need 
to ensure during learning that the network is exposed to sequences 
of patterns and that it is allowed (or encouraged) to learn about the 
most. powerful cues and sequences of cues among them. Conceptually, 
the back-propagation procedure is applied to speech patterns that are 
stepped through in time. An equivalent way of achieving this result 
is to use a spatially expanded input pattern, i.e., a spectrogram plus 
some constraints on the weights. Each collection of TDNN-units de­
scribed above is duplicated for each one frame shift in time. In this 
way the whole history of activities is available at once. Since the 
shifted copies of the TDN"s-units are mere duplicates and are to look 
for the san1e acoustic event, the weights of the corresponding connec­
tions in the time shifted copies must be constrained to be the same. To 
realize this, we first apply the regular back-propagation forward and 
backward pass to all time shifted copies as if they were separate events. 
This yields different error derivatives for corresponding (time shifted) 
connections. Rather than changing the weights on t.ime-shifted con­
nections separately, however, we actually update each weight on cor­
responding connections by the same value, namely by the average of 
all corresponding time-delayed weight changes1 . Fig.2 illustrates this 
by showing in each layer only two connections that are linked to ( con­
strained to have the same value as) their time shifted neighbors. Of 
course, lhis applies lo all connection• and all time shifts. In this way, 
the network is forced to discover useful acoustic-phonetic features in 
the input, regardless of when in time they actually occurred. This is 
an important property, as it makes the network independent of error­
prone preprocessing algorithms, that otherwise would be needed for 
time alignment and/or segmentation. 

The procedure described here is computationally rather expensLve, 
due to the many iterations necessary for learning a complex multi­
dimensional weight space and the number of learning samples. In 
our case, about 800 learning samples were used and uetween 20,000 
and 50,000 iterations (step-size 0.002, moment.um 0.1) of the back­
propagatlon loop were run over all training samples. For greater 
]earning speed, simulations were run on a 4 processor Alliant super­
computer and a staged learning strategy[3] was used. Learning still 
took about 4 <lays, uut additional substantial increases in learning 
speed are possible[3]. Of course, this high computational cost ap­
plies only to learning. Recognition can easily be run in better than 
real-time. 

3 Hidden Markov Models 

As an alternative recognition approach we have implemented seve­
ral Hidden Markov Models (HMM) aimed at phoneme recognition. 
HMMs are currently the most successful and promising approach 
[10,11,12] in speech recognition as they have been successfully ap­
plied to the whole spectrum of recognition tasks. HMMs' success is 

1 Note that in the experiments reported below these weight changes were actu­
ally carried out after presentation of all training samples[9~. 



partially due to their ability to cope with the variability in speech by 
means of stochastic modeling. The HMMs developed in our laboratory 
were aimed at phoneme recognition, more specifically the voiced stops 
"B", "D" and ''G''. tilore detail including results from experiments 
with variations on these models are given elsewhere[13,3] and we will 
restrict ourselves to a brief description of our best configuration. 

The acoustic front end for Hidden Markov Modeling is typically a 
vector quantizer that classifies sequences of short-time spectra. Input 
speech wa.s sampled at 12kHz, preemphasized by (1 - 0.97 .-1 ) and 
windowed using a 256-point Hamming window every 3 msec. Then 
a 12-order LPC analysis wa.s carried out. A codebook of 256 LPC 
spectrum envelopes was generated from 216 phonetically balanced 
words: The Weighted Likelihood Ratio augmented with power values 
(PWLR)[13] was used as LPC distance measure for vector quantiza­
tion. An HMM with four states and six transitions (the last state 
without a selfioop) was used in this study. The HMM probability 
values were trained using vector sequences of ph9nemes according to 
the forward-backward algorithm[lO]. The vector sequences for "B", 
"D" and "G" include a consonant part and five frames of the follow­
ing vowel. This is to model important transient informations, such 
as formant movement and has lead to improvements over context in­
sensitive models [13]. The IIM~f was trained until convergence using 
about 250 phoneme tokens of vector sequences per speaker and pho­
neme: Typically, about 10 to 20 learning iterations were required 
for 256 tokens. A training run took about one hour on a VAX 8700. 
Floor values were set on the output probabilities to avoid errors caused 
by zero-probabilities, We have experimented with composite models, 
which were trained using a combination of context-independent and 
context'dependent prouahility values[12], but in our case no signifi­
cant improvements were .attained. 

4 Recognition Experiments 

We now turn to an experimental evaluation of the two techniques 
described in the previous Sections. To provide a good framework 
for comparison, the same experimental conditions were given to both 
methods. For both, the same training data was used and both were 
tested on the same testing databa.se as described b clow. 

4.1 Experimental Conditions 

For performance evaluation, we have used a large vocabulary database 
of 5240 common Japanese words[3]. These words were uttered in isola­
tion by three male native Japanese speakers (MAU, MHT and M.'<M, 
all professional announcers). All utterances were recorded in a sound 
proof booth and digitized at a 12 kHz sampling rate. The database 
was then split into a training set and a testing set of 2620 utterances 
each, from which the actual phonetic tokens were extracted. 

The phoneme recognition task chosen for this experiment was the 
recognition of the voiced stops, i.e., the phonemes "B", "D'1 and ')G". 
The actual tokens were extracted from the utterances using manually 
selected acoustic-phonetic labels provided with the database[3]. Both 
recognition schemes, the TDNN s and the HMMs, were trained and 
tested speaker-dependently. 

In our database, no preselection of tokens was performed. All to­
kens labeled as one of the three voiced stops were included. Since 
the consonant tokens were extracted frorn entire utterances and not 
read in isolation) a significant amount of acoustic variability is intro­
duced by the phonetic context and the token's position within the 
utterance2 • Both of our recognition algorithms are only given the 
phonemic identity of a token and must find their' own ways of repre­
senting the fine variations of speech. Since recognition results based 
on the training data arc not meaningful, we report in the following 
only the results from open testingi i.e., from performance evaluation 
over the separate testing data set. 

2 In Japanese, for example, a. "G" is nasalized, when it occurs embedded in an 
utterlince, _but not in utterance initial position{3]. 
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4.2 Results 

Table 1 shows the results from the recognition experiments described 
above. As can be seen, for all three speakers, the TDNN yields con­
siderable performance improvements over our HMM. Averaged over 
all three speakers, the error rate is reduced from 6.3% to 1.5%, a more 
than four fold reduction in error. 

speaker number TDNN 'l'DNN HMM HMM 
of tokens # errors % correct # errors % correct 

b(227) 4 18 
MAU d(l 79) 3 98.8 6 92.9 

g(252) 1 23 

b(208) 2 8 
MHT d(170) 0 99.1 3 97.2 

g(254) 4 7 

b(216) 11 27 
MNM d(l78) 1 97.5 13 90.9 

g(256) 4 19 

Table 1: Recognition results for three speakers over test data using 
TDNN and HMM 

Figure 3: Scatter plots showing log probabilities/activation levels for 
the best matching incorrect case vs. the correctly recognized "B"s 
using an HMM (left) and A TDNN (right) 

Fig.3 shows scatter plots of the recognition outcome for the "B"s 
in the test data for speaker MAU, using the HMM and the TDNN. For 
tl1e HMM (Fig.3, left), the log probability of the next best matching 
incorrect token is plotted against the log probability (normalized by 
number of frames) of the conect token, "B". On the right of Fig.3, 
the activation levels from the TDNN's output units are plotted in the 
same fashion. The most. striking observation that can be made from 
these plots is that the output units of a TDNN have a tendency to 
fire with high confidence as can be seen from the cluster of dots in the 
lower right hand corner of the scatter plots. Most output units tend to 
fire strongly for the correct phonemic class and not at all for any other, 
a property that is encouraged by the learning procedure. One possible 
consequence of this is that rejection thresholds could be introduced 
to improve recognition performance. If one were to eliminate among 
speaker MAU's tokens all those whose highest activation level is less 
than 0.5 and those which result in two or more closely competing 
activations (i.e., dots near the diagonal of the scatter plots; see[3] 
for complete set), 2.6% of all tokens would be rejected, while the 
remaining substitution error rate would be less than 0.46%. 

4.3 The Learned Int~mal Representations of a 
TDNN 

Given the encouraging performance of our TDNNs, a closer look at 
the learned internal representation of the network is warranted. Ad­
ditional examples illustrating the observations in the following can be 
found in [3]. Fig.2 and the left side ofFig.4 show two typical instances 
of a ,, D" out of two different phonetic~contexis (" DA" and "DO", re­
spectively). In both cases, only the correct unit, the "D-output unit" 
fires strongly, despite the fact that the two input spectrograms differ 
considerably from each other. If we study the internal firings in these 
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Figure 4: TDNN activation patterns for centered and misaligned (30 
msec) nDO" 

two cases we can see that the network has learned to use alternate 
internal representations to link variations in the sensory input to the 
same higher level concepts. A good example is given Ly the firings 
of the third and fourth hidden unit in the first layer above the input 
layer. As can be seen from Fig.4 and Fig.2, the fourth hidden unit 
fires particularly strongly after vowel onset in the case of "DO", while 
the third unit shows stronger activation after vowel onset in the case 
of "DA" (see rows pointed to by the filled arrows). The connection 
strengths of only these two hidden units are displayed on grey back­
ground on the left of Fig.4 and show the significance of these different 
firing pat.terns (here, white and black blobs represent positive and neg­
ative weights, respectively, and the magnitude of a weight is indicated 
by the size of the blob). The time delays are displayed spatially as a 3 
frame window of 16 spectral coefficients. Conceptually, the weights in 
this window fonn a moving acoustic-phonetic feature detector, that 
fires when the pA.tt.ern for which it is specialized is encountered in the 
input speech. Thus, hidden unit number 4 has learned to fire when a 
falling (or rising) second formant starting at around 1600 Hz is found 
in the input. As can be seen in Fig.4, this is the case for "DO" afler 
voicing onset. In the case of"DA)1 (see Fig.2) in turn, the second for­
mant does not fall significantly, and hidden unit 3 fires instead. The 
connection strengths for TDNN-unit 3 shown in Fig.4 show that this 
unit has learned to look for a steady ( or only slightly falling) second 
formant starting at about 1800 Hz. The connections in the second 
and third layer then link the different firing patterns observed in the 
first hidden layer into one and the same decision. Another interesting 
feature can be seen in the bottom hidden unit in hidden layer number 
1 (see activation patterns in Fig.2 and Fig.4, and [3] for weights). This 
unit. has learned to take on the role of finding the segment boundary 
of the voiced stop. It does so in reverse polarity, i.e., it is always on 
except when the vowel onset of the voiced stop is encountered (see 
unfilled arrows in Fig.4 and Fig.2). Indeed, the higher layer TDNN­
units subsequently use this "segmenter" to base the final decision on 
the occurrence of the right lower features at the Tight point in time. 
The right side of Fig.4, finally, demonstrates the shift-invariance of 
the network. Here the same token "DO" is misaligned by 30 msec. 
Despite the gross misalignment, the correct result was obtained reli­
ably. The hidden units' feature detectors do indeed fire according lo 
the events in the input speech, and are not negatively affected by the 
relative shift with respect to the input units. 

5 Conclusion 

We have presented a Time Delay Neural Network for plwneme recog-
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nition. By use of two hidden layers in addition to an input and output 
layer it is capable of representing complex non-linear decision surfaces. 
Three important properties of the TDNNs have been observed. First, 
our TDNN was able to invent without human interference meaningful 
linguistic abstra~tions in time and frequency such as formant tracking 
and segmentation. Second, we have demonstrated that it has learned 
to form alternate repreflentations linking different acoustic events with 
the same higher level concept. In this fashion it can implement trading 
relations between lower level acoustic events leading to robust recogni• 
tion performance despite considerable variability in the input speech. 
Third, \\>'e have seen that the network is translation-invariant and does 
not rely on precise alignment or segmentation of the input. We have 
compared the TDNN's performance with the best of our HMMs on a 
speaker-dependent phoneme recognition task. The TDNN achieved a 
recognition of 98.5% compared to 93.7% for the HMM, i.e., a fourfold 
reduction in error. 
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