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finding an optimal solution in a huge space of possible 
network configurations quickly assumes unmanageable 
Proportions. In an effort to extend our models from small 
recognition tasks to large scale speech recognition 
systems, we must therefore explore modularity and 
incremental learning as design strategies to break up a 
large learning task into smaller subtasks. Breaking up 
large tasks into subtasks to be tackled by individual black 
boxes interconnected in ad hoc arrangements, on the other 
hand, would mean to abandon one of the most attractive 
aspects of connectionism: the ability to perform complex 
constraint satisfaction tasks in a massively parallel and 
interconnected fashion, in view of an overall optimal 
performance goal. In this paper we demonstrate based on 

a set of experiments aimed at phoneme recognition that it 
is indeed possible to construct large neural networks by 
exploiting the hidden structure of smaller tained 
subcomponent networks, A set of successful techniques 
is developed that bring the design of practical large scale 
connectionist recognition systems within the reach of 
today’s technology. 

‘The present paper has five parts: In the next section 
we review Time-Delay Neural Networks as a technique to 
achieve accurate, reliable classification of phonemes in 
small but ambiguous phonemic subcategories (e.g., BDG, 

PTK, etc.). Excellent performance results are reported for 
all phonemic coarse Classes found in a Japanese large 
vocabulary word database. In section 3, we then explore 

techniques for the modular extension of small networks to 

larger "connectionist systems". In section 4, we validate 
the usefulness of these techniques by applying them to 
harder and larger tasks. We summarize our results in the 
last section of this paper. 

2, Small Phonemic Classes by Time-Delay 
Neural Networks Steal 

To be useful for the proper classification of speech 

signals, a neural network must have a number of 
properties. First, it should have multiple layers and 

sufficient interconnections between units in each of these 

layers. This is to ensure that the network will have the 
ability 10 learn complex non-linear decision 

surfaces [Lippmann 87]. Second, the network should 

have the ability to represent relationships between events 

in time, These events could be spectral coefficients, but 
might also be the output of higher level feature detectors, 

‘Third, the actual features or abstractions learned by the 
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network should be invariant under wanslation in time. 
Fourth, the learning procedure should not require precise 
temporal alignment of the labels that are to be learned. 

Fifth, the number of weights in the network should be 
small compared to the amount of training data so that the 

network is forced to encode the training data by extracting 
regularity. In the following, we review Time-Delay 
Neural Networks (TDNNs) as an architecture that 

satisfies all of these criteria and was designed explicitly 

for the classification of phonemes within small phonemic 
classes such as the voiced stops, "B", "D", "G", the 
voiceless stops "P", "T", "K", etc. 

2.1. Review of a Time-Delay Neural Network’s 
Architecture 
The basic unit used in many neural networks 

computes the weighted sum of its inputs and then passes 
this sum through a non-linear function, most commonly a 

threshold or sigmoid function (Lippmann 87, Rumelhart 
86a]. In our TDNN, this basic unit is modified by 
introducing delays D, through Dy as shown in Fig.|. The 
J inputs of such a unit now will be multiplied by several 
weights, one for each delay and one for the undelayed 
input. For N = 2, and J = 16, for example, 48 weights will 
be needed to compute the weighted sum of the 16 inputs, 
with each input now measured at three different points in 
time. In this way a TDNN unit has the ability to relate 
and compare current input with the past history of events. 
The sigmoid function was chosen as the non-linear output 
function F due to its convenient mathematical 
properties [Rumelhart 86a, Rumelhart 86b]. 

For the recognition of phonemes, a three layer net is 
constructed. Its overall architecture and a typical set of 
activities in the units are shown in Fig.2 based on one of 
the phonemic subcategory tasks (BDG). 

At the lowest level, 16 melscale spectral coefficients 
serve as input to the network. Input speech, sampled at 
12 kHz, was hamming windowed and a 256-point FFT 
computed every 5 msec. Méelscale coefficients were 
computed from the power spectrum [Waibel 87, Waibel 
89] and adjacent coefficients in time collapsed resulting in 
an overall 10 msec frame rate. The coefficients of an 
input token (in this case 15 frames of speech centered 
around the hand labeled vowel onset) were then 
normalized to lie between -1.0 and +1.0 with the average 
at 0.0. Fig.2 shows the resulting coefficients for the 
speech token "BA" as input to the network, where 
positive values are shown as black and negative values as 
grey squares. 

This input layer is then fully interconnected to a 
layer of 8 time delay hidden units, where J = 16 andN =2 

(i.e. 16 coefficients over three frames with time delay 0, 
1 and 2). An alternative way of seeing this is depicted in 
Fig.2. It shows the inputs to these time delay units 
expanded out spatially into a 3 frame window, which is 
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Figure 1: A Time Delay Neural Network (TDNN) unit 

Passed over the input spectrogram. Each unit in the first 
hidden layer now receives input (via 48 weighted 
connections) from the coefficients in the 3 frame window. 
The panticular delay choices were motivated by earlier 
Studies [Lang 87] [Waibel 87] [Waibel 89] [Makino 
86] [Blumstein 79] [Blumstein 80] [Kewley-Port 83] 

In the second hidden layer, each of 3 TDNN units 
looks at a 5 frame window of activity levels in hidden 
layer 1 (i.e.,J = 8, N= 4), The choice of a larger 5 frame 
window in this layer was motivated by the intuition that 
higher level units should learn to make decisions over 2 
wider range in time based on more local abstractions at 
lower levels, 

Finally, the output is obtained by integrating 
(summing) the evidence from each of the 3 units in 
hidden layer 2 over time and connecting it to its pertinent 
Output unit (shown in Fig.2 over 9 frames for the "B" 
Output unit). In practice, this summation is implemented 
simply as another TDNN unit which has fixed equal 
weights to a row of unit firings over time in hidden layer 
2. While the network shown in Fig.2 was designed for a3 
class problem (e.g., BDG or PTK), variations 10 
accommodate 2, 4 or 5 classes are easily implemented by 
allowing for 2, 4 or 5 units in hidden layer 2 and in the 
Output layer, 

When the TDNN has learned its internal Tepresentation, it performs recognition by passing input 

P
e
 

S
t
F
 

r
a
g
 

E
F
F
 

a:
 



Connectionist Glue: Modular Design of Neural Speech Systems 

sb OG 

2 Hidden Layer 1 

2 
é 
£ 

15 trames 
10 msec frame rate 

Figure 2: The TDNN architecture (input: "BA") 

Speech over the TDNN units. In terms of the illustration 

of Fig.2 this is equivalent to passing the time delay 

windows over the lower level units’ firing patterns. At 

the lowest level, these firing patterns simply consist of the 

sensory input, i.¢., the spectral coefficients. 

Each TDNN unit outlined in this section has the 

ability to encode temporal relationships within the range 

of the N delays. Higher layers can attend to larger ime 

Spans, so local short duration features will be formed al 

the lower layer and more complex longer duration 

features at the higher layer. The learning procedure 

ensures that each of the units in each layer has its weights 

adjusted in a way that improves the network's overall 

Performance. 

The network described is trained using the Back- 

Propagation Learning Procedure [Rumelhart 

86a, Rumelhart 86b]. This procedure iteratively adjusts 

all the weights in the network so as to decrease the error 

obtained at its output units. For translation invariance, we 

heed to ensure during learning that the network is exposed 

to sequences of patterns and that it is allowed (or 

encouraged) to learn about the most powerful cues and 

Sequences of cues among them. Conceptually, the back- 

propagation procedure is applied to speech patterns that 

are stepped through in time. An equivalent way of 

achieving this result is to use a spatially expanded input 
Pattern, i.c., a spectrogram plus some constraints on the 
weights. Each collection of TDNN-units described above 
is duplicated for each one frame shift in time. In this way 
the whole history of activities is available at once. Since 
the shifted copies of the TDNN-units are mere duplicates 
and are to look for the same acoustic event, the weights of 
the corresponding connections in the time shifted copies 
must be constrained to be the same. To realize this, we 
first apply the regular back-propagation forward and 
backward pass to all time shifted copies as if they were 
separate events. This yields different error derivatives for 
corresponding (time shifted) connections. Rather than 
changing the weights on time-shifted connections 
separately, however, we actually update each weight on 
corresponding connections by the same value, namely by 
the average of all corresponding time-delayed weight 
changes”. Fig.2 illustrates this by showing in each layer 
only two connections that are linked to (constrained to 
have the same value as) their time shifted neighbors. Of 
course, this applies to all connections and all time shifts. 
In this way, the network is forced to discover useful 
acoustic-phonetic features in the input, regardless of when 
in time they actually occurred. This is an important 
Property, as it makes the network independent of 
errorprone preprocessing algorithms, that otherwise 
would be needed for time alignment and/or segmentation. 

2.1.1. Experimental Conditions, Database 
For performance evaluation, we have used a large 

vocabulary database of 5240 common Japanese 
words [Waibel 87, Waibel 89]. The data used in this 
Paper was uttered in isolation by one male native 
Japanese speaker (MAU). All utterances were recorded 
in a sound proof booth and digitized at a 12 kHz sampling 
rate. The database was then split into a training set and a 
testing set of 2620 utterances each, from which the actual 
phonetic tokens were extracted. The training tokens (up 

to 600 tokens per phoneme?) were randomized within 
each phoneme class. For a given training run they were 

then presented, alternating between each class to be 
leamed. If a phoneme class was represented by an 

insufficient number of available training tokens, random 
tokens from its set were repeated, in order to preserve the 
alternating sequence of presentations among all training 
tokens. For performance evaluation, we have run all 

Note that weight changes were carried out after presentation of all 
training samples (Rumelhan 86b]. 

3Note, that for some phoneme categories an unnecessarily large 
number of tokens was found in the database (e.g., vowels), while for 
some others (e.g., "P") only few tokens were extracted. While excessive 
tokens are simply discarded at random to reduce the dataset size, a lack 
of tokens leads to poor generalization. ‘The low recognition scores for 
"P" are therefore a result of the limited training data. 
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experiments on the testing tokens only, i.e., on tokens not 
included during training. 

The entire database was phonetically 

handlabeled [Sagisaka 87]. These labels were used in the 
experiments reported below to center a given phoneme in 
the input range used for learning and evaluation. No 
attempt was made to correct for improper handlabels. 
Since all networks described here were trained in a 
translation invariant fashion, possible misalignments at 
the input are of no serious concern as long as all the 
critical features needed for discrimination are present 
somewhere in the input range. For consistency among our 
networks and efficiency of leaming, we continued to 
employ a 150 msec input range. Note, however, that 
longer input ranges are possible and might in fact be 
preferable to extract all useful features of a given 
phoneme. All tokens in the database were included in the 
test set or the training set, respectively, and no 
preselection was done. The resulting data included a 
considerable amount of variability (see [Waibel 
87, Waibel 89] for examples) due to its position within an 
utterance or phonetic context. 

2.2, Discrimination Performance in Phonemic 
Subclasses 
To evaluate our TDNNs on all phoneme classes (for 

an in depth discussion and comparative performance 
evaluation for voiced stops see [Waibel 87, Waibel 89), 
recognition experiments have been carried out for seven 
phonemic subclasses found in the database. For each of 
these classes, TDNNs with an architecture similar to the 
one shown in Fig.2 were tained. A total of seven nets 
aimed at the major coarse phonetic classes in Japanese 
were trained, including voiced stops B, D, G, voiceless 
stops P,T.K, the nasals M, N and’ syllabic nasals, 
fricatives S, SH, H and Z, affricates CH, TS, liquids and 
glides R, W, Y and finally the set of vowels A, I, U, E and O. Each of these nets was given between two and five 
phoneme classes to distinguish and the pertinent input 
data was presented for learning. Note, that each net was 
trained only within each respective coarse class and has 
no notion of phonemes from other classes yet. Table 2-1 
shows the recognition results for each of these major 
coarse Classes. 

3. Scaling TDNNs to Larger Phonemic 
Classes 
We have seen in the previous section that TDNNs 

achieve superior recognition performance on difficult but 
small recognition tasks. To train these networks, 
however, substantial computational resources were 
needed. This raises the question of how our good but 
admittedly limited networks could be extended to 
encompass all phonemes or handle speech recognition in 
general. To shed light on this question of scaling, we 
Consider first the problem of extending our networks from 

TDNN 
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Figure 6: Combination of a BDG-net and a PTK-n
et 

using 4 additional units in hidden layer 1 

as free "Connectionist Glue". 

class distinctive features that were missing in
 our second 

experiment. In a fourth experiment, we have now 

examined an approach that allows for the ne
twork to be 

free to discover any additional features that might be 

useful to merge the two component networks. 
In stead of 

previously training a class distinctive networ
k, we now 

add four units to hidden layer 1, whose
 connections to the 

input are free to learn any missing discrimin
atory features 

to supplement the 16 frozen BDG and PTK fea
tures. We 

call these units the " connectionist glue" that we 
apply to 

merge two distinct networks into a new 
combined net. 

This network is shown in Fig.6. The hidden units of 

hidden layer 1 from the BDG-net are shown on the left 

and those from the PTK-net on the right. The conn
ections 

from the moving input window to these
 units have been 

trained individually on BDG- and PTK-data,
 respectively 

and -as before- remain fixed during combinat
ion learning. 

In the middle on hidden layer 1 we show the
 4 free "Glue" 

units. Combination learning now finds an optimal 

combination of the existing BDG- and P
TK-features and 

also supplements these by learning additional in
terclass 

discriminatory features. In doing so we have raised the 

number of connections to be trained to 8,000,
 which is 

only a small increase in number of connections (and 

learning time) over the original component nets. 

Performance evaluation of this network over the 

BDGPTK test database yielded a recognition rate of 

98.4%. 

3.2.5. All-Net Tuning 

In addition to the techniques described so 
far, it may 

be useful to free all connections in a large modularly 

constructed network for an additional 
small amount of 

fine tuning. This has been done for the BDGPTK-net 

shown in Fig.6 yielding some additional perforr 
improvements. The resulting network finally act 
(over testing data) a recognition score of 98.6%. 

3.3. Steps for the Design of Large Scale Neur 
Nets 

Method bdg pte bdap 

Individual TDNNs 983% | 987% 

TDNN:Max. Activation 60.5 

Retrain BDGPTK 98.3 

Retrain Combined 

Higher Layers 98.1 

Retrain with V/UV-units 984 

Retrain with Glue 98.4 

All-Net Fine Tuning 98.6 

Table 3-1: From BDG to BDGPTK; 
Modular Scaling Methods. 

Table 3-1 summarizes the major results fro 
experiments. In the first row it shows the reco; 
performance of the two initial TDNNs | 
individually to perform the BDG- and the PTK 
respectively. Underneath, we show the results frc 

Hidden Markov Model, as discussed in the pr 

section. The third row shows that simply adding 7 

and selecting the unit with the largest output act 

does not lead to acceptable performance (only 

correct). We have observed before that this is in 

negative consequence of inhibition in these net 

While inhibition of incorrect output categories le 

good, robust and confident performance, it 

erroneous results when additional networks are 

added without consideration of the interaction bk 

them. We have then retrained a complete BDGP” 

which achieves good recognition performance ( 

correct), but found that it requires excessive amot 

training time. As an alternative, we have then ex 

three methods that exploit the hidden struct 

previously learned subcomponent networks, ¢.{ 

BDG- and PTK-networks. With small additional 0 

at the higher layers these networks could be merg 

achieve good recognition performance (98.1%). 

additional hidden units from a class dist
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voiced/unvoiced TDNN were added, recognition results 
improve to 98.4%. Similarly, through the application of 
"connectionist glue", a 98.4% performance score is 
achieved. Finally, when all the connections in the latter 
network are freed to perform small additional adjustments 

over a few additional training iterations, recognition 
results improve further to 98.6%. 

The results indicate, that larger TDNNs can indeed 
be trained incrementally, without requiring excessive 
amounts of training and without loss in performance. In 
fact, the resulting incrementally trained networks appear 
to perform slightly better than the monolithically trained 
BDGPTK-net. Moreover, they achieve performance as 

high as the subcomponent BDG- and PTK-nets alone. As 
a strategy for the efficient construction of larger networks 
we have found the following concepts to be extremely 
effective: modular,incremental learning, class 
distinctive learning, connectionist glue, partial and 

selective learning and all-net fine tuning. 

4, Extensions to Harder and Larger Tasks 
To verify the general usefulness of the techniques 

described in the previous sections, we have now begun to 
experiment with tasks other than the stop consonants. 
What, for example, is the outcome when two 
subcategories are not as clearly separable by a potentially 
easily detectable and independent acoustic feature as 
might have been the case with the voicing distinction in 
our stop consonant experiments ? To answer this 
question, we have applied our techniques to the task of 
merging a voiced stop network (BDG) and a nasal 

network (M, N and syllabic nasals). It has been observed 
elsewhere [Waibel 87, Waibel 89], that the voiced stops 
"G" found in our Japanese database include numerous 
nasalized phoneme tokens (NG) depending on their 
position in the uttereance. During learning, our BDG-net 
successfully developed a complex non-linear decision 
surface to allow for both acoustic realizations as legal 
pronounciations of the voiced stop "G". In doing so the 
BDG-net has developed nasal features as cues to help 
discriminte a "G" from other stop consonants, When we 
attempt to combine a BDG-net with a nasal net, however. 
the nasal features of the BDG-net are then likely to 
conflict with those of an all nasal net. The burden of 
suitably merging these two nets therefore lies 
predominantly on hidden units acting as connectionist 
glue and their ability to fill in missing information and/or 
resolve conflicting information. This experiment has 
actually been carried out and we report its results in table 
4-1. The top row shows again the recognition rate 
achieved by either network over testing data from the 
corresponding subclasses (voiced stop, nasal), The 
second row shows the recognition rate achieved by a 
merged net that employed connectionist glue as described 
in the previous section. A recognition score of 96.7% was 
achieved, which is again comparable to the performance 
of the original subcomponent nets. 

bdgma’l 
Method bag maN 

96.6% Individual TDNNs 98.6% 

Table 4-1: Merging a Nasal- and a
 BDG-net 7 

The results further support the idea that PI ou 
use previously discovered abstractions (here: together” 
phonetic features) and allowing them to "grOW OF sive 
by means of connectionist glue provides a7 © ale 
strategy for the modular incremental design of aren 
Neural systems. In speech, these notions are ral 1038 

extended to the design of large phonemic preliminasy 
aimed at the recognition of all consonants. 

results indicate that superior performance can 
for these systems as well [Waibel 88]. 

Retrain with Glue 

5. Conclusion 
We summarize the major technical res 

work: from ts 
We have reported further experimental isn} for 

the use of Time Delay Neural Neworks CUT jarge 
recognition in all major phonemic categoni—® excellent! 
vocabulary speech database and have at e good 
recognition performance. We believe, oper of 
performance results are due 10 the key Prt 
TDNNs, including: shift invariance, ies of 
representation of the dynamic time-varying P' ‘auternates 
speech and the automatic discovery © °° These 
complementary internal features of sper acumentd 
Properties have been extensively 

elsewhere [Waibel 87, Waibel 89]. . smaller 

The serious problems associated with on onemic 
Phonemic subcomponent networks tO larg = jodult 
lasks are overcome by careful modular oe "strategies: 
design is achieved by several import inponent 
selective and incremental learning cae len sirucl 
lasks, exploitation of previously learned i 
the application of connectionist glue OF rd d 
features 10 allow for separale netWOTK’ 7 qot and 
together, partial training of portions of = all addition? 
finally, all-net fine tuning for making S 4 
adjustments in a large net. ‘cation © 

Our findings suggest, that judicious AHS Jead a 
number of connectionist design techniques © large sail 
the successful design of high perform 
connectionist speech recognition systems. 
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