
TOWARDS THE APPLICATION OF A HANDWRITING
INTERFACE FOR MATHEMATICS LEARNING

Lisa Anthony, Jie Yang, Kenneth R. Koedinger

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15217

ABSTRACT

We believe handwriting input may be able to provide significant
advantages over typing, especially in the mathematics learning
domain. The use of handwriting may result in decreased extraneous
cognitive load on students, and it may provide better support for
the two-dimensional spatial components of mathematics when
compared to existing typing-based tools. Here we report progress
towards the application of a handwriting interface for mathematics
learning. We introduce a prototype system that allows students to
use handwriting input to solve algebraic equations in an intelligent
tutor. We discuss strategies to improve the existing handwriting
system and apply it to math learning. Although the recognition
accuracy of current handwriting engines may not be at a level
suitable for use by students, we hypothesize that this may be
realistically improved via advance training of the engine on a large
corpus, as well as via techniques similar to co-training.

1. INTRODUCTION

Intelligent tutoring systems provide a unique opportunity to
enhance the learning experience, whether in the classroom or at a
distance, by providing an online environment in which students can
work at their own pace and at a time convenient to them. Cognitive
Tutors [6] are one type of intelligent tutoring system that focuses
on learn-by-doing, that is, problem solving. They have been created
for a variety of learning domains, including algebra, geometry,
foreign languages, chemistry, computer programming and more.
The best human tutors can achieve a two-standard deviation
improvement versus standard classroom instruction alone,
effectively turning C students into A students; Cognitive Tutors
have been shown to raise student achievement one standard
deviation over traditional classroom instruction [5]. This research
aims to improve mathematics learning in Cognitive Tutors even
further, narrowing that two-sigma gap via use of multimodal and
multimedia interface technologies.

Our specific focus is on exploring the ways in which the use of
handwriting-based interfaces may provide pedagogical advantages,
especially for the mathematics domain. Based on preliminary
evidence we have collected, and based on hypotheses grounded in
learning theory, we expect that handwriting may offer advantages
for learning for several reasons. First, in a preliminary study we
conducted in which users copied given equations in various

modalities, including handwriting and typing, handwriting was the
faster, and favored, modality to typing [2]. If extended to a learning
task, similar results would allow students to accomplish more
problems in the same amount of time, and to become more engaged
during tutoring. Second, the use of handwriting rather than a menu-
based typing interface may result in a reduction of extraneous
cognitive load on students during learning. Extraneous cognitive
load (c.f., [13]) can be thought of as a measure of how much mental
overhead students experience as a result of interface-related tasks
while they are also trying to learn a mathematical concept. Third, in
mathematics, the spatial relationships among symbols have inherent
meaning, even more so than in other forms of writing. For instance,
the spatial placement of the x in these two expressions changes the
meaning of the expression significantly: “2x” vs. “2

x
”. Handwriting

is a much more flexible and robust modality for representing and
manipulating such spatial relationships. Mathematics tools that use
a typing interface often require the user to become an expert at a
new programming language (e.g., Maple, Matlab), or to use
complex menu-based templates (e.g., Microsoft Equation Editor),
both of which can be difficult and inaccessible to novices.

Based on our above hypotheses, handwriting has the potential
to provide significant learning advantages over typing. However,
for technological reasons, most intelligent tutoring systems rely on
standard keyboard-and-mouse graphical user interfaces (GUIs).
This is in part because handwriting recognition has been seen as still
being in its early stages of development, too inaccurate for use with
real users. We present a system design that can address this
concern. This paper presents the design of a prototype of an
intelligent tutoring system (ITS) that will allow users to solve
algebraic equations via handwriting input. The ITS foundation of
our prototype is Cognitive Tutor Algebra, and the handwriting
recognizer used is FFES/DRACULAE [12]. We introduce the
system architecture and some means of improving the handwriting
recognition accuracy such that it is usable by students. We will
reduce, if not eliminate, the need for repair by collecting a large
corpus of student handwriting samples in order to train the engine
in advance, as well as by using techniques similar to co-training
described by Blum & Mitchell [3]. We also explore the possibility
that students may not require the system to immediately output a
recognition hypothesis. We may be able to design an instructional
paradigm based on worked examples that provides a sort of feed-
forward rather than feedback to students. We expect that the
system will provide a natural and easy means for students to input
their problem-solving process during tutoring, thus yielding
improved learning gains.

20771­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

2. Related Work

Handwriting-based mathematics interfaces are becoming a very
popular research topic. Handwriting recognition research for the
general domain has been an active area since the 1960s (for
instance, see [1]). Computer recognition of mathematics began with
the recognition of a printed page of mathematics. Now, with the
prevalence of TabletPCs and PDAs which offer handwriting input
as a main mode of input, real-time online human handwriting
recognition is becoming more important to everyday users.

Several research and commercial systems exist that allow users
to input and/or edit mathematical expressions. MathPad [7] is
among the most robust and complex. In MathPad, users can write
out mathematics equations and have the system animate the
physical relationships given by these equations (for example, to
animate a pendulum or oscillating sine curve). Other systems such
as xThink’s MathJournal [15] allow the sketching and writing of
mathematics, but still rely on in-context menus to allow users to
perform manipulations. In addition, even traditional keyboard-based
math software such as Microsoft’s Equation Editor and Maple 10
are now offering handwriting-based input, although limited in the
amount of the equation that can be written or in what can be done
as far as manipulation of the equation once it is input. Finally,
inftyEditor [8] and Natural Log [10] are simple equation
entry/editing programs without the added benefit of sketching or
graphing on-the-fly. FFES [12], which we use, is similar to these
but we chose it over the others because has a much higher base
accuracy rate and because it is an open-source system, which is
very important for system integration.

3. PRELIMINARY EVIDENCE IN SUPPORT OF
HANDWRITING

As mentioned, we have already conducted a preliminary study that
established handwriting as providing advantages over typed
interfaces, at least in the area of usability. In that study, reported in
[2], we hypothesized that handwriting would be a faster and more
efficient means of input than typing, especially for mathematics
input. The literature had established that the opposite was true in
the domain of transcribing paragraphs of English [4], and
researchers in handwriting input had accepted this for the math
domain as well. We believed that there were fundamental
differences in the two domains that would alter the result, however.
College-aged users came to the lab in order to enter given equations
in several modalities: typing in Microsoft Equation Editor (MSEE),
handwriting, speaking, and handwriting+speaking.

Detailed results from this study can be found in [2]. To
summarize them, we found that handwriting was indeed faster, by a

factor of 3, than typing for entering mathematical equations on the
computer, as well as being rated more highly in user preferences
after the session. The speed effect magnified as the complexity of
the equation increased: equations that included complex characters
such as √ and ∑ were even slower in typing but the same interaction
did not occur in handwriting. We have reproduced the graphs of the
key findings here with permission. Figure 1 shows the average time
in seconds per equation by condition. Figure 2 shows the post-
session user ratings of each condition’s “suitability” or
“naturalness” for entering mathematics on the computer. In both
cases, handwriting won over typing.

Based on the results of this study, we believed that
handwriting may also have similar benefits when the domain is not
just entering, but also learning, mathematics. The increased speed
may have been in part due to the decreased cognitive load of the
users, who were all novices to MSEE. The interaction between
equation complexity and modality centered around the increased
frequency of two-dimensional spatial relationships in the equations,
which would become even more pertinent to students as they
advance in mathematics topics from algebra to calculus.
Handwriting provides a more direct means of manipulation and
representation of such spatial relationships than linear text.

4. DESIGN OF HANDWRITING INTERFACE FOR
MATHEMATICS LEARNING

We are in the process of developing a prototype system to allow
students to solve mathematical equations via handwriting input. See
Table 1 for examples of the types of equations students will solve in
our system. To increase the possibility of success, we are building
our system with a foundation of state-of-the-art intelligent tutoring
system and handwriting recognition components, discussed in detail
below. Once the prototype is complete we will conduct an
evaluation of the system in a classroom setting, although the
proposed system could also operate effectively as a distance
learning tool. Figure 3 shows a diagram of the architecture of
designed system. We employ a Java-based interface to integrate

0
5

10
15
20
25
30
35
40
45
50

Keyboard-
and-mouse

Handwriting
only

Speech only Handwriting-
plus-speech

Condition

T
im

e
(s

ec
on

d
s)

Figure 1. Average time in seconds per equation (from [2]).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Keyboard-and-
mouse

Handwriting only Speech only Handwriting-
plus-speech

Condition

S
co

re
 (

1
to

 5
)

Figure 2. User ratings of each condition for entering math on the
computer (from [2]).

x + 4 = 8
 3

x + 3 = 5

8x + 4 = 5x + 10
6x + 8x = 2

 14

Table 1. Sample equations in the algebra equation-solving domain
we are addressing.

2078

FFES and the Cognitive Tutor.
The goal of this research is to use multimodal and multimedia

technologies to improve mathematics learning for high school
students. Besides handwriting, we consider using speech as an
additional modality for error repair. Systems actually perform better
when the modality of repair is different than the modality of entry,
in part because users tend to over-enunciate (in speech) or trace
heavily (in writing) and these patterns do not match the system’s
model (c.f., [11]). Speech seems logical because it can be highly
accurate when the symbol vocabulary is small (as in simple
algebraic expressions), and because it does not require a return to
the keyboard. We also consider using multimedia output. Our
system may present to the student animated diagrams helping to
explain the problem-solving process when the student needs a hint.
Besides visual output, synthesized voice will be used when needed.
Mayer’s work exploring the principles of multimedia learning [9]
will serve as design guidelines for when to include multimedia
output and what this output should contain.

4.1. Technology Components

Cognitive Tutors have been an active area of research at Carnegie
Mellon University since the 1980s [6]. They have been created for a
variety of domains, including LISP programming, algebra,
geometry, foreign language learning, and genetics. Cognitive Tutors
for mathematics are in use in over 2000 schools in the United
States. In the algebra tutoring lessons, students represent the
situation algebraically in a spreadsheet-like worksheet and solve
equations in a separate space with a symbol manipulation tool
involving typing and menu-based operator selection. Each
Cognitive Tutor is constructed around a cognitive model of the
knowledge students are acquiring, and can provide step-by-step
accuracy feedback and help as students solve problems.

Cognitive Tutors are implemented in LISP with a Java
interface. We intend to replace this Java interface with a
handwriting input space that has a handwriting recognizer behind it.
We plan to use an off-the-shelf recognizer called
FFES/DRACULAE because it relieves us of the technical burden of
developing a robust recognizer from scratch and blazes a trail for
using handwriting engines in more real-world applications. FFES
has reported character recognition accuracy rates of about 77%, for
both expert and novice users who had not trained the system to
their style of writing [12]. With training, FFES can yield accuracy

rates as high as 95%. However, training handwriting recognition
engines usually involves a large upfront time commitment during
which the user inputs many (20+) examples of each character the
recognizer is to understand (called enrollment). In a classroom
setting, it is not very realistic to expect teachers to take valuable
teaching time to allow students an hour or more to train the
handwriting system. Therefore, it is imperative that we develop the
system to maximize recognition accuracy while minimizing upfront
training cost.

This forces us to consider a trade-off between the level of
feedback we can provide to students and the accuracy of the
recognition engine. To give perfect, step-targeted feedback at every
step of the problem-solving process (as Cognitive Tutors currently
do) may require more recognition accuracy than FFES can currently
support. However, it is not clear that this level of feedback is
required. We believe that there is promising evidence that the use of
worked examples instruction, in which students copy and study
example problems whose solutions are already worked out for
them, may help mitigate the criticality of step-targeted feedback by
providing a kind of feed-forward. Figure 4 shows a screenshot of
the prototype system in which the student is solving the problem
“x/7 = 6” by referring to the worked example at the top of the
screen. The student’s simple handwriting workspace is at the
bottom of the screen. The use of worked example-based problem-
solving has been successful in prior work on geometry [14].

4.2. Improving Handwriting Recognition Accuracy

Our long-term goal is to advance the theory of learning by fully
exploring the feedback/accuracy trade-off. We may be able to
improve accuracy in straightforward ways. The better the accuracy,
the more feedback we can provide to students. In a step-by-step
feedback paradigm, if the engine guessed wrong about the student’s
input, the feedback the tutor provides may be incorrect. Requiring
students to correct the engine’s guesses on the fly would impose
further extraneous cognitive load, rather than reducing it.

USER

New interface wrapper

Handwriting
input pane

Original
interface
to LISP

Cognitive Tutor system

Curriculum:
problem chooser,

hint messages, etc.

Cognitive
model

of student
knowledge

Expression
parser

Handwriting recognizer
(based on FFES)

Expression
parser

Symbol
recognizer

Expression
partitioner

Problem
display area

Figure 3. Architecture of prototype handwriting interface system.

Figure 4. Screenshot of the interface of our prototype system. At the
top is the worked example the student copied in the previous step; in

the middle is the problem the student is solving.

2079

Our main idea for how to improve accuracy is inspired by the
co-training machine learning techniques developed by Blum and
Mitchell [3]. In co-training, two independent labelers (for instance,
one which reads the text on a website and one that reads the text of
links pointing to a website) can each use the other’s guesses to
boost their own confidence, thus resulting in a classifier with
greater overall accuracy than either one alone. We believe that
similar techniques could be applied to our application, in which the
handwriting engine is treated as one “labeler” and we combine it
with various other “labelers” to achieve more accurate results.
Potential labelers include the context of the problem we know the
student is solving (which means we know what the student should
be inputting), and also knowledge about common student errors as
well as this student’s current skills (which means we know what the
student might be inputting instead). Co-training can be used as a
learning technique, in which the labelers (here, the recognition
engine) can improve long-term by incorporating knowledge from
the other labelers, but it can also be used for co-recognition, as we
described, improving accuracy on the fly and case-by-case.

Another important way we intend to improve recognition
accuracy is through advance training of the recognizer on a large
sample of corpus data from the target population. As mentioned, it
is somewhat unrealistic to expect teachers to give up valuable
instructional time in order for their students to spend even 10
minutes training the technology to their specific handwriting. In our
preliminary studies, we have collected a corpus of over 15,000
individual online character samples from over 40 middle and high
school algebra learners. We intend to batch-train the recognizer in
advance on all of these samples in order to increase its walk-up-
and-use accuracy: that is, when a new user tries the system, the
accuracy should be higher than it would have been without the prior
batch-train. The engine may also perform on-the-fly, student-
targeted training during the copying of worked examples
(effectively, labeled data), adapting the engine to the particular
student as the lesson proceeds. With the use of these techniques,
the resulting system should have much better performance accuracy
than the raw, untrained engine on its own.

5. CONCLUSIONS

This paper has presented progress in developing a prototype system
that allows students to use handwriting input to solve algebraic
equations online in an intelligent tutor. We anticipate certain
pedagogical advantages from the use of handwriting interfaces for
learning mathematics, related to the decrease in extraneous
cognitive load and the increased support for the spatial
characteristics of mathematics notations, as well as evidence from
prior studies that handwriting is faster and better liked than typing
for this domain. While current handwriting engine accuracy may not
be at a level suitable for use by students, we hypothesize that this
may be improved via advance training of the engine on a large
corpus of middle and high school math writing samples and via the
use of techniques similar to co-training. The resulting system will be
evaluated for its effectiveness in amplifying learning gains in
students solving algebra equations, although the results of this work
apply to other domains, such as geometry and physics.

6. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation, an
NSF Graduate Research Fellowship, and the Pittsburgh Science of

Learning Center. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the NSF or PSLC. The
authors would like to thank Sharon Oviatt, Chris Atkeson, Shelley
Evenson, Darren Gergle, Jiazhi Ou, Jacob O. Wobbrock, Cristen
Torrey, Aaron O. Bauer, Sonya Allin, Datong Chen, and Amy
Hurst for their invaluable equipment, time, and support.

7. REFERENCES

[1] Anderson, R.H.: Syntax-directed recognition of hand-printed
two-dimensional mathematics. In M.Klerer and J.Reinfelds, eds.,
Interactive Systems for Experimental Applied Mathematics. (1968)
Academic Press, NY.

[2] Anthony, Lisa; Yang, Jie; Koedinger, Kenneth R.: Evaluation of
Multimodal Input for Entering Mathematical Equations on the
Computer. ACM Conference on Human Factors in Computing
Systems (2005) 1184-1187.

[3] Blum, A. and Mitchell, T.: Combining Labeled and Unlabeled
Data with Co-Training. Proceedings of the Workshop on
Computational Learning Theory (1998) 92-100.

[4] Brown, C.M.L.: Comparison of Typing and Handwriting in
“Two-Finger Typists.” Proceedings of the Human Factors Society
(1988) 381–385.

[5] Corbett, A.T.: Cognitive Computer Tutors: Solving the Two-
Sigma Problem. Proceedings of User Modeling (2001) 137–147.

[6] Corbett, A.T., Koedinger, K.R., Hadley, W.H.: Cognitive
Tutors: From the Research Classroom to All Classrooms. In: P.
Goodman (ed.): Technology Enhanced Learning: Opportunities for
Change. L. Erlbaum, Mahwah New Jersey (2001) 235–263.

[7] LaViola, J.J.: Mathematical Sketching: A New Approach to
Creating and Exploring Dynamic Illustrations. Doctoral
dissertation, Brown University (2005).

[8] Kanahori, T., Tabata, K., Cong, W., Tamari, F., and Suzuki,
M.: On-Line Recognition of Mathematical Expressions Using
Automatic Rewriting Method. Proceedings of IEEE International
Conference on Multimodal Interfaces (2000) 394-401.

[9] Mayer, R.E.: Multimedia Learning. (2001) New York:
Cambridge University Press.

[10] Matsakis, N.E.: Recognition of Handwritten Mathematical
Expressions. Master's theses, Massachusetts Institute of
Technology (1999) Cambridge, MA.

[11] Oviatt, S.: Taming Recognition Errors with a Multimodal
Interface. Communications of the ACM 43 (2000) 45-51.

[12] Smithies, S., Novins, K., and Arvo, J.: Equation Entry and
Editing via Handwriting and Gesture Recognition. Behaviour and
Information Technology 20 (2001) 53-67.

[13] Sweller, J.: Cognitive Load During Problem Solving: Effects
on Learning. Cognitive Science 12 (1988) 257-285.

[14] Trafton, J.G. and Reiser, B.J.: The contributions of studying
examples and solving problems to skill acquisition. In Proceedings
of the Cognitive Science Society (1993) 1017-1022.

[15] xThink.: MathJournal. (2003).

2080

