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ABSTRACT 

We believe handwriting input may be able to provide significant 
advantages over typing, especially in the mathematics learning 
domain. The use of handwriting may result in decreased extraneous 
cognitive load on students, and it may provide better support for 
the two-dimensional spatial components of mathematics when 
compared to existing typing-based tools. Here we report progress 
towards the application of a handwriting interface for mathematics 
learning. We introduce a prototype system that allows students to 
use handwriting input to solve algebraic equations in an intelligent 
tutor. We discuss strategies to improve the existing handwriting 
system and apply it to math learning. Although the recognition 
accuracy of current handwriting engines may not be at a level 
suitable for use by students, we hypothesize that this may be 
realistically improved via advance training of the engine on a large 
corpus, as well as via techniques similar to co-training. 

1. INTRODUCTION 

Intelligent tutoring systems provide a unique opportunity to 
enhance the learning experience, whether in the classroom or at a 
distance, by providing an online environment in which students can 
work at their own pace and at a time convenient to them. Cognitive 
Tutors [6] are one type of intelligent tutoring system that focuses 
on learn-by-doing, that is, problem solving. They have been created 
for a variety of learning domains, including algebra, geometry, 
foreign languages, chemistry, computer programming and more. 
The best human tutors can achieve a two-standard deviation 
improvement versus standard classroom instruction alone, 
effectively turning C students into A students; Cognitive Tutors 
have been shown to raise student achievement one standard 
deviation over traditional classroom instruction [5]. This research 
aims to improve mathematics learning in Cognitive Tutors even 
further, narrowing that two-sigma gap via use of multimodal and 
multimedia interface technologies. 

Our specific focus is on exploring the ways in which the use of 
handwriting-based interfaces may provide pedagogical advantages, 
especially for the mathematics domain. Based on preliminary 
evidence we have collected, and based on hypotheses grounded in 
learning theory, we expect that handwriting may offer advantages 
for learning for several reasons. First, in a preliminary study we 
conducted in which users copied given equations in various 

modalities, including handwriting and typing, handwriting was the 
faster, and favored, modality to typing [2]. If extended to a learning 
task, similar results would allow students to accomplish more 
problems in the same amount of time, and to become more engaged 
during tutoring. Second, the use of handwriting rather than a menu-
based typing interface may result in a reduction of extraneous 
cognitive load on students during learning. Extraneous cognitive 
load (c.f., [13]) can be thought of as a measure of how much mental 
overhead students experience as a result of interface-related tasks 
while they are also trying to learn a mathematical concept. Third, in 
mathematics, the spatial relationships among symbols have inherent 
meaning, even more so than in other forms of writing. For instance, 
the spatial placement of the x in these two expressions changes the 
meaning of the expression significantly: “2x” vs. “2

x
”. Handwriting 

is a much more flexible and robust modality for representing and 
manipulating such spatial relationships. Mathematics tools that use 
a typing interface often require the user to become an expert at a 
new programming language (e.g., Maple, Matlab), or to use 
complex menu-based templates (e.g., Microsoft Equation Editor), 
both of which can be difficult and inaccessible to novices. 

Based on our above hypotheses, handwriting has the potential 
to provide significant learning advantages over typing. However, 
for technological reasons, most intelligent tutoring systems rely on 
standard keyboard-and-mouse graphical user interfaces (GUIs). 
This is in part because handwriting recognition has been seen as still 
being in its early stages of development, too inaccurate for use with 
real users. We present a system design that can address this 
concern. This paper presents the design of a prototype of an 
intelligent tutoring system (ITS) that will allow users to solve 
algebraic equations via handwriting input. The ITS foundation of 
our prototype is Cognitive Tutor Algebra, and the handwriting 
recognizer used is FFES/DRACULAE [12]. We introduce the 
system architecture and some means of improving the handwriting 
recognition accuracy such that it is usable by students. We will 
reduce, if not eliminate, the need for repair by collecting a large 
corpus of student handwriting samples in order to train the engine 
in advance, as well as by using techniques similar to co-training 
described by Blum & Mitchell [3]. We also explore the possibility 
that students may not require the system to immediately output a 
recognition hypothesis. We may be able to design an instructional 
paradigm based on worked examples that provides a sort of feed-
forward rather than feedback to students. We expect that the 
system will provide a natural and easy means for students to input 
their problem-solving process during tutoring, thus yielding 
improved learning gains. 
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2. Related Work 

Handwriting-based mathematics interfaces are becoming a very 
popular research topic. Handwriting recognition research for the 
general domain has been an active area since the 1960s (for 
instance, see [1]). Computer recognition of mathematics began with 
the recognition of a printed page of mathematics. Now, with the 
prevalence of TabletPCs and PDAs which offer handwriting input 
as a main mode of input, real-time online human handwriting 
recognition is becoming more important to everyday users. 

Several research and commercial systems exist that allow users 
to input and/or edit mathematical expressions. MathPad [7] is 
among the most robust and complex. In MathPad, users can write 
out mathematics equations and have the system animate the 
physical relationships given by these equations (for example, to 
animate a pendulum or oscillating sine curve). Other systems such 
as xThink’s MathJournal [15] allow the sketching and writing of 
mathematics, but still rely on in-context menus to allow users to 
perform manipulations. In addition, even traditional keyboard-based 
math software such as Microsoft’s Equation Editor and Maple 10 
are now offering handwriting-based input, although limited in the 
amount of the equation that can be written or in what can be done 
as far as manipulation of the equation once it is input. Finally, 
inftyEditor [8] and Natural Log [10] are simple equation 
entry/editing programs without the added benefit of sketching or 
graphing on-the-fly. FFES [12], which we use, is similar to these 
but we chose it over the others because has a much higher base 
accuracy rate and because it is an open-source system, which is 
very important for system integration. 

3. PRELIMINARY EVIDENCE IN SUPPORT OF 
HANDWRITING 

As mentioned, we have already conducted a preliminary study that 
established handwriting as providing advantages over typed 
interfaces, at least in the area of usability. In that study, reported in 
[2], we hypothesized that handwriting would be a faster and more 
efficient means of input than typing, especially for mathematics 
input. The literature had established that the opposite was true in 
the domain of transcribing paragraphs of English [4], and 
researchers in handwriting input had accepted this for the math 
domain as well. We believed that there were fundamental 
differences in the two domains that would alter the result, however. 
College-aged users came to the lab in order to enter given equations 
in several modalities: typing in Microsoft Equation Editor (MSEE), 
handwriting, speaking, and handwriting+speaking. 

Detailed results from this study can be found in [2]. To 
summarize them, we found that handwriting was indeed faster, by a 

factor of 3, than typing for entering mathematical equations on the 
computer, as well as being rated more highly in user preferences 
after the session. The speed effect magnified as the complexity of 
the equation increased: equations that included complex characters 
such as √ and ∑ were even slower in typing but the same interaction 
did not occur in handwriting. We have reproduced the graphs of the 
key findings here with permission. Figure 1 shows the average time 
in seconds per equation by condition. Figure 2 shows the post-
session user ratings of each condition’s “suitability” or 
“naturalness” for entering mathematics on the computer. In both 
cases, handwriting won over typing. 

Based on the results of this study, we believed that 
handwriting may also have similar benefits when the domain is not 
just entering, but also learning, mathematics. The increased speed 
may have been in part due to the decreased cognitive load of the 
users, who were all novices to MSEE. The interaction between 
equation complexity and modality centered around the increased 
frequency of two-dimensional spatial relationships in the equations, 
which would become even more pertinent to students as they 
advance in mathematics topics from algebra to calculus. 
Handwriting provides a more direct means of manipulation and 
representation of such spatial relationships than linear text. 

4. DESIGN OF HANDWRITING INTERFACE FOR 
MATHEMATICS LEARNING 

We are in the process of developing a prototype system to allow 
students to solve mathematical equations via handwriting input. See 
Table 1 for examples of the types of equations students will solve in 
our system. To increase the possibility of success, we are building 
our system with a foundation of state-of-the-art intelligent tutoring 
system and handwriting recognition components, discussed in detail 
below. Once the prototype is complete we will conduct an 
evaluation of the system in a classroom setting, although the 
proposed system could also operate effectively as a distance 
learning tool. Figure 3 shows a diagram of the architecture of 
designed system. We employ a Java-based interface to integrate 
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Figure 1. Average time in seconds per equation (from [2]). 
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x + 4 = 8 
                 3 

x + 3 = 5 

8x + 4 = 5x + 10 
6x + 8x = 2 

               14 

Table 1. Sample equations in the algebra equation-solving domain 
we are addressing.
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FFES and the Cognitive Tutor. 
The goal of this research is to use multimodal and multimedia 

technologies to improve mathematics learning for high school 
students. Besides handwriting, we consider using speech as an 
additional modality for error repair. Systems actually perform better 
when the modality of repair is different than the modality of entry, 
in part because users tend to over-enunciate (in speech) or trace 
heavily (in writing) and these patterns do not match the system’s 
model (c.f., [11]). Speech seems logical because it can be highly 
accurate when the symbol vocabulary is small (as in simple 
algebraic expressions), and because it does not require a return to 
the keyboard. We also consider using multimedia output. Our 
system may present to the student animated diagrams helping to 
explain the problem-solving process when the student needs a hint. 
Besides visual output, synthesized voice will be used when needed. 
Mayer’s work exploring the principles of multimedia learning [9] 
will serve as design guidelines for when to include multimedia 
output and what this output should contain. 

4.1. Technology Components 

Cognitive Tutors have been an active area of research at Carnegie 
Mellon University since the 1980s [6]. They have been created for a 
variety of domains, including LISP programming, algebra, 
geometry, foreign language learning, and genetics. Cognitive Tutors 
for mathematics are in use in over 2000 schools in the United 
States. In the algebra tutoring lessons, students represent the 
situation algebraically in a spreadsheet-like worksheet and solve 
equations in a separate space with a symbol manipulation tool 
involving typing and menu-based operator selection. Each 
Cognitive Tutor is constructed around a cognitive model of the 
knowledge students are acquiring, and can provide step-by-step 
accuracy feedback and help as students solve problems.  

Cognitive Tutors are implemented in LISP with a Java 
interface. We intend to replace this Java interface with a 
handwriting input space that has a handwriting recognizer behind it. 
We plan to use an off-the-shelf recognizer called 
FFES/DRACULAE because it relieves us of the technical burden of 
developing a robust recognizer from scratch and blazes a trail for 
using handwriting engines in more real-world applications. FFES 
has reported character recognition accuracy rates of about 77%, for 
both expert and novice users who had not trained the system to 
their style of writing [12]. With training, FFES can yield accuracy 

rates as high as 95%. However, training handwriting recognition 
engines usually involves a large upfront time commitment during 
which the user inputs many (20+) examples of each character the 
recognizer is to understand (called enrollment). In a classroom 
setting, it is not very realistic to expect teachers to take valuable 
teaching time to allow students an hour or more to train the 
handwriting system. Therefore, it is imperative that we develop the 
system to maximize recognition accuracy while minimizing upfront 
training cost. 

This forces us to consider a trade-off between the level of 
feedback we can provide to students and the accuracy of the 
recognition engine. To give perfect, step-targeted feedback at every 
step of the problem-solving process (as Cognitive Tutors currently 
do) may require more recognition accuracy than FFES can currently 
support. However, it is not clear that this level of feedback is 
required. We believe that there is promising evidence that the use of 
worked examples instruction, in which students copy and study 
example problems whose solutions are already worked out for 
them, may help mitigate the criticality of step-targeted feedback by 
providing a kind of feed-forward. Figure 4 shows a screenshot of 
the prototype system in which the student is solving the problem 
“x/7 = 6” by referring to the worked example at the top of the 
screen. The student’s simple handwriting workspace is at the 
bottom of the screen. The use of worked example-based problem-
solving has been successful in prior work on geometry [14].

4.2. Improving Handwriting Recognition Accuracy 

Our long-term goal is to advance the theory of learning by fully 
exploring the feedback/accuracy trade-off. We may be able to 
improve accuracy in straightforward ways. The better the accuracy, 
the more feedback we can provide to students. In a step-by-step 
feedback paradigm, if the engine guessed wrong about the student’s 
input, the feedback the tutor provides may be incorrect. Requiring 
students to correct the engine’s guesses on the fly would impose 
further extraneous cognitive load, rather than reducing it. 
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Figure 3. Architecture of prototype handwriting interface system.

Figure 4. Screenshot of the interface of our prototype system. At the 
top is the worked example the student copied in the previous step; in 

the middle is the problem the student is solving.
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Our main idea for how to improve accuracy is inspired by the 
co-training machine learning techniques developed by Blum and 
Mitchell [3]. In co-training, two independent labelers (for instance, 
one which reads the text on a website and one that reads the text of 
links pointing to a website) can each use the other’s guesses to 
boost their own confidence, thus resulting in a classifier with 
greater overall accuracy than either one alone. We believe that 
similar techniques could be applied to our application, in which the 
handwriting engine is treated as one “labeler” and we combine it 
with various other “labelers” to achieve more accurate results. 
Potential labelers include the context of the problem we know the 
student is solving (which means we know what the student should 
be inputting), and also knowledge about common student errors as 
well as this student’s current skills (which means we know what the 
student might be inputting instead). Co-training can be used as a 
learning technique, in which the labelers (here, the recognition 
engine) can improve long-term by incorporating knowledge from 
the other labelers, but it can also be used for co-recognition, as we 
described, improving accuracy on the fly and case-by-case.  

Another important way we intend to improve recognition 
accuracy is through advance training of the recognizer on a large 
sample of corpus data from the target population. As mentioned, it 
is somewhat unrealistic to expect teachers to give up valuable 
instructional time in order for their students to spend even 10 
minutes training the technology to their specific handwriting. In our 
preliminary studies, we have collected a corpus of over 15,000 
individual online character samples from over 40 middle and high 
school algebra learners. We intend to batch-train the recognizer in 
advance on all of these samples in order to increase its walk-up-
and-use accuracy: that is, when a new user tries the system, the 
accuracy should be higher than it would have been without the prior 
batch-train. The engine may also perform on-the-fly, student-
targeted training during the copying of worked examples 
(effectively, labeled data), adapting the engine to the particular 
student as the lesson proceeds. With the use of these techniques, 
the resulting system should have much better performance accuracy 
than the raw, untrained engine on its own.  

5. CONCLUSIONS 

This paper has presented progress in developing a prototype system 
that allows students to use handwriting input to solve algebraic 
equations online in an intelligent tutor. We anticipate certain 
pedagogical advantages from the use of handwriting interfaces for 
learning mathematics, related to the decrease in extraneous 
cognitive load and the increased support for the spatial 
characteristics of mathematics notations, as well as evidence from 
prior studies that handwriting is faster and better liked than typing 
for this domain. While current handwriting engine accuracy may not 
be at a level suitable for use by students, we hypothesize that this 
may be improved via advance training of the engine on a large 
corpus of middle and high school math writing samples and via the 
use of techniques similar to co-training. The resulting system will be 
evaluated for its effectiveness in amplifying learning gains in 
students solving algebra equations, although the results of this work 
apply to other domains, such as geometry and physics.  
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