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ABSTRACT
Context-aware computer systems are characterized by the
ability to consider user state information in their decision
logic. One example application of context-aware comput-
ing is the smart mobile telephone. Ideally, a smart mo-
bile telephone should be able to consider both social factors
(i.e., known relationships between contactor and contactee)
and environmental factors (i.e., the contactee’s current lo-
cale and activity) when deciding how to handle an incoming
request for communication.

Toward providing this kind of user state information and
improving the ability of the mobile phone to handle calls in-
telligently, we present work on inferring environmental fac-
tors from sensory data and using this information to predict
user interruptibility. Specifically, we learn the structure and
parameters of a user state model from continuous ambient
audio and visual information from periodic still images, and
attempt to associate the learned states with user-reported
interruptibility levels. We report experimental results using
this technique on real data, and show how such an approach
can allow for adaptation to specific user preferences.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms

Keywords
Smart mobile telephones, user interruptibility, context aware-
ness, HMMs, hierarchical HMMs, scene learning

1. INTRODUCTION
Context-aware computer systems are characterized by the

ability to consider user state information in their decision
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logic. One application of context-aware computing is the
smart mobile telephone. Standard mobile telephones pro-
vide a constant, instant communications channel, allowing
human users to stay connected with one another and achieve
tremendous levels of efficiency in both vocational and so-
cial settings. However, by virtue of the fact that they are
always on unless explicitly switched off, they also present
opportunities for annoyance, unwanted interruption, and
distraction. Many users find incoming calls disruptive un-
der certain conditions: during meetings or seminars, while
driving, while attending theatrical performances, or during
meals. Further, under certain adverse conditions, such as
in the proximity of a construction site, participating in a
conversation may be physically difficult. Toward the goal of
alleviating these problems, researchers have begun to apply
context-aware computing techniques to the mobile telephone
platform; see for example work by Danninger et al. [2], [3],
and Siewiorek et al. [17].

Ideally, a smart mobile telephone should be able to con-
sider both social factors (i.e., known relationships between
contactor and contactee) and environmental factors (i.e., the
contactee’s current locale and activity) when deciding how
to handle an incoming request for communication — by ring-
ing, vibrating, taking a message, giving or withholding in-
formation about the contactee’s state, or even scheduling a
more convenient time for the communication to take place.

In this research, we focus on modeling and detecting envi-
ronmental and activity factors affecting interruptibility. Us-
ing hierarchical models of user state learned in an unsuper-
vised fashion from raw sensory data, we estimate whether or
not the contactee is interruptible. Combined with social in-
formation and a means of integrating these two information
sources to form a call-handling logic, this approach moves
toward the goal of a smart mobile telephone.

The remainder of this paper is organized as follows. We
discuss the theoretical and practical aspects of modeling user
interruptibility in Sec. 2. We show how to integrate sen-
sory and prior information into a multimodal interruptibil-
ity model in Sec. 3. Sec. 4 contains a detailed account of the
experiments we conducted to test our approach. We discuss
methods for adapting this model to both new or changing
user preference and novel environmental conditions in Sec. 5.
Our conclusions are found in Sec. 6.

2. MODELING USER INTERRUPTIBILITY
Our interruptibility model encompasses the following vari-

ables and sets of dependencies. I represents interruptibil-
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ity; in this study, a binary-valued variable. CO represents
directly observable context features; these include the iden-
tity of the contactor and contactee activities that the system
knows about from calendar entries, for example, meetings.
CH represents hidden context information; this information
must be inferred from the observable acoustic evidence EA

and the observable visual evidence EV . CH is itself com-
posed of two variables; CE represents the contactee’s im-
mediate environment (e.g., office or city street), while CA

represents the contactee’s current activity (e.g., preparing
a report or hailing a cab). The dependencies among these
variables are shown in Eqns. 1 - 5.

CE ↔ CA, (1)

EA ← CE , CA, (2)

EV ← CE , CA, (3)

CH ← EA, EV , (4)

I ← CH , CO. (5)

In this work, we consider only the hidden user state in-
formation CH . We next consider how to model CH using
observable acoustic and visual evidence, as well as how to
model I using information from CH .

2.1 Inferring User State from Sensory Data
Siewiorek et al. used a simple interruptibility model in-

volving only a few sensory features; notably two audio signal
power levels (one from a microphone capturing mainly con-
tactee speech, the other capturing mainly ambient noise)
and visual light levels [17]. This model, while useful, does
not capture some important aspects of user state. First, the
audio features focus mainly on conversation; the assumption
is that users do not want to be interrupted while they are
already involved in face-to-face or telephone conversations.
While this assumption appears to hold on average, it may
not always be the case. Second, specific patterns of activ-
ity and interruptibility, including those which are stable and
repeated over time, are not accounted for. These patterns,
when identified on a per-user basis, can be used to improve
interruptibility assessments.

Hudson, Fogarty, et al. focused in [9] on the predictive
power of high-level sensors, such as “talking on telephone”
and “sitting at monitor” in a Wizard-of-Oz study in an office
environment and achieved promising results in this domain.
They further demonstrated in [7] that real sensors were able
to perform quite well under real conditions using a combi-
nation of audio, visual, and computer interaction features.
Horvitz and Apacible also demonstrated in [8] the use of au-
diovisual sensors for estimating interruptibility in the office
domain; their model explicitly attempted to model the cost
of an interruption as another information source.

These previous studies focused on a stationary setting.
In [2], Danninger et al. modeled user state in a mobile set-
ting given ambient acoustic information solely in terms of
environments. As shown in work by Ellis and Lee ([4], [5])
and Malkin ([10]), a low-resolution approach can be used to
model environments. In that user context depends on en-
vironment, and that environment and activity are mutually
dependent (Eqn. 1), this approach does to some extent cap-
ture the information that we are interested in. One might
argue, though, that it is really user activities that matter in
this application. For example, a user simply walking down a

city street might be interruptible while a user walking down
a city street while engaged in a conversation might not. A
low-resolution environment-based context model might cor-
rectly spot the city street, but miss the conversation and
thus fail to make the interruptibility distinction.

There is an existing body of work on inferring user ac-
tivity from sensory data employing multiresolution models;
see work from Clarkson and Pentland ([1] and Oliver et al.
([12]). The models employed in these works are known as
layered hidden Markov models (LHMMs). LHHMs consist
of multiple HMMs with varying temporal resolutions and
modeling capacities arranged in series such that the output
of a low-level HMM serves as the input of a high-level HMM.
In this way, the LHMM can model high-level activities or
scenes as compositions of lower-level events. There are some
issues with LHMMs for this type of task, however; we now
discuss these problems and explain why a slightly differ-
ent multiresolution model, the hierarchical hidden Markov
model (HHMM) is a better choice for modeling multilayered
sensory phenomena.

We use two sensory streams in this work; continuous audio
data and sequences of still images. We elect to use these two
modalities as opposed to a more detailed modality like video
for two reasons. First, we are studying the ability to detect
interruptibility in a mobile environment. As such, it is im-
portant to recognize that we are inherently limited both in
sensory capacity and in computational power available. We
strongly suspect that most users would reject a system that
required any equipment other than a smartphone; it is thus
necessary to forgo full video and focus on audio plus still im-
ages, which are much cheaper to collect, store, and process.
Second, it has been demonstrated by many of the researchers
noted above that continuous audio is a rich source of infor-
mation for activity recognition. Adding still images to audio
may not enrich the sensory stream to the same degree that
full video would, but provided images are captured often
enough (i.e., more often than human activities change), the
gain from adding full video would be minimal.

2.2 A Hierarchical Sensory Context Model
The LHMMs presented in the works cited above have been

successfully employed to model a variety of multiresolution
phenomena. They do have some shortcomings, however.
First, the Viterbi procedure for inference must be executed
once for each model level, as output from lower levels (either
in the form of discrete state sequences or some equivalent
continuous feature space) is required for high-level input.
In addition to this inefficiency, the LHMM obscures the fact
that dependencies flow from causes to effects (i.e., from the
top down) rather than from effects to causes (i.e., from the
bottom up). To address these two concerns, we use the
HHMM introduced by Fine et al. in [6]. Murphy showed
in [11] that inference in the HHMM could be done in lin-
ear time (relative to input length) using the junction tree
algorithm, improving on the cubic time algorithm proposed
by Fine. Xie et al. additionally showed in [19] a practical
method for compiling an HHMM down to a standard HMM,
also allowing for inference in linear time (though with po-
tentially many more states than Murphy’s algorithm).

Murphy additionally provided the outlines of an approach
for learning HHMM structure from data; Xie et al. discussed
in detail a randomized, top-down approach for learning two-
level structures from soccer videos in which the model is, at
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Segmental K-Means

1 Given: k, n, t, f :
2 Initialize: choose k samples S to initialize M .
3 repeat until convergence
4 Build grammar g from M .
5 Segment f using g.
6 EM training until parameters converge.

Figure 1: The Segmental K-Means Algorithm

each step, either expanded, pruned, shuffled, or optimized
with EM and probabilistically accepted or rejected using a
Bayesian information criterion (BIC) ratio.

We propose a simple, bottom-up method for learning hi-
erarchical structures of arbitrary depth. This method in-
volves an initialization step, in which the data are clustered
into short-timespan event models, and a scene learning step,
in which sequences of events are combined to form long-
timespan scenes. We discuss each of these steps in turn
below.

2.2.1 Initialization
There are several options for clustering sensory data into

events. Here, we consider three clustering algorithms and
discuss their advantages and disadvantages. In all that fol-
lows, we denote by k the number of models to be initialized,
by n the number of states assigned to each model, by t the
number of frames we assign to a model state for initializa-
tion, by f a corpus of sensory features, by S a set of sensory
segments of length n × t, by M a set of initialized models,
and by g a fully connected grammar constructed from the
models in M .

Perhaps the simplest approach to model initialization, the
segmental k-means (SKM) algorithm, was popularized by
Clarkson and Pentland in [1]. The SKM algorithm, shown
in Fig. 1, requires several parameters to be set by hand;
most importantly, the number of models k with which to
partition the data. Given this constraint, SKM is fast and
conceptually simple.

An alternate approach, when the number of models k is
not known in advance or cannot be estimated using knowl-
edge of the problem, is to use some type of leader-follower
clustering algorithm such as the k-variable k-means (KVKM)
algorithm suggested by Reyes-Gomez and Ellis in [14]. This
algorithm, introduced for HMM topology selection in the
domain of general sound modeling, creates an initial model
and subsequently creates new models as warranted by the
data. We extend this algorithm to our problem, resulting in
the k-segment k-means (KSKM) algorithm, shown in Fig. 2.
The disadvantages of this algorithm are poor speed and sen-
sitivity to data order and model spawning parameters.

Finally, one can use an agglomerative clustering procedure
such as the one suggested by Slaney [18] and shown in Fig. 3.
This approach suffers the same disadvantages as the KSKM
algorithm; additionally, a stopping point must be supplied
in an application-dependent manner.

Given that all three algorithms require some application
dependent knowledge, we opt in this work for the simplest
approach, the SKM algorithm.

K-Segment K-Means

1 Given: n, t, f ,
θm, a merging threshold,
θs, a spawning threshold,
z, the minimum number of samples per model.

2 Initialize: choose segment S0, train model M0.
3 repeat until likelihood P (S|M) converges:
4 for each unassigned sample Si:
5 Find model Mj with highest P (Si|Mj).
6 if P (Si|Mj) > θm :
7 then Add Si to Mj .
8 elseif P (Si|Mj) < θs :
9 then create new model Mi using Si.

10 Update P (S|M).
11 Remove models Mi with fewer than z samples.
12 repeat until convergence
13 Build grammar g from M .
14 Segment f using g.
15 EM training until parameters converge.

Figure 2: The K-Segment K-Means Algorithm

2.2.2 Scene Identification
In the LHMM approach, the state sequence inferred from

lower-level features is converted into a new feature space for
a higher-level HMM. The SKM algorithm is then used to
build a model set over this higher-level feature space, which
can be either a sequence of discrete state identities or a
vector of state posteriors. This process can be repeated until
the desired number of levels is reached. The multi-level SKM
approach could also be used to identify scenes for an HHMM
by replacing the outputs of each high-level state with vertical
transitions to low-level states. The main drawback of this
method is that every low-level state must be part of some
high-level scene. There may in fact be many low-level events
which appear essentially at random intervals. By forcing
these events into scenes in a maximum likelihood manner,
we obscure the fact that they have no real predictive power.

To address this problem, we propose a method similar
to one used to learn phrases and letter sequences in natural
text; see for example work by Ries et al. [15] or Ron et al. [16]
on variable length Markov models. In this method, which

Agglomerative Segment Clustering

1 Given: n, t, f ,
θ, a merging threshold.

2 Initialize: train model Mi for each segment Si.
3 repeat

4 for each model pair (Mi,Mj) :
5 Φi,j ← L(Si|Mj) + L(Sj |Mi).
6 if Φi,j > θ for best pair return

7 Build new model Mk with data Sk = (Si, Sj).
8 Remove Mi, Mj from M .

Figure 3: The Agglomerative Segment Clustering

Algorithm
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we call the minimum mutual information (MMI) method, we
define a scene as a set of events which predictably occur in
the same temporal neighborhood. That is, if the appearance
of one specific event a significantly increases the likelihood
that some other event b will occur in the near future, then a
and b should be grouped together as part of the same scene
c. To turn this observation into an algorithm, we note that
the relationship between events a and b described above is
one of temporal dependency. We can measure the degree to
which a corpus C of length T with symbols drawn from al-
phabet S contains temporal dependencies between adjacent
symbols Ct and Ct−1 by computing its average temporal
mutual information I(C), as shown in Eqn. 6. In this work,
we find it convenient to normalize this metric to obtain a
figure between 0 and 1; this normalized measure, Î(C), is
given in Eqn. 7.

I(C) = I(Ct;Ct−1) = H(Ct)−H(Ct|Ct−1), (6)

Î(C) =
I(C)

H(Ct)
= 1−

H(Ct|Ct−1)

H(Ct)
. (7)

When a corpus has high temporal mutual information, it
means that the next symbol is easily predictable given the
present symbol. Put another way, such a corpus has high
temporal redundancy and is thus represented inefficiently.
Given that the goal in perceptual systems is usually to re-
duce redundancy and represent sensory data efficiently, we
can use the temporal mutual information measure to learn
scenes. Specifically, if we define a “scene” as any sequence
of symbols in a corpus which are redundant, then removing
such sequences from the corpus and replacing them with
some higher-level symbol, Î(C) is reduced. Given this ob-
servation, we define the MMI structure learning algorithm as
in Fig. 4; here, ψ refers to any additional constraints placed
on the merging procedure; typical constraints include min-
imum co-occurrence counts, restrictions on the number of
children a new symbol can have, restrictions on whether or
not all level merges at level n must be exhausted before con-
sidering merges at level n+1, and the like. These restrictions
can have a large effect on the final topology of the learned
HHMM. For instance, if a state can have few children, the
topology will be fairly deep, as the only way to learn longer
structures is to build vertically. Conversely, if a state can
have many children, it is possible to learn long structures by
building horizontally, resulting in a shallower topology.

After completing the merging procedure in this way, each
candidate merge is converted into a hierarchical HMM struc-
ture; every new symbol Sq becomes an HHMM state which
spawns all states it replaced with the appropriate prior, tran-
sition, and exit probabilities. The remaining symbols which
were not merged into a scene can be merged into a special
“no scene” symbol, or simply left unmerged.

3. AN AUDIO-VISUAL CONTEXT MODEL
Given a method for learning scenes from data, and hence

for inferring state sequences from data, we consider how
to turn this information into an estimate of user interrupt-
ibility. That is, if we infer from data some state sequence
S∗, we wish to know the value of the binary interruptibility
variable I during that sequence. More accurately, since this
interruptibility estimate will ultimately be combined with
estimates from non-sensory modalities, we wish to estimate

MMI Structure Learning

1 Given: C, S, ψ:

2 Initialize: Compute Î(C) = Î(Ct;Ct−1).
3 repeat

4 M ← {}, C
′

← C, Î(C∗)← Î(C).
5 for each symbol pair (Si, Sj) :
6 if ψ(Si, Sj) = true :
7 then

8 Create new symbol Sq.

9 C
′

← sSi + Sj + Sq.

10 Compute Î(C
′

) = Î(C
′

t ;C
′

t−1).

11 if Î(C
′

) < Î(C∗) :
12 then

13 M ← (Si, Sj), C
∗ ← C

′

,

14 Î(C∗)← Î(C
′

).

15 if Î(C∗) < Î(C) :
16 then

17 C ← C∗, Î(C)← Î(C∗).
18 else return

Figure 4: The Minimum Mutual Information Struc-

ture Learning Algorithm

the probability P (I|S∗) for all values of I. Using Bayes’ rule
and borrowing from automatic speech recognition (ASR) the
engineering convention of weighting the prior and the likeli-
hood, we show how to estimate P (i|S∗) for some value i ∈ I
in Eqns. 8 - 11.

P (i|S∗) ∝ P (S∗|i)P (i), (8)

=

T
Y

t=1

P (St|i)P (i), (9)

= TP (i)

T
Y

t=1

P (St|i), (10)

≈ αP (i)
β

T

T
Y

t=1

P (St|i). (11)

Both the interruptibility model P (S∗|I) and the inter-
ruptibility prior P (I) can by learned by simple frequency
counting of inferred states combined with user-supplied in-
terruptibility labels.

In this work, we aim to consider both auditory and vi-
sual information when estimating interruptibility. Rather
than attempting to merge auditory and visual features into
a single feature vector, we opt for late fusion. We can thus
compute a separate score for each modality and combine
them in a weighted fashion as shown in Eqn. 12. Here we
assume that the auditory and visual information are inde-
pendent. This assumption does not always hold; as shown in
our dependency model above (Eqns. 1 - 5), both are related
to environment and activity. We make this independence
assumption in the interest of simplifying the model.

P (i|S∗

A, S
∗

V ) = λP (i|S∗

A) + (1− λ)P (i|S∗

V ). (12)
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Subcorpus Audio Time Images Min. / Image

1 7836s 20 6.5
2 19320s 44 13.0
3 22282s 30 12.3

Total 49438s 94 11.4

Table 1: Evaluation Corpus

4. EXPERIMENTS
We conducted a set of experiments designed to test our

method’s ability to predict interruptibility from auditory
and visual data. Since we have limited visual information,
we divide our experiments into two sets: one set designed
to find the best acoustic model for interruptibility, and one
set designed to find the best combination of acoustic and
visual models. For both experiments, we induced user con-
text model structures using all available data. We then
conducted round-robin training and testing of state inter-
ruptibility models and prior interruptibility models in which
two of the three recordings were used for training and the
third for testing. After describing our corpus in Sec. 4.1,
we discuss audio and visual feature extraction in Sec. 4.2,
followed by a discussion of the parameters used to construct
the acoustic user context model in Sec. 4.3. Sec. 4.4 dis-
cusses the construction of the visual context model, while
Secs. 4.5 and 4.6 contain experimental results.

4.1 Experimental Corpus
The data we used in this study was collected by one of

the authors as he carried acoustic and visual sensors dur-
ing normal daily activities. Audio was captured using the
Neuros II personal audio computer in conjunction with a
Sony ECM-719 stereo microphone and a portable, battery-
powered preamplifier from SoundProfessionals. Audio was
captured at 2-byte sample depth at 48kHz and later down-
sampled to 16kHz. One channel was used. Visual informa-
tion was captured by periodic VGA-quality snapshots from
the camera on a Nokia 6600 mobile telephone. Pictures
were taken, on average, every 11 minutes, though the rate
of photos varied with activity; more shots were taken when
the scene was changing rapidly and fewer were taken dur-
ing those periods where the author was mainly sitting at his
desk. We collected nearly 14 hours of data and 100 images;
details are shown in Tab. 1. In addition to serving as vi-
sual input, the images were also used to label the corpus for
interruptibility

4.2 Feature Extraction
We extracted 11 mel-frequency cepstral coefficients (MFCCs)

from the audio signal at a rate of 100 frames per second.
We extracted three additional features to supplement the
MFCCs. These additional features included spectral cen-
troid (a measure of the perceptual “brightness” of the sig-
nal), spectral diffusion (which measures the spread of spec-
tral energy in frequency space), and signal-to-noise ratio
(which helps to distinguish noisy environments from merely
loud ones). After merging these features into a single 14-
dimensional acoustic feature vector, we filtered them by ap-
plying a Gaussian smoothing window. Finally, we normal-
ized each feature globally to zero mean and unity variance.

Visual information was characterized for these experiments

Transition Initial Frames Per State
Penalty 33 66 100 133 0.6

0 0.6 0.6 0.7 0.6 0.6
62.5 1.6 1.8 1.8 1.7 1.8
125 2.8 2.6 2.9 2.7 2.9
250 5.2 4.6 5.2 4.9 4.9
500 10.6 9.3 10.9 10.0 9.9

Table 2: Average Event Length By Transition

Penalty and Frame Allocation

by local features and the correlations among local features.
We extracted three types of local features from 4 × 3 =
12 regular granularities of each image. In each local image
patch, we extracted the mean of grayscale values, the means
of R, G, and B values (the redundant information here is to
emphasize grayscale values), and the 24-bin color histogram
in HSV color space. Since there are 12 patches in each image,
the grayscale mean vector has 12 dimensions represented by
column vectors Vg. The mean of RGB values is represented
as a 12 × 3 matrix Vrgb and the color histogram is denoted
12 × 24 matrix Vh.

The correlations among the local features characterized
how local patches were similar to each other. We computed
the self-correlation matrices for each type of local feature
by using the definitions of the grayscale mean correlation
matrix Mg:

Mg = VgV
T

g , (13)

the RGB mean correlation matrix Mrgb:

Mrgb = VrgbV
T

rgb, (14)

and the color histogram correlation matrix Mh:

Mh = VhV
T

h . (15)

The final visual feature vector for an image is the combi-
nation of the local features and their correlations, which is
formally defined as:

Fv = [Vg, Vrgb, Vh,Mg,Mrgb,Mh]. (16)

4.3 Building the Acoustic User Context Model
To build the hierarchical acoustic user context model, we

first had to infer from the data a suitable event-level model.
To do this, we used all the data listed in Tab. 1. We used
the SKM algorithm with k = 32 models and n = 3 states
per model. We observed that the average event duration
after final segmentation was heavily dependent on the inter-
model transition penalty, and less dependent on the number
of initial frames assigned to each state. Tab. 2 shows how
these two parameters affected average event length.

Given that we intuitively sought event-level models cover-
ing approximately 1 to 2 seconds, we chose the model con-
structed with a transition penalty of 62.5 and 166 frames
per state for our experiments. The final segmentation using
this model contained 27,432 symbols. We used this model as
the event layer for two separate scene models: a full LHMM,
trained with SKM and an HHMM whose structure was in-
duced using MMI. In the SKM case, we again experimented
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Model Number of Transition Penalty
Level States 0 0.125 0.25

1 16 3.0 5.8 17.6
2 8 3.3 11.5 114.7
3 4 3.9 49.7 737.9
4 2 7.7 61.0 1098.6

Table 3: Average Scene Length By Level and Tran-

sition Penalty, SKM Scene Learning

Model Level Scenes Learned Î(C) Scene Length

0 0 0.163 1.80
1 16 0.138 2.04
2 2 0.138 2.05
3 3 0.138 2.06
4 2 0.139 2.07

Table 4: Scenes Learned, Î(C), and Average Scene

Length, MMI Scene Learning

with several different transition penalties; the resulting av-
erage scene lengths are shown in Tab. 3. As shown here,
the most gradual increase in scene length is found using a
transition penalty of 0.125.

To construct our MMI model, we used the same event-
level segmentation that we used to construct our SKM model.
We then applied the MMI algorithm described above above
with the following set of constraints:

1. A merge is legal if:

(a) The two states being merged are both on the same
HHMM level and this level is lower than the cur-
rent level or

(b) The two states being merged are not on the same
HHMM level and

i. The higher-level state is not on the current
level or

ii. The higher-level state is on the current level
and it has less than three children and the
lower-level state is not already a child.

2. A low-level state sequence must appear at least 10
times to be merged into a new higher-level state.

3. We require a minimum of two new merges per level; if
no proposed merges lower Î(C), we accept the merge
that minimizes it.

We used these constraints to construct a five-level HHMM
which is described in Tab. 4. Note that only 23 scenes were
actually learned; this would seem to indicate that there is
actually little short-term predictability in the source corpus.

4.4 Building the Visual User Context Model
We had much less image data than audio data to work

with in this research; hence, we were restricted to a very
simplistic visual user context model. We trained a single
diagonal covariance Gaussian model for each interruptibility
class using the visual features described in Sec. 4.2.

Test Miss Rates
Subcorpus False Interrupt False Reject Total Miss

1 11.5% 0.0% 11.5%
2 18.2% 0.0% 18.2%
3 5.4% 0.0% 5.4%

Average 11.4% 0.0% 11.4%

Table 5: Miss Rates by Time: Priors Only

Test Miss Rates
Subcorpus False Interrupt False Reject Total Miss

1 9.2% 20.5% 29.7%
2 1.2% 1.2% 2.4%
3 4.8% 0.5% 5.3%

Average 4.1% 3.9% 8.0%

Table 6: Miss Rates by Time: Event-level HMM

4.5 Results - Acoustic Information
To establish a baseline, we first tested an approach in

which we simply always guess the most frequent class in
the training data. In each of the three round-robin exper-
iments, this baseline approach amounts to always guessing
that the user is interruptible. The results of employing this
approach are shown in Tab 5. This table shows false in-
terrupt rate (i.e., the rate at which the system incorrectly
hypothesized that the user was interruptible), false reject
rate (i.e., the rate at which the system incorrectly hypothe-
sized that the user was uninterruptible), and total miss rate
on a per-second basis.

As with the baseline, we tested HMM-based performance
using a round-robin approach. Here, we trained the inter-
ruptibility likelihood model model P (S|I) sing the training
subcorpora, and computed results on the testing subcor-
pora. We first tested the event-level HMM trained using
the SKM algorithm. Miss rates for this model are shown in
Tab 6.

The overall miss rate of 8% represents a 30% reduction in
error relative to the prior. Further, the false interrupt rate
and false reject rate are balanced, which in the absence of
specific user preference to the contrary, is preferable to an
unbalanced performance profile.

We next tested performance for the multilevel scene mod-
els trained with both SKM and MMI. We first computed the
mutual information between model states and interruptibil-
ity labels; intuitively, a higher association between state and
interruptibility should lead to lower miss rates. Mutual in-
formation figures are shown in Tab. 7; in both approaches
mutual information degrades on average as levels are added,
but the degradation is much more severe in the SKM-trained
model.

Miss rates for the SKM approach and the MMI approach
are shown in Tabs. 8 and 9. On average, miss rates worsen
at higher levels for the SKM-trained model and improve
slightly at higher levels for the MMI-trained model; the best
result is obtained by the level 4 MMI-trained model. The
MMI miss rate of 6.5% represents an 18% relative improve-
ment over the event-level model and 43% over the prior. Al-
though the absolute improvement over the event-level model
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Learning Model Level
Method 0 1 2 3 4

SKM 0.260 0.129 0.195 0.178 0.093
MMI 0.260 0.203 0.204 0.199 0.200

Table 7: Mutual Information Between Model State

and Interruptibility

Model Miss Rates
Level False Interrupt False Reject Total Miss

0 4.1% 3.9% 8.0%
1 5.9% 26.9% 32.8%
2 19.4% 17.6% 37.0%
3 2.7% 20.7% 23.4%
4 19.3% 19.4% 38.7%

Table 8: Average Miss Rates by Time: Multi-level

SKM Learning

is small, there is a clear trend, and in any case performance
is superior to the SKM model. A likely reason for this per-
formance is that the SKM model capacity shrinks at higher
levels, meaning that granularity in the interruptibility like-
lihood model P (S|I) is lost. Conversely, MMI is extremely
selective about which models it merges. As a result, the
level 4 MMI model has 55 symbols, while the level 4 SKM
model has only 2.

4.6 Results - Visual Information
After conducting experiments using audio information only,

we considered the addition of image information. The use of
image information is natural; many smartphones have on-
board cameras with relevant APIs exposed. Further, the
data collector labeled the corpus for interruptibility using
the images as reminders activity; in many cases, visual in-
formation can be enough to determine user state. Finally,
in many applications, the failure modes of audio and video
can be complementary. We thus trained and tested image
interruptibility models using the same round-robin proce-
dure that we used for audio. Results are shown in Tab. 10.
The overall miss rate of 52.7% for the image-based model
is many times worse than the best audio-based miss rates.
Given the overall poor performance of the visual subsystem
on this corpus, we elected not to pursue a joint audio-visual
model at this time. As we discuss in the Conclusions, how-
ever, we suspect that lack of data was a serious problem for
the image models and we plan to return to this exploration.

Model Miss Rates
Level False Interrupt False Reject Total Miss

0 4.1% 3.9% 8.0%
1 4.1% 3.9% 8.0%
2 4.1% 3.9% 8.0%
3 3.1% 3.9% 7.0%
4 2.9% 3.6% 6.5%

Table 9: Average Miss Rates by Time: Multi-level

MMI Learning

Test Miss Rates
Subcorpus False Interrupt False Reject Total Miss

1 0.7% 66.7% 67.5%
2 52.7% 6.1% 58.8%
3 0.2% 38.0% 38.3%

Average 28.4% 24.4% 52.7%

Table 10: Average Miss Rates by Time: Image-

based GMMs

5. ADAPTING THE MODEL TO SPECIFIC
USERS AND NEW CONDITIONS

One issue with user context modeling approaches of this
type is adaptation. It is for the most part impossible to col-
lect enough data to achieve high performance across a large
body of users. This is the case because users vary along two
dimensions: the types of activities they engage in and en-
vironments they visit, and their own interruptibility prefer-
ences. Our system offers several advantages in this area over
systems such as the one proposed by Siewiorek et al. in [17].
Specifically, adaptation to novel activities and environments
can be achieved by adding new event-level models to the
HHMM whenever the best-matching event-level model is a
sufficiently poor match to the data. High-level models in-
volving new low-level models can be learned in the same
way that the model was initially trained and infrequently
used models at all levels pruned, perhaps using an approach
similar to the one suggested by Pfleger in [13]. Adaptation
to user preference can be achieved by allowing the user to
supply negative feedback to the system when it performs
incorrectly. In case the system interrupts the user when
he considers himself uninterruptible, this feedback is easy
to elicit and track; the user presses some form of rejection
button. In the opposite case, feedback is somewhat harder
to come by; there is no urgency to silence the telephone as
there is in the unwanted interruption case. However, since it
seems intuitively correct that unwanted interruptions are on
average worse than unnecessary rejections, we assume that
users of such a system will be cooperative. One issue to
address is how to use the feedback. In a deployed system,
the sensory interruptibility model we have described is but
one module; social models also come into play. It will thus
be the responsibility of the main control module to assign
blame to the sensory or social module. When blame is as-
signed to the sensory module, we must specify whether it
was an error in the auditory subsystem or the visual subsys-
tem. Once blame is assigned, however, there are two ways
to proceed. First, we can simply update the interruptibility
likelihoods P (S|I). An alternate approach involves deter-
mining whether or not the sensory data with a given Viterbi
segmentation yielding an incorrect interruptibility likelihood
is similar to an alternate segmentation which would yield a
correct interruptibility likelihood. If this were found to be
the case, we could apply discriminative training to make
the alternate segmentation more likely in the future. On-
going research indicates that the first approach, at least, is
viable given a scene model with sufficiently broad acoustic
coverage, provided that the interruptibility likelihoods are
uniform to start.
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6. CONCLUSIONS
We have demonstrated a method for estimating user in-

terruptibility from ambient audio and images for use in a
smart mobile telephone application. We described an inter-
ruptibility model based on acoustic information, and showed
how to induce HHMM model structure from data using an
MMI criterion. We demonstrated, using nearly 14 hours of
real-world data, that this approach was effective in learning
how to estimate interruptibility. We also evaluated the use
of image data to estimate interruptibility and found the ev-
idence for its utility negative, but wholly equivocal due to
lack of data. Finally, we described the need for adaptation
to new activities, new environments, and user preference. To
address this need, we discussed how to elicit user feedback,
and how to adapt the model in the face of such feedback.

The work we described here has, in our view, three main
shortcomings. First, the audio data we collected was of high
quality and required the use of an external recording de-
vice. This scenario does not match any truly deployable
system; we are currently exploring the recording and use of
low-quality audio using only the microphones available on
a typical smartphone. Second, the database we used is not
large enough to embody a significantly wide range of typ-
ical experiences, even for the one user who collected data.
Third, the image dataset is extremely impoverished. Images
were originally intended to be used only as labeling tools;
however, when it became clear that certain visual scenes
were extremely suggestive of user state, we began to use
them for inference as well. We plan to address both of these
shortcomings by collecting more data in a larger variety of
settings while capturing images from the mobile telephone
camera at much shorter, preset intervals (e.g., 20 seconds).
In this way, we will vastly increase the amount of images
available for modeling, and also produce higher-resolution
interruptibility labels for future research.
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