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Abstract. In this paper, we presented three person identification systems that 
we have developed for the CLEAR evaluations. Two of the developed identifi-
cation systems are based on single modalities- audio and video, whereas the 
third system uses both of these modalities. The visual identification system ana-
lyzes the face images of the individuals to determine the identity of the person. 
It processes multi-view, multi-frame information to provide the identity esti-
mate. The speaker identification system processes the audio data from different 
channels and tries to determine the identity. The multi-modal identification sys-
tem fuses the similarity scores obtained by the audio and video modalities to 
reach an identity estimate. 

1   Introduction 

Person identification in smart environments is very important in many aspects. For 
instance, customization of the environment according to the person’s identity is one of 
the most useful applications. However, until now, person identification research has 
focused on security-oriented authentication applications and face recognition in smart 
rooms has been ignored in great extent. 

In CHIL project [1], aiming to encourage the research efforts for person identifica-
tion in smart environments, a data corpus and evaluation procedure has been pro-
vided. Following the two successful uni-modal identification evaluations [2], this year 
multi-modal identification is also included to the person identification task. 

In this paper, the person identification systems that have developed at the Interac-
tive Systems Labs for the CLEAR evaluations are presented. The organization of the 
paper is as follows. In Section 2, the algorithms used in each system are explained. 
Experimental results are presented and discussed in Section 3. Finally, in Section 4, 
conclusions are given. 

2   Methodology 

In this section, face recognition, speaker identification, and fusion algorithms that are 
used for the evaluations are presented. 



250 H.K. Ekenel and Q. Jin 

2.1   Face Recognition 

The face recognition system processes multi-view, multi-frame visual information to 
obtain an identity estimate. The system consists of the following building blocks: 

- Image alignment 
- Feature Extraction 
- Camera-wise classification 
- Score normalization 
- Fusion over camera-views 
- Fusion over image sequence 

The system receives an input image and the eye-coordinates of the face in the input 
image. The face image is cropped and aligned according to the eye coordinates. If 
only one eye is visible, that image is not processed. The aligned image is, then,  
divided into non-overlapping 8x8 pixels resolution image blocks. Discrete cosine 
transform (DCT) is applied on each local block. The obtained DCT coefficients are 
ordered using zig-zag scan pattern. From the ordered coefficients, the first one is 
removed since it only represents the average value of the image block. The first M 
coefficients are selected from the remaining ones [3]. To remove the effect of inten-
sity level variations among the corresponding blocks of the face images, the extracted 
coefficients are normalized to unit norm. For detailed information please see [4]. 

Classification is performed by comparing the extracted feature vectors of the test im-
age, with the ones in the database. Each camera-view is handled separately. That is, the 
feature vectors that are extracted from the face images acquired by Camera 1 are com-
pared with the ones that are also extracted from the face images acquired by Camera 1 
during training. This approach speeds up the system significantly. That is, if we have N 
images from each camera for training, and if we have R images from each camera for 
testing, and if we have C cameras that do recording, it requires (C*N)*(C*R) number of 
similarity calculations between the training and testing images. However, when we do 
camera-wise image comparison, then we only need to do C*(N*R) comparisons be-
tween the training and testing images. Apparently, this reduces the amount of required 
computation by 1/C. In addition to the improvement in system’s speed, it also provides 
a kind of view-based approach that separates the comparison of different views, which 
was shown to perform better than doing matching between all the face images without 
taking into consideration their view angles [5]. 

Distance values obtained from each camera-view are normalized using Min-Max 
rule, which is defined as: 
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where, s corresponds to a distance value of the test image to one of the training im-
ages in the database, and S corresponds to a vector that contains the distance values of 
the test image to all of the training images. The division is subtracted from one, since 
the lower the distance is, the higher the probability that the test image belongs to that 
identity class. This way, the score is normalized to the value range of [0,1], closest 
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match having the score “1”, and the furthest match having the score “0”. These scores 
are then normalized by dividing them to the sum of the confidence scores. 

The obtained confidence scores are summed over camera-views and over image-
sequence. The identity of the face image is assigned as the person who has the highest 
accumulated score. 

2.2   Speaker Identification 

In this section, the building blocks of the speaker identification system are explained. 

2.2.1   Reverberation Compensation 
A distant-talking speech signal is degraded by additive background noise and rever-
beration. Considering room acoustics as a linear shift-invariant system, the receiving 
signal ][ty  can be written as,  

][][][][ tnthtxty +∗= ,                                                 (1) 

where the source signal ][tx  is the clean speech, ][th  is the impulse response of 

room reverberation, and ][tn  is recording noise. Cepstrum Mean Subtraction (CMS) 
has been used successfully to compensate the convolution distortion. In order for 
CMS to be effective, the length of the channel impulse response has to be shorter than 
the short-time spectral analysis window which is usually 16ms-32ms. Unfortunately, 
the duration of impulse response of reverberation usually has a much longer tail, as 
long as more than 50ms. Therefore traditional CMS will not be as effective under 
these conditions. 

We separate the impulse response ][th  into two parts ][1 th  and ][2 th , where,  
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and rewrite formula (1) as 

][][][][][][ 21 tnthTtxthtxty +∗−+∗=  

][1 th  is a much shorter impulse response, whose length is smaller than the DFT 
analysis window, thus it can be compensated by the conventional CMS. 
For ][*][ 2 thTtx − , we treat it the same as additive noise n[t], and apply the noise 
reduction technique based on spectrum subtraction. Assuming the noise 

][][*][ 2 tnthTtx +−  could be estimated from ][ Tty − , and then the spectrum 
subtraction is performed as, 

]),[],,[)(],[max(],[ˆ wtYbwTtYwgawtYwtX ⋅−⋅−= , 
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where a  is the noise overestimation factor, b  is the spectral floor parameter to avoid 
negative or underflow values. We can empirically estimate the optimum a, b and g(w) 
on a development dataset. We found that the system performance is not sensitive to T. 
Within the range of 20-40 ms there is no significant difference on the effect of the 
spectra subtraction. However outside that range, there is obvious performance degra-

dation. We found a = 1.0, b = 0.1 and ( ) jwewg 9.01−= optimal in most chang-

ing conditions based on development data as described in [6]. Standard CMS is  

applied after spectrum subtraction to eliminate the effect of ][1 th . 

2.2.2   Feature Warping 
The feature warping method proposed in [7], which warps the distribution of a cep-
stral feature stream to a standardized distribution over a specified time interval, aims 
to make the features more robust to different channel and noise effects.  The warping 
can be considered as a nonlinear transformation T, which transforms the original fea-

ture X to a warped feature X̂ , i.e, 

( )XTX =ˆ  

This can be done by CDF matching, which warps a given feature so that its CDF 
matches a desired distribution, such as normal distribution. The method assumes that 
the dimensions of the MFCC vector are independent. So each dimension is processed 
as a separate stream. The CDF matching is performed over short time intervals by 
shifting a window. Only the central frame of the window is warped every time. The 
warping executes as follows, the same way as in [8].: 

• for di ,,1= where d is the number of feature dimensions 

• sorting features in dimension i  in ascending order in a given window 
• warping raw feature value x  in dimension i  of the central frame to its warped 

value x̂ which statisfies: 
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 Where )( yf  is the probability density function (PDF) of standard normal 
distribution, i.e. 
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and φ  is  its corresponding CDF value. Suppose x  has a rank r  and the 

window size is N . Then the CDF value can be approximated as  

N

r )2
1( −

=φ  

• x̂  can be quickly found by lookup in a standard normal CDF table. 

In our experiments, the window size is 300 frames and the window shifts one 
frame. Zeros are padded at the beginning and at the end of the raw feature stream. 
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2.2.3   Speaker Modeling 
Over past decades, GMM has become the dominant approach for speaker modelling 
in speaker recognition systems which use untranscribed training data [9]. The recog-
nition decision is made as follows 
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where s  is the identified speaker and ( )iYL Θ   is the likelihood that the test feature 
set Y  was generated by the GMM iΘ  of speaker i , which contains M  weighted 
mixtures of Gaussian distributions 
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where X  is the set of training feature vectors to be modelled, S  is the total number 
of speakers, M  is the number of Gaussian mixtures, mλ  is the weight of the Gaus-
sian component m , and ( )mmUXN Σ,,  is a Gaussian function with mean vector 

mU  and covariance matrix mΣ . The parameters of a GMM are estimated from 
speech samples of a speaker using the EM algorithm. In our system, 128 Gaussians 
and 32 Gaussians are trained for each speaker for the training duration of 30-seconds 
and 15-seconds respectively. We will show how we choose these numbers of Gaus-
sians in the experimental results section.  

2.3   Multimodal Identification 

Multimodal identification is performed by fusing the match scores of each uni-
modality- audio and video. Since, different classifiers are used during classification in 
each modality (nearest neighbor vs. GMM), the confidence scores of each modality 
are normalized with a non-linear function to compensate this mis-match. Sigmoid 
function is used for this purpose. After normalizing the match scores, they are fused 
via sum rule. Since, there is no common validation set available to the evaluation 
participants, no prior information about the performances of audio-only and video-
only testing is used. Therefore, audio and video modalities are equally weighted. 

3   Experiments 

In this section the evaluation data is described and the experimental results are presented. 

3.1   Face Recognition Experiments 

The evaluation data for visual identification task in CLEAR evaluations consists of 
short video sequences taken from the Seminar 2005 database recorded in the various 
CHIL sites. There are 26 individuals in the database. 

In face recognition experiments, face images are aligned according to eye-center 
coordinates and scaled to 40x32 pixels resolution. Only every five frame that has the 
eye coordinate labels is used for training and testing. The aligned image is then  
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divided into 8x8 pixels resolution non-overlapping blocks making 20 local image 
blocks. From each image block 10 unit norm DCT-0 coefficients are extracted and 
they are concatenated to construct the 200-dimensional final feature vector. The clas-
sification is performed using nearest neighbor classifier. L1 norm is selected as the 
distance metric, since it has been observed that, it consistently gives the best correct 
recognition rates when unit norm DCT-0 coefficients are used. The distance values 
are converted to the matching scores by using the Min-Max rule. The normalized 
matching scores are accumulated over different camera views and over image se-
quence. The identity candidate that has the highest score is assigned as the identity of 
the person. 

The false identification rates for different training and testing durations can be seen 
in Table 1. As can be observed from the table, the increase in the training segments’ 
duration or in the testing segments’ duration decreases the false identification rate. 

Table 1. False visual identification rates 

Test Duration (sec) Segments Train A (15 sec) Train B (30 sec) 

1 613 46.8% 40.1% 

5 411 33.6% 23.1% 

10 289 28.0% 20.4% 

20 178 23.0% 16.3% 

3.2   Speaker Identification Experiments 

The evaluation data in CHIL 2005 Spring Evaluation was used as our development 
data set. This data set has been carried out on the union of the UKA-
ISL_Seminar_2003 and UKA-ISL_Seminar_2004 databases. Non-speech segments 
have been manually removed both from the training and the testing segments. There 
are two microphone conditions: Closed-Talking-Microphone (CTM) and Microphone 
Array (ARR). The duration and number of segments selected for the training and 
testing as improving our system is described in Table 2. 

Table 2. Description of development data 

 Duration (sec) CTM Segments ARR Segments 

Train A 30 11 11 

Train B 15 11 11 

Test 5 1100 682 

In order to find an optimal number of Gaussians for a speaker model, we con-
ducted several speaker identification experiments with different number of Gaussians 
in a speaker model.  
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Table 3. False identification rate with different number of Gaussians for 30-sec training  

Number of Gaussians 64 128 256 

Miss Classification Rate 0.36% 0.27% 0.36% 

Table 4. False identification rate with different number of Gaussians for 15-sec training 

Number of Gaussians 16 32 64 

Miss Classification Rate 2.82% 2.00% 2.23% 

According Table 3 and Table 4, we choose to use 128 Gaussians for the 30-second 
training condition and 32 Gaussians for the 15-second training condition. 

Table 5 shows the system performance improvement by applying reverberation 
compensation and feature warping under the 30-seconds training condition. We can 
see from the table that signification improvement was achieved for both the CTM and 
ARR microphone conditions. 

Table 5. Performance improvement by reverberation compensation and feature warping 

 Baseline RC+Warp Relative Improvement 

CTM 0.27% 0.18% 33.3% 

ARR 6.74% 3.08% 54.3% 

Table 6. False audio identification rate in clear 2006 evaluation  

Test Duration (sec) Segments Train A (15 sec) Train B (30 sec) 

1 613 23.7% 14.4% 

5 411 7.8% 2.2% 

10 289 7.3% 1.4% 

20 178 3.9% 0% 

The overall system performances for different training and testing durations are 
given in Table 6. It is apparent that, as the duration of training or testing segments 
increases, the error rate decreases. 

3.3   Multimodal Identification Experiments 

The evaluation data for multimodal identification task in CLEAR evaluations consists 
of short audio-video sequences taken from the Seminar 2005 database recorded in the 
various CHIL sites. There are 26 individuals in the database. 
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To perform multimodal identification, the individual modality matching scores are 
fused as explained in Section 2.3. The experimental results can be seen in Table 7. 
Again, it can be observed that the increase in training segments’ duration or in testing 
segments’ duration decreases the false identification rate. Due to equal weighting of 
each modality, the multimodal identification results are higher than the visual-only 
results and lower than the audio-only results. 

Table 7. False multi-modal identification rates 

Test Duration (sec) Segments Train A (15 sec) Train B (30 sec) 

1 613 43.1% 35.7% 

5 411 29.2% 19.7% 

10 289 23.9% 16.6% 

20 178 20.2% 12.4% 

4   Conclusions 

In this paper, we presented the person identification systems that have been developed at 
the Interactive Systems Labs for the CLEAR evaluations. The experimental results 
showed that, speaker identification performs better than face recognition for person iden-
tification in smart environments. The main reason for the performance difference is the 
low video quality. Multimodal identification results perform worse than speaker identifi-
cation results. This result is expected, since the audio and video data are weighted 
equally, due to missing priori performance information which is caused by lack of a 
common validation set. 
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