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Abstract

Active Appearance Models (AAMs) have been popularly
used to represent the appearance and shape variations of
human faces. Fitting an AAM to images recovers the face
pose as well as its deformable shape and varying appear-
ance. Successful fitting requires that the AAM is sufficiently
generic such that it covers all possible facial appearances
and shapes in the images. Such a generic AAM is often dif-
ficult to be obtained in practice, especially when the image
quality is low or when occlusion occurs. To achieve robust
AAM fitting under such circumstances, this paper proposes
to incorporate the disparity data obtained from a stereo
camera with the image fitting process. We develop an iter-
ative multi-level algorithm that combines efficient AAM fit-
ting to 2D images and robust 3D shape alignment to dispar-
ity data. Experiments on tracking faces in low-resolution
images captured from meeting scenarios show that the pro-
posed method achieves better performance than the original
2D AAM fitting algorithm. We also demonstrate an appli-
cation of the proposed method to a facial expression recog-
nition task.

1 Introduction

Many applications, such as facial expression analysis

and lipreading, require information about not only the posi-

tion of an entire face but also detailed non-rigid motions of

the face. Model-based approaches, such as 2D Active Ap-

pearance Models (AAMs) [4] and 3D Morphable Models

(3DMMs) [2], are commonly used for these tasks. AAMs

provide a good solution since they are capable of represent-

ing shape and texture changes as well as non-rigid defor-

mations of a human face. Over the last few years, many

different algorithms and technologies have been proposed

to improve performance and efficiency of AAMs, including

different training methods [4], models, and efficient fitting

strategies [1]. Some researchers have also explored the re-

lationship between 2D AAMs and 3DMMs. For example,

[12] introduced 2D+3D AAMs, a model with the real-time

fitting speed of 2D AAMs and the 3D modeling of 3DMMs.

Most existing AAM training and fitting algorithms use

2D images for their parameter estimations. Estimation of a

shape model (2D or 3D) from 2D images, however, suffers

from many limitations. First, a human face is inherently a

3D object. Estimation of its shape and appearance from 2D

instances requires a large amount of training data and thus

a generic AAM is difficult to obtain. The AAMs are, there-

fore, usually user dependent, i.e., we need different AAMs

for different users which is inconvenient in practice. Sec-

ond, fitting AAMs from 2D images is usually performed on

relatively high resolution images, which may not be avail-

able in some real world applications. Finally, 2D AAMs

may not be able to accurately capture subtle movements of

3D facial features. Although 3DMMs can accurately rep-

resent a 3D face, they require error-prone manual labeling

of dense 3D data for model creation and their model fitting

speed is slow compared to AAMs. On the other hand, some

previous work suggested that real-time range information

can enhance robustness of object tracking. For example, [5]

demonstrated that, in certain cases, depth information could

be used to detect objects that were not discernible from in-

tensity images alone and make model acquisition easier.

In this paper, we propose to use both 2D and 3D infor-

mation to fit AAMs in order to overcome some of the lim-

itations of the previous methods. Unlike other approaches

which propose to perform face tracking directly on 3D data,

such as the work of [8], we retain the 2D description of the

face as well as the model-based alignment method. We de-

scribe how to combine efficient 2D AAM fitting and dense

3D mesh alignment using depth information, evaluate the

proposed method by comparing it to 2D AAMs and demon-

strate our approach in meeting scenarios where the sys-

tem tracks participants from relatively low resolution video

sequences. Furthermore, we have applied the method to

an emotion classification task. We use an SVM to clas-

sify seven different emotions, yielding a recognition rate
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of 71.3% on average. The rest of the paper is organized

as follows: in section 2, we briefly review creation and ef-

ficient fitting of 2D AAMs. In section 3, we describe the

2D+3D extension for AAMs introduced by [12] and our 3D

fitting algorithm. We explain how 3D data is preprocessed

and we outline the integration of 3D information into the fit-

ting process in order to improve precision of the 2D model

alignment. In section 4, we present experimental results by

comparing the fitting results of the proposed approach with

a 2D alignment method and illustrate an application of the

proposed approach to emotion classification using Support

Vector Machines (SVMs) [11].

2 Background

An AAM is a statistical model of the shape and appear-

ance of an object of interest learned from training data. The

2D AAM will serve as the basis of the proposed method and

provides a coarse, yet fast initialization of the facial geome-

try. Matching an image to an AAM involves finding model

parameters which minimize the difference between the im-

age and a synthesized model example, projected into the

image. A large number of parameters in an AAM makes

the matching process a challenging problem. Much effort

has been directed to developing efficient algorithms in fit-

ting AAMs.

An AAM can be defined by a set (p,S, λ,A), where

p are the shape parameters, S a set of shape eigenvectors

(called bases below), λ a set of texture parameters and A a

set of texture eigenvectors (called appearances below). The

shape parameters and bases define the warp W (x,p) for

every pixel x in an image. An AAM instance then has the

form

I(W (x,p)) = A(x, λ), (1)

where I is a 2D input image and A the appearance corre-

sponding to the parameter set λ. Since we would like to

track a shape that is not only internally deforming, but also

undergoing pose changes, we need to account for possible

similarity transformations of the shape

N(x,q) = Rx + t, (2)

where x denotes a 2D pixel position within the shape, and

R, t = (tx, ty) rotation and translation. When choosing a

representation of the pose changes of

N(s0,q) = s0 +
4∑

i=1

b∗i qi, (3)

with a suitable set of pose bases b∗ orthogonal to the shape

bases b, the parameters qi instantiate the pose and can be

used in the same way as the AAM shape parameters. Given

an input image I(x), we now wish to minimize the sum

of squares difference between an instance created with an

AAM and the input image:

∑
x∈s0

[A0(x) +
m∑

i=1

λiAi(x) − I(N(W (x,p),q))]2 . (4)

The solution is obtained by simultaneously minimizing this

difference with respect to the parameters p, q and λ.

[1] proposed a solution to the above minimization

task (4), known as inverse compositional image alignment
(ICIA). In contrast to traditional image alignment methods,

ICIA allows precomputation of the steepest descent geom-

etry, thus increasing fitting speed significantly. Addition-

ally, minimization is performed in a subspace of the orig-

inal problem space that is independent of texture variation

which is projected out, thus further simplifying the task.

3 Fusion of Images and Disparity Data for
AAM Fitting

Given a 2D description of an AAM instance, and dense

but noisy 3D disparity data obtained from the scene using a

stereo camera, we would like to align the 2D AAM to opti-

mally fit the 3D data. Unlike methods that rely exclusively

on noisy 3D data and thus being limited in precision and de-

tail resolution, we make use of the clean 2D AAM instance

to improve the robustness of the alignment. While the 2D

AAM only provides a rough initialization on relatively low

resolution 2D images, the dense 3D disparity data then al-

lows us to fit the 3D shape recovered by the AAM to the

given scene such that the tracking will not be mis-led by

the appearance changes that are not covered by the original

model. In order to bridge 2D AAMs and 3D disparity data,

we employ 2D+3D AAMs [12] in order to recover the 3D

face shapes and poses corresponding to the 2D shapes in the

input images.

3.1 Combined 2D+3D AAMs

We wish to adapt the mesh of a 2D AAM to 3D data. As

a consequence, we need to derive a 3D description of the

tracked object using the fitted 2D shape. While 2D AAMs

can generate states that cannot be attained by a 3D face, it

is possible to impose constraints such that the allowed 2D

deformations match with the corresponding 3D shapes. As

a result, the constrained fitting suggested by [12] recovers

the 2D as well as the 3D shape s̄ of the face.

Using the structure from motion method, a measurement

matrix containing the locations of corresponding landmark

points in a sequence tracked by a 2D AAM is factorized in

order to reconstruct the corresponding 3D shapes and the

underlying 3D shape model [13, 14]. The factorization re-

sults in a set of 3D bases b̄i describing the 3D deformations
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of the face shape whose image projection is represented by

the 2D AAM. Given the optimally fitted 2D AAM in the

input image and a set of equivalent 3D bases b̄i, we would

like to derive the corresponding 3D shape. On the other

hand, we would like to constrain the AAM fitting such that

the recovered 2D shape is an image projection of a valid 3D

shape, i.e. a linear combination of the 3D bases. The con-

strained 2D+3D extension described above was achieved by

including an additional term into the AAM minimization

[12]. This term describing the combined 2D+3D minimiza-

tion has the following form

∑
x∈s0

[A0(x) +
m∑

i=1

λiAi(x) − I(N(W (x,p),q))]2

+K· ‖ P (s̄0 +
m̄∑

i=1

p̄ib̄i)

︸ ︷︷ ︸
=s̄

+o− N(s0 +
m∑

i=1

pibi;q)

︸ ︷︷ ︸
=s

‖2,

(5)

where s̄ is an instance of the 3D shape, P is a weak projec-

tion matrix, o is an offset, and s describes the current 2D

shape instance after pose transformation. K is a constant,

for K → ∞ the additional constraint on matching between

2D and 3D shapes becomes a hard constraint. Details on

the 2D+3D extension are given in [12].

3.2 Obtaining and Structuring 3D Data

In order to perform alignment to 3D data, we have to

choose a suitable data structure for a dense, noisy 3D point

cloud computed from stereo disparity values, typically con-

taining around 10000 elements within the face region of in-

terest. Depending on the resolution of the model mesh and

the quality of the depth data, a suitable subsampling of the

input point cloud can be performed in order to speed up

processing. For a query of N 3D points representing the

shape vertices of the 3D-extended AAM mesh, we have to

determine the nearest neighbor of each of the query points

within the point cloud. We have chosen to populate one

KD-Tree for each new input frame, since we do not need

any other functionality, neither element manipulation nor

re-balancing. In our implementation, we use the ANN li-

brary developed by [9].

Due to noises in disparity data, lighting issues, and lack

of texture in many regions of a face, we have uncertainties

in the depth information for each shape vertex. We need to

account for those uncertainties when designing the closest-

point lookup function CP 3D (̄s) which returns the nearest

neighbor for every vertex of a given 3D shape s̄. When

we assume that the initial 2D fitting is sufficiently precise

such that it roughly converges towards the initial face posi-

tion, we can define a threshold such that all shape vertices

possessing a closest-point distance above this threshold are

assigned the distance 0. This signifies the absence of align-

ment errors between 2D shape and 3D disparity data in this

vertex and thus prevents erroneous depth values from influ-

encing the fitted mesh. The threshold is computed dynam-

ically as a function of the average distance of the last fit-

ted 3D mesh using an iterative reweighting scheme for each

3D mesh vertex, similar to the work of [6]. We associate a

weight with each mesh vertex and recompute these weights

whenever the disparity data or the face mesh have changed.

The weights are inversely proportional to the mean distance

of each vertex of the last couple of optimally fitted face

meshes to its corresponding closest points in the disparity

data.

3.3 Fitting to 3D Disparity Data

Analogue to 2D and 2D+3D fitting, we now wish to de-

termine how well our 3D shape representation corresponds

to the depth data obtained from a stereo camera. Moreover,

we would like to adapt the 3D shape and its underlying 2D

shape to better fit the 3D data by removing noise and out-

liers. This goal can be achieved by introducing yet another

constraint into the combined 2D+3D minimization step de-

scribed in 3.1. Together with the other two expressions, we

now wish to minimize

D =‖ (s̄0 +
m̄∑

i=1

p̄ib̄i)

︸ ︷︷ ︸
=s̄

−c · CP
3D

(c−1 (s̄0 +
m̄∑

i=1

p̄ib̄i)

︸ ︷︷ ︸
=s̄

) ‖2,

(6)

where s̄ represents an instance of the 3D shape after ap-

plying the 3D pose transformation (we can easily com-

pute the corresponding 3D → 3D transformation matrix

as a byproduct of the 2D+3D extension described in section

3.1), and c is a constant performing scale change from the

camera coordinate system to the frame of reference of our

3D shape. However, c can assume matrix form when a more

general coordinate transformation is needed.

We chose to perform minimization of expression (6) us-

ing steepest gradient descent. The steepest descent ap-

proach to iteratively minimizing the above D can be for-

mulated as follows:

p̄3D is the current 3D parameter set, and the initial value

for the 3D parameter update �p̄stereo is the value com-

puted on the 2D+3D extension level, �p̄3D. This value is

then modified using

� p̄stereo = −H−1
stereo·⎛

⎝�p̄3D + G ·
∑

k∈{x,y,z}

n̄∑
i=1

(
∂Dk,i

∂p̄
)T Dk,i(p̄3D)

⎞
⎠ ,

(7)
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Compute updates to
2D parameters

Compute corresponding
3D parameter update

�p̄

�p̄
Compute 3D constraint

on

Impose constraint
on �p̄

Compute constraint
on �p,�q

�p,�q

Impose constraint
on �p,�q

Iterate until convergence

2D AAM fitting 2D+3D extension 3D fitting

Figure 1. The interaction between different levels of model fitting: based on the 2D AAM (on the left),
we create an equivalent 3D model (center), adapt it to dense 3D disparity data (on the right), and feed
the resulting changes back into the 2D AAM.

where each row of the Jacobi matrix of the distance function

D has the form

∂Dk,i

∂p̄
= b̄k,i − ∂CPk,i

∂p̄
, (8)

where b̄k,i denotes the components of the coordinate k in

the ith 3D shape base vector b̄. The contribution of the

closest-point function CP is

∂ CP

∂p̄
=

∂ CP

∂s̄

∂s̄

∂p̄︸︷︷︸
=b̄

, (9)

where b̄ denotes the 3D shape base vectors. Finally, the

Hessian matrix is computed from

Hstereo = H3D,p̄ + G ·
∑

k∈{x,y,z}

n̄∑
i=1

[
∂Dk,i

∂p̄
]T [

∂Dk,i

∂p̄
],

(10)

where n̄ denotes the number of 3D shape parameters and

H3D,p̄ is the submatrix of the Hessian of the 2D+3D exten-

sion step that corresponds to the 3D shape parameters.

The constant G allows weighting the contribution of the

stereo fitting to the final 3D shape parameters similar to K
in the 2D+3D extension step. Increasing G results in hard-

ening the influence of the stereo fitting constraints on the

2D model.

Since the result of the nearest neighbor search depends

on the 3D shape, we have to reevaluate in each iteration the

steepest descent geometries on the stereo data as well as

on the 3D shape. The Jacobian of the closest-point lookup

function, ∂ CP
∂p̄ , can be interpreted as the influence of a small

change �p̄ to the 3D shape parameters on the computation

of the nearest neighbor for each vertex of the 3D shape s̄.

We use the following approximation in the implementation:

we compose the shape corresponding to the current 3D pa-

rameters with a sequence of small changes, each of which

has one parameter set to a small value and all other parame-

ters set to 0. We then perform a nearest neighbor search for

the resulting 3D shape and retain the change to the vertex

locations. This operation has to be performed in each itera-

tion and for each 3D parameter once on all shape vertices.

Changes to the 3D parameters that are a consequence of

the alignment to the disparity data are now fed back to the

2D+3D extension computation and constrain the 3D shape.

This, in turn, modifies the 2D shape to better align with the

2D intensity image and the 3D disparity data at the same

time.

3.4 An Overview of the Fitting Procedure

Figure 1 illustrates which fitting steps have been per-

formed and how different levels interact with each other.

We initially create and align a 2D AAM by computing

updates to the parameters p and q (figure 1, left column) for

shape and pose of the 2D model. Fitting on the 2D AAM

level is fast, but might not be accurate for low resolution

input images, and for faces which have not been trained or

not been trained well.

The 2D+3D extension (figure 1, center) provides the link

between 2D and 3D shape representation and enables feed-

back of changes into the 2D fitting by adapting the 3D

model representation, which is controlled by the parameter

set p̄, to align with the 2D model equivalently.
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The 3D fitting (figure 1, right column) then updates the

3D parameter p̄ to reduce distance between the 3D model

mesh vertices and the 3D disparity data by imposing the

constraint described in section 3.3 on the 3D model. The

3D model now aligns properly even if the original AAM

has not been trained on the appearance of the face or if its

texture resolution is low. 3D fitting is relatively slow, since

the steepest descent geometry on the dense 3D data has to

be recomputed for each fitting step. However, since the 2D

fitting already provides a good initialization, only few iter-

ations have to be performed on the 3D fitting level.

In order to feed-back the changes to the 3D model into

the 2D alignment process, we compute the updates to the

2D parameters p and q which correspond to the changes

imposed on p̄, and create a new, better aligned 2D model

instance. The process is iterated until the distance between

the 3D model shape and the 3D disparity data is smaller

than a preset threshold.

4 Experimental Results

In order to demonstrate the feasibility of the proposed

method, we have conducted a sequence of evaluations in

order to compare the fitting results of the proposed method

to those of traditional 2D approaches using the same data.

We further evaluated the method using image sequences

captured from meetings. The data collections were part of

multimodal meeting data collections. Five one-hour long

meetings have been recorded using 8 calibrated cameras

and microphones. During four meetings, we placed a stereo

camera (Point Grey Bumblebee camera) on the meeting ta-

ble to track different meeting participants. The data was

recorded at 10 frames/second with a resolution of 320x240.

While the proposed method could successfully track precise

movements from low resolution video images, traditional

2D tracking methods were not able to converge in many

cases. Furthermore, we applied SVMs [11] on the tracking

results to classify emotions. For all experiments, we used

a face mesh consisting of 68 feature points as suggested by

[10].

4.1 Comparison Studies

In order to test our method under well-defined, repro-

ducible conditions, we implemented a testing tool allowing

for the generation of face instances using given 2D and 3D

models. The user can specify the shape and pose parameters

and a Gaussian noise level and can thus reproduce all shape

and appearance modes offered by the underlying models.

The created 3D face is subsampled using the resolution of

a typical stereo camera. We then use the artificial face in-

stance as input for our fitting algorithm. Initialization can be

performed manually by the user. Since the exact shape and

appearance parameters used for the creation of the generic

face are known, we can easily compare them to the resulting

parameter sets computed by our algorithm. Furthermore,

we wish to compare fitting results of the 2D method and the

stereo-extended 3D method. We therefore compute both

fitted meshes and their corresponding residual errors with

respect to the mesh based on the ground truth generic para-

meters. Errors are computed in pixels in city block distance

between the 2D shape and the 2D-backprojected 3D shape.

Figure 2 compares the fitting results for a generic face

displaying a large shape deformation, which results in lo-

cal texture deformations as well as changes to the external

face contour. The initial mesh is shown on the left of fig-

ure 2, the white 2D fitted mesh in the center and the 3D-

enhanced fitting on the right. The black 3D-enhanced mesh

is drawn on all three face images to allow for a direct com-

parison between both methods. The example images have

been up-scaled for better visualization. For an initialization

with 10% vertical and horizontal offset and 80% scale, 2D

fitting converges with 2.8 pixels of average residual error

per mesh vertex (in city block distance). Our 3D-enhanced

fitting achieves an average residual error of 1.5 pixels per

vertex after aligning to the disparity data, thus improving

the alignment by 46%.

Table 1 lists a series of experiments using the above de-

scribed ground truth tool and compares the residual errors.

4.2 Face Tracking in Meetings

We collected video and depth data of different partici-

pants during meetings and tracked their facial feature mo-

tions with our system. The emphasis of these recordings

was to test our system under realistic conditions showing

fast head movements and authentic expressions, in different

environment settings and under varying camera distances

and viewing angles and thereby identifying the limitations

of our current system.

At a speed of 10 frames per second on a 2Ghz P4 ma-

chine, we were able to follow the faces and localize the main

face features correctly for faces covering an image surface

of approximately 80x80 pixels, while for faces with a res-

olution of 60x60 pixels or less, we could still follow the

face contour, but no longer reliably identify the individual

facial expressions. Our system used the same underlying

2D model for all face geometries while sustaining occlu-

sions due to glasses, gestures and coffee mugs. Whenever

the initial 2D AAM was unable to reduce the residual fit-

ting error due to a facial geometry or texture that differed

significantly from the training faces, the 3D alignment suc-

cessfully adapted its parameters to represent the unseen face

instance accurately. Changes in lighting intensity and di-

rection could be sustained to a certain degree, as long as
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Figure 2. A ground truth example: initialization of a smiling face with initial 2D (white) and 3D (black)
meshes (on the left), the aligned 2D mesh (white, center, with final 3D-enhanced black mesh for
qualitative comparison), and the 3D-enhanced mesh (black, on the right).

Table 1. Residual errors for generic ground
truth experiments

experiment avg. residual error improvement

per vertex [pixels] [%]

No. pose shape 2D stereo-

only extended 3D

1 neutral neutral 1.4 1 28.6

2 neutral smile 2.8 1.5 46.4

3 neutral eyes 2.2 0.8 63.6

4 neutral brows 0.9 0.8 11.1

5 neutral mouth 2.1 1.3 38.1

6 rotation neutral 2.2 1.6 27.3

7 rotation smile 3.4 2.9 14.7

8 rotation eyes 2.6 1.9 26.9

9 rotation brows 2.6 2 23.1

10 rotation mouth 2.7 2.1 22.2

11 turn neutral 2.6 1.8 28.6

12 turn smile 3.6 3.1 13.9

13 turn eyes 2.7 1.9 29.6

14 turn brows 2.9 2.5 13.8

15 turn mouth 2.7 2.3 14.8

16 rotation all 4 3.7 2.9 21.6

17 turn all 4 3.6 3.1 13.9

18 turn+rot all 4 4.5 3.5 22.2

. . .

average over 50 exp. 2.6 2 23.1

the global color distribution within the face bore some re-

semblance to the training texture. Additionally, the itera-

tive reweighting scheme was able to deal with strong locally

confined texture differences, such as partial occlusion. We

have experimentally determined that the model mesh still

converged for occlusions of up to 30% of the face surface.

Figure 4 shows three tracking examples taken at differ-

ent camera distances, figure 5 illustrates the stability of our

method during a large pose change, and figure 6 shows how

the iterative reweighting scheme holds the mesh in place

during a strong occlusion by adapting the weights associ-

ated with the distance of each of the 3D mesh vertices to

the 3D disparity data. To show the structure of the fitted

shapes more clearly, we display them again on the top left

corner as white meshes.

Figure 3 qualitatively compares some fitting results of a

2D AAM (white mesh) and our 3D-enhanced method (black

mesh) for a head turn (on the left) and raised eyebrows

(on the right). As to the head turn, the 2D AAM adapts

its position on the face correctly, but fails to detect the 3D

head movement, while our 3D-enhanced method forces the

model into the correct pose. 2D AAMs typically have diffi-

culties in detecting 3D movements, while our 3D alignment

to disparity data is very well suited for this task. The sec-

ond example in figure 3, a raising of the eyebrows, illus-

trates the tendency of the 2D AAM to change the scale of

the model rather than to converge towards the correct shape

deformation mode, thus failing to properly align with the

face contour. Our 3D-enhanced method converges towards

the proper shape deformation mode while at the same time

taking into account the face contour, since the contours of

the face result in characteristic disparity values that are easy

to detect.

4.3 An Application to Emotion Classifica-
tion

As an application example of our tracking system, we

trained SVMs [11] using a Radial Basis Function kernel on

differentiating between the 6 elementary emotions, i.e. sur-

prise, joy, sorrow, fear, anger and disgust in addition to a

neutral mean-shape, mean-appearance expression. For the

emotions to be classified, we have tried to choose expres-

sions already introduced in previous publications [7]. Our

implementation is based on the library developed by [3].

Since we use a model-based tracking approach, the complex

problem of describing facial expressions is reduced to clas-

sifying low-dimensional model parameter vectors. More-
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over, since shape and pose representations are described by

independent parameter sets, we are able to classify shape

deformations independently of the occurring pose changes.

We have chosen to classify the shape parameter vector of

each video frame independently of previous frames and pa-

rameters. Although as a consequence we loose the transi-

tion context of a given emotion, we could show that due

to the tracking precision of our stereo-enhanced system, we

can still achieve surprisingly precise classification results.

The training was performed using tenfold cross-

validation on a training sequence of 250 to 300 characteris-

tic parameter state vectors, yielding a training precision of

87%. All parameter vectors were linearly scaled to [−1, 1]
in order to prevent attributes in greater numeric ranges from

dominating those in smaller ranges and to avoid numerical

instabilities.

Table 2 shows the classification results of a video se-

quence with manually labeled ground truth. Classification

precision of roughly 71% is acceptable, despite the simple

context-unaware approach used. Some emotions, in partic-

ular the pairs sorrow/fear and surprise/fear are inherently

difficult to separate since they are based on similar muscle

movements, while other emotions, such as disgust, result in

characteristic texture and shape changes which make them

easy to apprehend.

Table 2. Classification of emotion expres-
sions in unseen data

emotion detection rate

neutral 75%

surprise 68%

joy 76%

sorrow 63%

fear 61%

anger 74%

disgust 82%

avg. 71.3%

5 Conclusions

Given the results obtained during the experiments, we

can conclude that incorporating 3D information, even in the

presence of noise, into an existing AAM can significantly

improve precision and stability. Moreover, the proposed

approach relaxes the precision requirements of AAMs so

that it is possible to use a generic AAM as an initial model

and adapt it to different faces in real-time. By combining

ease of 2D model creation and tracking reliability, the de-

scribed method could serve as a means of improving usabil-

ity of Active Appearance Models in real-world applications.

However, more work is required to tackle the remaining is-

sues, notably by dealing with the instability of the 2D AAM

used for initialization of our system when working on low-

resolution images and by increasing processing speed of the

3D alignment. Future work could focus on adding mesh

points to the models on-line as well as on developing an im-

proved context-aware unsupervised classification approach

for facial expression analysis.
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Figure 3. A qualitative comparison of 2D (white mesh) and 3D fitting results (black mesh) for a head
turn (left) and a raising of the eyebrows (right).

Figure 4. Staged meeting recordings: successful fitting of the same 3D-enhanced AAM on three
different faces at different resolutions and under varying lighting conditions.

Figure 5. Stability during pose changes: head turn while moving quickly away from the camera.

Figure 6. An illustration of partial occlusion: the 3D iterative reweighting scheme holds the mesh in
place during partial occlusions of the face.
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