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Abstract

Simultaneous tracking of multiple persons in real world
environments is an active research field and several ap-
proaches have been proposed, based on a variety of features
and algorithms. Recently, there has been a growing interest
in organizing systematic evaluations to compare the various
techniques. Unfortunately, the lack of common metrics for
measuring the performance of multiple object trackers still
makes it hard to compare their results.

In this work, we introduce two intuitive and general metrics
to allow for objective comparison of tracker characteris-
tics, focusing on their precision in estimating object loca-
tions, their accuracy in recognizing object configurations
and their ability to consistently label objects over time.

We also present a novel system for tracking multiple users in
a smart room environment using several cameras, based on
color histogram tracking of person regions and automatic
initialization using special object detectors.

This system is used to demonstrate the expressiveness of the
proposed metrics through a sample performance evaluation
using real test video sequences of people interacting in the
smart room.

1 Introduction and Related Work

The tracking of multiple persons in camera images is a very
active research field with applications in many domains.
These range from video surveillance, over automatic index-
ing, to intelligent interactive environments. Especially in
the last case, a robust person tracking module can serve as
a poweful building block to support other techniques, such
as gesture recognizers, face identifiers, head pose estima-
tors [10], scene analysis tools, etc. In the last few years,
more and more approaches have been presented to tackle
the problems posed by unconstrained, natural environments
and bring person trackers out of the laboratory environment
and into real world scenarios.

In recent times, there has also been a growing interest
in performing systematic evaluations of such tracking tools
with common databases and metrics. Examples are the
CHIL project, funded by the EU [17], the VACE project
in the U.S. [18], but also a growing number of workshops

(PETS [19], EEMCYV [20], etc). However, there is still no
general agreement on a principled evaluation procedure us-
ing a common set of objective and intuitive metrics for mea-
suring the performance of multiple object trackers. Because
of this lack of metrics, some researchers present their track-
ing systems without any quantitative evaluation of their per-
formance (e.g. [1, 7, 15]). On the other hand, a multitude of
isolated measures were defined in individual contributions
to validate trackers using various features and algorithms
(see e.g. [2, 3, 5, 11, 13]), but no common agreement on a
best set of measures exists.

To remedy this, this paper proposes a thorough proce-
dure to detect all types of errors produced by a multiple ob-
ject tracking system and introduces two novel metrics, the
Multiple Object Tracking Precision (M OT P), and the Mul-
tiple Object Tracking Accuracy(M OT A), that intuitively
express a tracker’s characteristics and could be used in gen-
eral performance evaluations.

Perhaps the work that most closely relates to ours is that
of Smith et al. in [4]. The authors also attempt to define
an objective procedure and measures for multiple object
tracker performance. However, key differences to our con-
tribution exist: In [4], the autors introduce a large number of
metrics: 5 for measuring object configuration errors, and 4
for measuring inconsistencies in object labeling over time.
Some of the measures are defined in a dual way for trackers
and for objects (e.g. MT/MO, FIT/FI10, TP/OP). This
could make it difficult to gain a clear and direct understand-
ing of the tracker’s overall performance. Moreover, under
certain conditions, some of these measures can behave in a
non-intuitive fashion (such as the C'D, as the authors state,
or the F'P and F'N, as we will demonstrate later). In com-
parison, we introduce just 2 overall performance measures
that allow a clear and intuitive insight into the main tracker
characteristics: its precision in estimating object positions,
its ability to determine the number of objects and their con-
figuration, and its skill at keeping consistent tracks over
time. In addition, we offer an experimental validation of
the presented theoretical framework by performing sample
evaluation runs on 2 variants of a multiple person tracker,
using real data recorded in a smart room environment. A
demonstration run on simulated data is also performed to
better illustrate the expressiveness of the proposed metrics.

The system used in our evaluations is a 3D multiple per-



son tracker developed for use in our smart room. It initial-
izes automatically using special person detectors, performs
color histogram tracking of body parts on several camera
views and intelligently fuses the 2D information to produce
a consistent set of 3D hypotheses. It is used as a proof of
concept for the introduced M OT P and M OT A metrics,
which are used to measure its accuracy on datasets of vary-
ing degrees of difficulty.

The remainder of the paper is organized as follows:
Section 2 presents the new metrics, the M OT P and the
MOTA and a detailed procedure for their computation.
Section 3 briefly introduces the developed multiperson
tracker which will be used in the evaluations. In Section 4,
the sample performance measurements are shown and the
usefulness of the metrics is discussed. Finally, Section 5
gives a summary and a conclusion.

2 Performance Metrics for Multiple
Object Tracking

To help better understand the proposed evaluation metrics,
we first explain what qualities we expect from an ideal mul-
tiple object tracker. It should at all points in time find the
correct number of objects present and estimate the position
of each object as precisely as possible (Note that properties
such as the size, contour, orientation or speed of objects are
not considered here). It should also keep consistent track
of each object over time: Each object should be assigned
a unique track ID which stays constant throughout the se-
quence (even after temporary occlusion, etc). This leads
to the following design criteria for performance evaluation
metrics:

e They should allow to judge the tracker’s precision in
determining exact object locations.

e They should reflect its ability to consistently track ob-
ject configurations through time, i.e. to correctly trace
object trajectories, producing exactly one trajectory
per object.

Additionally, we expect useful metrics

e to have as few free parameters, adjustable thresholds,
etc, as possible to help make evaluations straightfor-
ward and keep results comparable.

e to be clear, easily understandable and behave accord-
ing to human intuition, especially in the occurence of
multiple errors of different types or of uneven reparti-
tion of errors throughout the sequence.

e to be general enough to allow comparison of most
types of trackers (2D, 3D trackers, object centroid
trackers or object area trackers, etc).

e to be few in number and yet expressive, so they may
be used e.g. in large evaluations where many systems
are being compared.

Based on the above criteria, we propose a procedure for
systematic and objective evaluation of a tracker’s charac-
teristics. Assuming that for every time frame ¢ a multiple
object tracker outputs a set of hypotheses {h; ... h,,} for a
set of visible objects {01 . ..o, }, the evaluation procedure
comprises the following steps:

For each time frame ¢,

e Establish the best possible correspondence between
hypotheses h; and objects o;

e For each found correspondence, compute the error in
the object’s position estimation.

e Accumulate all correspondence errors:

— Count all objects for which no hypothesis was
output as misses.

— Count all tracker hypotheses for which no real
object exists as false positives

— Count all occurences where the tracking hypoth-
esis for an object changed compared to previous
frames as mismatch errors. This could happen,
e.g., when two or more objects are swapped when
they pass close to each other, or when an object
track is reinitialized with a different ID, after it
was previously lost because of occlusion.

Then, the tracking performance can be intuitively expressed
in two numbers: The “tracking precision” which expresses
how well exact positions of persons are estimated, and
the “tracking accuracy” which shows how many mistakes
the tracker made in terms of misses, false positives, mis-
matches, failures to recover tracks, etc. These measures will
be explained in detail in the latter part of this section.

2.1 Establishing Correspondences Between
Objects and Tracker Hypotheses

As explained above, the first step in evaluating the per-
formance of a multiple object tracker is finding a contin-
uous mapping between the sequence of object hypotheses
{h1...hy,} output by the tracker in each frame and the real
objects {01 ...0,}. This is illustrated in Fig. 1. Naively,
one would match the closest object-hypothesis pairs and
treat all remaining objects as misses and all remaining hy-
potheses as false positives. A few important points need
to be considered, though, which make the procedure less
straightforward.

2.1.1 Valid Correspondences

First of all, the correspondence between an object o; and a
hypothesis h; should not be made if their distance dist; ;
exceeds a certain threshold 7. There is a certain concep-
tual boundary beyond which we can no longer speak of an
error in position estimation, but should rather argue that the
tracker has missed the object and is tracking something else.
This is illustrated in Fig. 2(a). For object area trackers (i.e.
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Figure 1: Mapping tracker hypotheses to objects. In the
easiest case, matching the closest object-hypothesis pairs
for each time frame ¢ is sufficient

trackers that also estimate the size of objects or the area oc-
cupied by them), distance could be expressed in terms of
the overlap between object and hypothesis, e.g. as in [2],
and the threshold 7" could be set to zero overlap. For ob-
ject centroid trackers, one could simply use the Euclidian
distance, in 2D image coordinates or in real 3D world co-
ordinates, between object centers and hypotheses, and the
threshold could be, e.g., the average width of a person in
pixels or cm. In the following, we refer to correspondences
as valid if dist; j < T.

2.1.2 Consistent Tracking over Time

Second, to measure the tracker’s ability to label objects
consistently, one has to detect when conflicting correspon-
dences have been made for an object over time. Fig. 2(b)
illustrates the problem. Here, one track was mistakenly as-
signed to 3 different objects over the course of time. A mis-
match can occur when objects come close to each other and
the tracker wrongfully swaps their identities. It can also oc-
cur when a track was lost and reinitialized with a different
identity. One way to measure such errors could be to decide
on a “best” mapping (o;, h;) for every object o; and hypoth-
esis h;, e.g. based on the initial correspondence made for o0;,
or the most frequently made correspondence (o;, ;) in the
whole sequence. One would then count all correspondences
where this mapping is violated as errors. In some cases,
this kind of measure can however become non-intuitive. As
shown in Fig. 2(c), if, for example, the identity of object o;
is swapped just once in the middle of the tracking sequence,
the time frame at which the swap occurs drastically influ-
ences the value output by the error measure.
This is why we follow a different approach: only count
mismatch errors once at the time frame where a change in
object-hypothesis mappings is made and consider the cor-
respondences in intermediate segments as correct. Espe-
cially in cases where many objects are being tracked and
mismatches are frequent, this gives us a more intuitive and
expressive error measure.

To detect when a mismatch error occurs, a list of object-
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Figure 2: Optimal correspondences and error measures.
Fig. 2(a): When the distance between o; and h; exceeds
a certain threshold 7', one can no longer make a correspon-
dence. Instead, oy is considered missed and i becomes
a false positive. Fig. 2(b): Mismatched tracks. Here, ho
is first mapped to os. After a few frames, though, o, and
0o cross paths and ho follows the wrong object. Later, it
wrongfully swaps again to o3. Fig. 2(c): Problems when
using a sequence-level “best” object-hypothesis mapping
based on most frequently made correspondences. In the first
case, o7 is tracked just 2 frames by hq, before the track is
taken over by ho. In the second case, h; tracks o; for almost
half the sequence. In both cases, a “best” mapping would
pair ho and o;. This however leads to counting 2 mismatch
errors for case 1 and 4 errors for case 2, although in both
cases only one error of the same kind was made. Fig. 2(d):
Correct reinitialization of a track. At time ¢, o4 is tracked by
hy. Att—+1, the track is lost. Att+ 2, two valid hypotheses
exist. The correspondence is made with hy although hs is
closer to 01, based on the knowledge of previous mappings
uptotimet+ 1

hypothesis mappings is constructed. Let M; = {(0;,h;)}
be the set of mappings made up to time ¢ and let My =
{}. Then, if a new correspondence is made at time ¢ + 1
between o; and hj, which contradicts a mapping (o;, h;) in
My, a mismatch error is counted and (o;, h;) is replaced by
(03, hig) in Myyq.

The so constructed mapping list M; can now help to es-
tablish optimal correspondences between objects and hy-
potheses at time ¢ + 1, when multiple valid choices exist.
Fig. 2(d) shows such a case. When it is not clear, which hy-
pothesis to match to an object o;, priority is given to h,, with
(0i, ho) € My, as this is most likely the correct track. Other
hypotheses are considered false positives, and could have
occured because the tracker output several hypotheses for
0;, or because a hypothesis that previously tracked another
object accidentally crossed over to o;.



2.1.3 Mapping Procedure

Having clarified all the design choices behind our strat-
egy for constructing object-hypothesis correspondences, we
summarize the procedure:

Let My = {}. For every time frame ¢,

1. For every mapping (0;, h;) in M;_1, verify if it is still
valid. If object o; is still visible and tracker hypothe-
sis h; still exists at time ¢, and if their distance does
not exceed the threshold 7', make the correspondence
between o; and h; for frame ¢.

2. For all objects for which no correspondence was made
yet, try to find a matching hypothesis. Allow only one
to one matches. Start by matching the pair with the
minimal distance and then go on until the threshold
T is exceeded or there are no more pairs to match.
If a correspondence (o;, hy) is made that contradicts
a mapping (o0;,h;) in M, 4, replace (o;,h;) with
(0i, hg) in M;. Count this as a mismatch error and
let mme; be the number of mismatch errors for frame
t.

3. After the first two steps, a set of matching pairs for the
current time frame is known. Let ¢; be the number of
matches found for time ¢. For each of theses matches,
calculate the distance d; between the object o; and its
corresponding hypothesis.

4. All remaining hypotheses are considered false posi-
tives. Similarly, all remaining objects are considered
misses. Let fp; and m; be the number of false posi-
tives and misses respectively for frame ¢. Let also g;
be the number of objects present at time .

5. Repeat the procedure from step 1 for the next time
frame. Note that since for the initial frame, the set of
mappings M is empty, all correspondences made are
initial and no mismatch errors occur.

In this way, a continuous mapping between objects and
tracker hypotheses is defined and all tracking errors are ac-
counted for.

2.2 Performance Metrics

Based on the matching strategy described above, two very
intuitive metrics can be defined.

1. The Multiple Object Tracking Precision (M OT P).

Zi,t di,t
doic

It is the total position error for matched object-
hypothesis pairs over all frames, averaged by the total
number of matches made. It shows the ability of the
tracker to estimate precise object positions, indepen-
dent of its skill at recognizing object configurations,
keeping consistent trajectories, etc.

MOTP =

2. The Multiple Object Tracking Accuracy (M OT A).

my + fpe + mmey)

Zt gt

where my, fp; and mme; are the number of misses, of
false positives and of mismatches respectively for time
t. The MOT A can be seen as composed of 3 error

ratios:
_ Do
Zt gt ’

the ratio of misses in the sequence, computed over the
total number of objects present in all frames,

I thpt
fp S

the ratio of false positives, and

MoTA =1 2t

3

> mmey

Ztgt ’

mme —

the ratio of mismatches.

Summing up over the different error ratios gives
us the total error rate E,;, and 1 — F; is the resulting
tracking accuracy. The MOTA accounts for all
object configuration errors made by the tracker, false
positives, misses, mismatches, over all frames. It is
similar to metrics widely used in other domains (such
as the Word Error Rate (W E'R), commonly used in
speech recognition) and gives a very intuitive measure
of the tracker’s performance at keeping accurate
trajectories, independent of its precision in estimating
object positions.

Remark on Computing Averages: Note that for both
MOTP and MOTA, it is important to first sum up all
errors across frames before a final average or ratio can be
computed. The reason is that computing ratios r; for each
frame ¢ independently before calculating a global average
% Zt r¢ for all n frames (such as, e.g., for the F'P and F'N
measures in [4]), can lead to non-intuitive metric behavior.
This is illustrated in Fig. 3. Although the tracker consis-
tently missed most objects in the sequence, computing ra-
tios independently per frame and then averaging would still
yield only 50% miss rate. Summing up all misses first and
computing a single global ratio, on the other hand, produces
a more intuitive result of 80% miss rate.

3 A 3D Multiperson Tracker using
Color and Object Detectors

In order to experimentally validate the new metrics intro-
duced here, we performed an example evaluation of an in-
door multiperson tracking system developed for our smart-
room [16]. This system will now be briefly presented.
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Figure 3: Computing error ratios. Assume a sequence
length of 8 frames. For frames t; to t4, 4 objects 01 ... 04
are visible, but none is being tracked. For frames t5 to tg,
only o4 remains visible, and is being consistently tracked by
h1. In each frame ¢; ...t4, 4 objects are missed, resulting in
100% miss rate. In each frame ¢5 .. .tg, the miss rate is 0%.
Averaging these frame level error rates yields a global result
of £(4-100+4-0) = 50% miss rate. On the other hand, sum-
ming up all errors first, and computing a global ratio yields
a far more intuitive result of 16misses/200bjects = 80%

The developed system is a 3D tracker that uses several
fixed cameras installed at the room corners. It is designed
to function with a variable number of cameras, with pre-
cision increasing as the number of cameras grows. It per-
forms tracking first separately on each camera image, using
color histogram models. Color tracks are initialized auto-
matically using a combination of foreground maps and spe-
cial object detectors. The information from several cameras
is then fused to produce 3D hypotheses of the persons’ posi-
tions. A more detailed explanation of the system’s different
components is given in the following.

3.1 Classifier Cascades and Foreground Seg-
mentation

A set of special object detectors is used to detect persons in
the camera images. They are classifier cascades that build
on haar-like features, as decribed in [8, 14]. For our im-
plementation, the cascades were taken from the OpenCV
[21] library. Two types of cascades are used: One trained to
recognize whole silhouettes of standing persons (full body),
and one to recognize the upper body region of standing or
sitting persons (upper body). The image is scanned at dif-
ferent scales and bounding rectangles are obtained for re-
gions likely to contain a person. By using these detectors,
we avoid the drawbacks of creation/deletion zones and are
able to initialize or recover a track at any place in the room.

Further, to reduce the amount of false detector hits, a pre-
processing step is made on the image. It is first segmented
into foreground regions by performing background subtrac-
tion using an adaptive background model. The foreground
regions are then scanned using the classifier cascades. This

combined approach offers two advantages: The cascades,
on the one hand, increase robustness to segmentation er-
rors, as foreground regions not belonging to persons, such
as moved chairs, doors, shadows, etc, are ignored. The fore-
ground segmentation, on the other hand, helps to decide
which of the pixels inside a detection rectangle belong to
a person, and which to the background. Knowing exactly
which pixels belong to the detected person is useful to cre-
ate accurate color histograms and improve color tracking
performance.

3.2 Color Histogram Tracking and 2D Hy-
potheses

Whenever an object detector has found an upper or a full
body in the image, a color histogram of the respective per-
son region is constructed from the foreground pixels be-
longing to that region, and a track is initialized. The ac-
tual tracking is done based only on color features by using
the meanshift algorithm [6] on histogram backprojection
images. Care must be taken when creating the color his-
tograms to reduce the negative effect of background colors
that may have been mistakenly included in the person sil-
houette during the detection and segmentation phase. This
is done by histogram division, as proposed in [9]. Several
types of division are possible (division by a general back-
ground histogram, by the histogram of the background re-
gion immediately surrounding the person, etc, see Fig. 4).
The choice of the best technique depends on the conditions
at hand and is made automatically at each track initializa-
tion step, by making a quick prediction of the effect of each
technique on the tracking behavior in the next frame.

To ensure continued tracking stability, the histogram
model for a track is also adapted every time a classifier cas-
cade produces a detection hit on that track. Tracks that are
not confirmed by a detection hit for some time are deleted,
as they are most likely erroneous.

The color based tracker, as described above, is used to
produce a 2D hypothesis for the position of a person in the
image. Based on the type of cascade that triggered initial-
ization of the tracker, and the original size of the detected
region, the body center of the person is estimated and output
as hypothesis. When several types of trackers (upper body
and full body) are available for the same person, a combined
output is produced.

3.3 Fusion and Generation of 3D Hypotheses

The 2D hypotheses produced for every camera view are tri-
angulated to produce 3D position estimates. For this, the
cameras must be calibrated and their position relative to a
general room coordinate system known. The lines of view
(LOV) coming from the optical centers of the cameras and
passing through the 2D hypothesis points in their respective
image planes are intersected. When no exact intersection
point exists, a residual distance between LOVs, the trian-
gulation error, can be calculated. This error value is used
by an intelligent 3D tracking algorithm to establish likely
correspondences between 2D tracks (as in [12]). When
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Figure 4: Improving color histograms. a) shows the results
of foreground segmentation (in green) and object detection
(white rectangle). The foreground pixels inside the rect-
angle are used to create the person’s color histogram. b)
shows the results of histogram backprojection. Red means
high probability of belonging to the person, blue means low
probability. ¢), d), e) and f) show the effect of different types
of histogram division. Background stands for the general
background histogram. Border stands for the histogram of
the background region immediately surrounding the person

the triangulation error between a set of 2D hypotheses is
small enough, they are associated to form a 3D track. Like-
wise, when it exceeds a certain threshold, the 2D hypothesis
which contributes most to the error is dissociated again and
the 3D track is maintained using the remaining hypotheses.
The tracker requires a minimum of 2 cameras to produce
3D hypotheses, and becomes more robust as the number of
cameras increases.

Once a 3D estimate for a person’s position has been
computed, it is further used to validate 2D tracks, to
initiate color histogram tracking in camera views where the
person has not yet been detected, to predict occlusions in a
camera view and deactivate the involved 2D trackers, and
to reinitialize tracking even in the absence of detector hits.

The developed multiperson tracker draws its strength
from the intelligent fusion of several camera views. It ini-
tializes its tracks automatically, constantly adapts its color
models and verifies the validity of its tracks through the use
of special object detectors. It is capable of tracking several
people, regardless if they are sitting, moving or standing
still, in a cluttered environment with uneven lighting condi-
tions.

4 Experimental Evaluation

To demonstrate the effectiveness of the MOTP and
MOT A metrics, sample evaluation runs were made for the
system presented in section 3, tracking real users in a realis-
tic scenario, and for synthetic data simulating an imperfect
tracker’s output.

To this effect, a series of video recordings was made in
the smart room involving several people. The sequences
were captured by 4 fixed SONY DFW-V500 color firewire
cameras placed in the room corners, delivering images with
a resolution of 640x480 pixels at 15fps. The scenes show 3
to 4 people walking around in the room, conversing, stand-
ing still, sitting down in front of displays or at the table. The
room is relatively cluttered, there is no clean background
and uneven light is being cast by the ceiling lamps.

The recorded sequences were hand labeled, to provide
the ground truth person positions the tracker hypotheses
will be matched against. The centroids of the individuals’
heads were marked in all camera views and triangulation
of these points then provided the 3D reference positions.
Manual labels were created only for every 15th frame of
video, to ease the labeling task. While the tracker was run
on all video frames, its output was evaluated only on labeled
frames.

For this evaluation, the task was to estimate the posi-
tions of the persons on the ground, so the 3D ground truth
points and the tracker hypotheses were first projected to the
ground and error measures then computed in 2D. The dis-
tance measure used was the Euclidian distance in mm and
the threshold 7" was set to 500mm.

Three different experiments were conducted using a real
tracker and data:



Table 1: Results for real tracker data (Runl to Run3)

Run MOTP m fp mme | MOTA
1:MPTseqa | 168mm | 5.6% 36.1% 2.4% | 55.9%
2:MPTseqp | 169mm | 29.8% 289% 2.7% | 38.6%
3MPTE, | 168mm | 5.7%  0.5%  54% | 88.3%

e Runl: The previously described multiperson tracker
(M PT) was evaluated on a first set of video se-
quences, Seqa, comprised of three different record-
ings showing 3 to 4 persons in the room, with a total
lenght of 5 minutes.

e Run2: The same system was used, but this time on
a more challenging set of sequences, Seqp, of same
length as Seq4, and also showing 4 interacting per-
sons. In these sequences, persons were more fre-
quently sitting at the table, with occlusions making
tracking more difficult. Also, one of the users passed
the scene very quickly and stayed in the room corner
for most of the time, where he could only hardly be
tracked.

e Run3: This time, the tracker was artificially modi-
fied to increase its performance and evaluated again
on Seqs. Instead of using real classifier cascades,
the ground truth labels were used to generate “per-
fect” detection hits in the images for every 15th frame.
This boosted the performance of the tracking system
(M PTpoost)- This experiment was conducted to show
how the new metrics can be used to compare tracking
systems of different strengths when evaluated on the
same data sets.

The results are shown in Table 1.

As can be seen, in all 3 cases, the tracker is very pre-
cise at estimating locations, once a person has been found
(average error < 17c¢m). The first row shows that M PT
performs fairly well on Seq 4, with almost no misses or mis-
matches. It does, however misjudge the amount of persons
often, producing a false positive rate of fp = 36.1%, which
roughly means that for every 3 real persons, the system
mistakenly detected a fourth one. Tracking performance
decreases somewhat for Seqp. As persons were often sit-
ting, they were more difficult to detect, which led to a def-
inite increase in the miss ratio. This is rightfully reflected
by a proportionate decrease of the M OT A. The numbers
for M PTge0st clearly show that it is a more performant
tracker. It produces practically no misses, false positives or
mismatches', as its simulated classifier cascades produce
perfect detection hits to support its tracks. As a result,
it achieves a very high tracking accuracy of 88%. These
demonstration runs show how easily different tracker char-

INote that the numbers are not zero. This is because, although the sim-
ulated detector hits are perfect, errors can still be made because of wrong
correspondences, erroneous color tracks, etc.

Table 2: Results for synthetic tracker data (Run4)

o | MOTP | m 7p  mme | MOTA
200 | 232mm | 52% 52% 0.0% | 89.7%
400 | 322mm | 43.5% 43.5% 0.0% | 12.9%
1000 | 320mm | 89.7% 89.7% 0.9% | -80.2%

acteristics can be read and compared from the so presented
tables.

To better show the behavior of the M/ OT P, an additional
experiment (Run4) was conducted, this time using synthetic
tracker data. The ground truth positions from Seqs4 were
taken as a starting point, and different levels of gaussian
noise with fixed mean ¢ = 0 and variable standard devi-
ation o were added independently to their  and y compo-
nents. The resulting positions were used as tracker hypothe-
ses and scored. Results are shown in Table 2 for o = 200,
400 and 1000.

As the tracker hypotheses were generated from manual
labels, the number of persons is always correctly guessed
and all errors come from distance errors that exceed the al-
lowed threshold T'. For ¢ = 200, the (fake) tracker still
performs well, making few errors. The average precision
lies around 23cm, which is roughly the expectation of the
position error di. As o increases, the tracking accuracy de-
teriorates, and for ¢ = 1000, the worst result of -80% is
obtained. As the threshold of 500mm forces us to consider
all tracks with greater errors as misses (with resulting false
positives), the M OT P does on average not exceed 32cm,
even as noise increases. Again, tracking performance is in-
tuitively reflected in all the numbers in our table.

S Summary and Conclusion

In order to systematically assess and compare the perfor-
mance of different systems for multiple object tracking,
metrics which reflect the quality and main characteristics of
such systems are needed. Unfortunately, no agreement on a
set of commonly applicable metrics has yet been reached.

In this paper, we have proposed two novel metrics for
the evaluation of multiple object tracking systems. The
proposed metrics — the Multiple Object Tracking Preci-
sion (M OT P) and the Multiple Object Tracking Accuracy
(MOT A) — are general and intuitive, and allow for objec-
tive comparision of the main characteristics of tracking sys-
tems, such as their precision in localizing objects, their ac-
curacy in recognizing object configurations and their ability
to consistently track objects over time.

We have validated the correctness and expressiveness
of the proposed metrics experimentally, using a system for
tracking of multiple persons in a smart room and some sim-
ulations. The results show that the proposed metrics indeed
reflect the tracking behaviour of the various used systems
(real and simulated) in an intuitive and meaningful way.

The paper also briefly describes the 3D multiperson
tracking system used in the experiments. This tracking



system combines color-histogram tracking with upper- and
full-body detectors, and intelligently combines the 2D-
trajectories from several views to form 3D person trajec-

tories.
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