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ABSTRACT

Articulatory Features (AF) have proven beneficial for
Automatic Speech Recognition (ASR) in noisy environments,
for hyper-articulated speech or in multi-lingual settings. A
stream setup can combine standard sub-phone Gaussian Mix-
ture Models with feature GMMs; the weights assigned to
eachfeature streamsuch as VOICED or BILABIAL could
intuitively be used for adaptation to speaker or text. In
this paper, we investigate this stream setup, which allows
us to add articulatory information to a baseline CD-HMM
recognizer, on a database containing several speakers in a
number of recordings of spontaneous speech. Our findings
indicate that Articulatory Features as we use them are not
entirely a speaker-dependent property, but when using them
for speaker adaptation, we find their performance to be com-
parable to that of constrained MLLR.

1. INTRODUCTION

Current LVCSR systems usually model speech as a sequence
of HMM states, whose acoustic correlates (so-called “context-
dependent models”) are learned by partitioning the train-
ing data into disjoint sets. A typical state-of-the-art sys-
tems employs several thousands of these. Phonology de-
scribes speech in terms ofphones, which are a shorthand
notation for a certain combination of phoneticfeatures(e.g.
VOICED), which are either absent or present in these (ideal-
ized) sounds. Some attributes can take take on one of sev-
eral values (i.e. MANNEROFARTICULATION ∈ { STOP,
VOWEL, LATERAL , NASAL , FRICATIVE }), but these can
be mapped into a set of binary attributes as well, which is
the approach taken in this work. Adistinctiveset of fea-
tures can be used to define all relevant sounds in a specific
language in terms of these features. A sound is “relevant”,
if it serves to distinguish two words (“minimal pairs”) in a
particular language.

This phonological categorization is only an approxima-
tion of the phonetic realization of sounds during human speech
production, which is a continuous process where clear-cut
transitions between “on” and “off” features values rarely
exist. Also, different features can change values at different

times (“asynchrony”), as can be observed during nasaliza-
tion of vowels adjacent to nasal sounds. Describing speech
in terms of Articulatory Features therefore allows for more
flexibility in modeling speech than the so-called “beads-on-
a-string model” [1] currently employed in speech recog-
nition. Using Articulatory Features to model speech and
thereby exploiting this richer description of sounds should
help improve speech recognition beyond the current state,
particularly for spontaneous speech and should also help for
adaptation to new speakers, dialects, or languages. It would
for example be possible to model speaker-specific proper-
ties such as continuous hissing or strong voicing by adapt-
ing the feature detectors themselves as well as the feature
combination step to these conditions.

Speech recognition systems making use of articulatory
features have been proposed in different contexts already,
and researchers have investigated their potential with re-
spect to robust speech recognition [2, 3] and its relation with
articulatory and phonological knowledge [4]. The fusion of
acoustic and articulatory information by performing addi-
tive combination of log-likelihood scores as used in our ex-
periments, was shown to be the most promising approach to
the problem of fusion of “feature” and “standard” models in
[5].

In previous work [6] we presented a stream-based ar-
chitecture which allows us to integrate articulatory infor-
mation into existing recognizers and improve the perfor-
mance of the baseline system. We use a direct combina-
tion of scores for context-dependent sub-phonetic models
with feature codebooks for computation of HMM emission
probabilities as opposed to multi-level approaches. We ob-
served reduced error rates for (Broadcast News) F0-type
speech and hyper-articulated speech [7]. In another set of
experiments using different training and test data, we made
use of the trans-lingual properties of articulatory features in
[8], where we observed reduced error rates for multi-lingual
speech recognition systems and investigated the possibility
of sharing articulatory detectors across languages.

In this work, we investigate speaker-dependant proper-
ties of articulatory information, classification accuracy of
Articulatory Features and the performance of speech recog-



nition systems making use of Articulatory Features. We
adapt our baseline system to particular speakers using (1)
a stream setup and articulatory detectors and (2) standard
constrained MLLR. We report comparable performance in
both cases, so that speaker adaptation using Articulatory
Features is a usable approach, although we could not find
evidence that our adaptation scheme is particularly strong
for speakeradaptation. There is however some indication
that our adaptation scheme compensates for speaker pecu-
liarities (e.g. lisping) by choosing appropriate feature de-
tectors (e.g. INTERDENTAL).

2. CORPUS AND BASELINE SYSTEM
DESCRIPTION

The experiments described in this paper were conducted
with the Janus Speech Recognition Toolkit developed at the
University of Karlsruhe and Carnegie-Mellon University and
the “Ibis” time-synchronous single-pass beam search de-
scribed in [9].

2.1. Corpus

Training data for the baseline acoustic models consisted of
about 65h of original BN data and 35h from the English
Verbmobil (ESST = English Spontaneous Speech Task) data.
This data consists of spontaneous dialogues in the travel
planning and scheduling domain and was collected during
the German Verbmobil [10] project. Subjects were given
the task to plan a trip from the United States to Europe under
varying constraints, including finding a time, choosing a ho-
tel for price, location and amenities and deciding on trans-
portation. Test data consisted of about 2.5h of ESST data.
The resulting human-to-human dialogues were recorded in
16kHz, 16bit quality under clean conditions using close-
talking microphones. The test data was taken from 28 dia-
logues and comprises 16 speakers, resulting in 56 segments
and 1825 utterances. For convenience, in the future these
segments will be referred to as “dialogues”, although they
technically only constitute one speaker’s contribution (and
channel) to a dialogue. All test speakers recorded at least 2
dialogues and some of them were recorded at different dates
and in different locations.

2.2. Baseline System

The baseline system uses 4000 fully-continuous context-
dependent sub-phonemic models with 32 Gaussians each
and diagonal covariances. These were estimated with 6 it-
erations of Viterbi training using fixed time-alignments on
a 40-dimensional feature space derived from MFCCs after
an LDA transformation. CMS, variance normalization and
VTLN were also applied. The warping factors for the test
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Fig. 1. Stream architecture used in our experiments: stream
0 uses a standard decision tree ending in 4000 conventional
CD-HMM models, while streams 1, 2, ..., 74 (only two
are shown) are feature streams which only have two mod-
els FEATUREABSENT and FEATUREPRESENT, apart from
noise and silence models (not shown here).

data were computed with the no-feature baseline system and
left fixed.

The phone set of our recognizer consists of 45 human
sounds. We also used three noise and one silence model.
The vocabulary used during the tests is a class-based tri-
gram language model trained on the ESST training data
only. The test vocabulary contains about 9000 entries. The
baseline system reaches a word error rate of 27.1% on the
2.5h ESST test set. The numbers reported in [6] were com-
puted on a smaller test set and used slightly different acous-
tic models.

2.3. Stream Architecture

We used the 74 linguistically motivated questions already
present during construction of the standard context decision
tree for acoustic modeling to define the total set of Articula-
tory Features. This set contains questions for voicing, man-
ner and place of articulation, articulator and sound type, as
well as combinations thereof (e.g. ALVEOLAR-FRICATIVE)
and other linguistic and phonetic features (CONSONANTAL,
REDUCED).

A graphical representation of the stream architecture we
used in our experiments is shown in figure 1. We do not
use a fully distinctive set of features, as our feature streams
“support” conventional models, but instead try to add only
a subset of features, which increases recognition rate most.
We have also not limited the features to an orthogonal set
of questions, as we want to retain the advantages of redun-
dancy, which we assume humans use as well. The weight
of feature streams was empirically set to 0.2 throughout this
work, with a weight of 0.85 being assigned to the “standard”
stream. Note that we do not need to satisfy a normaliza-
tion condition during linear combination of log-likelihood
scores. Setting the sum of the stream weights to a value



larger than 1.0 systematically increases the acoustic scores,
the observed improvements however are not due to changes
in the beam search or a different language model weight.

In mathematical terms, the state-level combination of
acoustic scores in the log-likelihood domain performed in
our system can be written as follows:

p(x|ωk) =
N−1∏
n=0

pn(x|ωk)αn

wherep(x|ωk) stands for a likelihood,x for an input
feature vector, andωk for the classes, HMM states in our
case. αn signifies the weighting factor for streamn. In
typical experiments,N = 2 andα0 = 0.85, α1 = 0.2 (n =
0 ⇀↽ BaselineStream andn > 0 ⇀↽ FeatureStream).

2.4. Feature Detectors

Detectors for Articulatory Features were built in exactly the
same way as acoustic models for existing speech recogniz-
ers. For the baseline system (stream 0) the training data
for the 4000 HMM statesωk is partitioned in 4000 acous-
tic modelsφn=0,k. In feature streams however, we only
have very few acoustic models:φn>0,j with j ∈ { FEA-
TUREPRESENT, FEATUREABSENT, SILENCE, NOISE } A
decision tree is used to map betweenk andj. All data from
/b/ for example will be trained into the models VOICED and
PLOSIVE, while /y/ will be trained into VOICED and NON-
PLOSIVE (or PLOSIVE = FEATUREABSENT).

To speed up acoustic training, we used themiddleframes
only, assuming that features such as VOICED would be
more pronounced in the middle of a phone than at the be-
ginning or the end, where the transition into neighboring,
maybe unvoiced, sounds has already begun. As data is not
fragmented as in context-dependent acoustic modeling, but
instead shared between different phones, data sparseness is
not a problem here. Also, feature detectors were trained
on the ESST subset of the training data only. The feature
system uses 256 Gaussians per model, trained with 6 iter-
ations on a 32-dimensional feature space. The number of
parameters for human speech sounds in the feature system
is therefore about 0.5% for each stream used, when com-
pared to the standard system. The different dimensionality
of base and feature models may also explain the advantage
of the non-normalization of the weighting factors.

Typical output of the feature detectors is shown in figure
2. This visualization is computed by taking the difference
between FEATUREPRESENT and FEATUREABSENT mod-
els and subtracting a prior value depending on the frequency
on the training data. It seems that the output of the detectors
indeed approximates the canonical feature values quite well,
although some assimilation phenomena can be observed.
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Fig. 2. Output of the feature detectors for part of the utter-
ance“... be more effective and you might even ...” ; black
bars mean FEATUREPRESENT and white bars mean FEA-
TUREABSENT. The height of the bars is proportional to the
score difference, i.e. the higher a black (white) bar, the more
likely it is that the corresponding feature is present (absent)
at this point in time. The numbers at the bottom represent
the frame numbers for this excerpt: 1sec = 100 frames.

3. SPEAKER ADAPTATION USING A STREAM
ARCHITECTURE

The choice and combination of streams intuitively allows
for speaker adaptation by choosing different stream weights
(and therefore different features) for different speakers. The
number of free parameters (one for every stream used) in
our setup should allow for rapid and reliable estimation of
adaptation parameters. We performed initial experiments on
the automatic adjustment of stream weights without respect
to speaker identity in [8]; in this work we will investigate the
potential of this approach for speaker adaptation by compar-
ing results from different dialogues from the same speaker
and comparing these results to those attained by standard
feature-space based constrained maximum likelihood adap-
tation [11].

In this work, we will mainly combine only one feature
stream with the main stream. In previous work [6] we have
already shown that this approach leads to significant error
reductions, although further gains are possible by adding
more streams. As of yet, there is no algorithm for the auto-
matic and efficient determination of stream weights without
decoding the data, so that we do not undertake to combine
several streams.

To demonstrate the approach, we look at speakerSNC,
from whom eight dialogues are available. These recordings
were made at different times and with different recording
channels, the results are summarized in table 1.

The overall baseline word error rate for speakerSNC
is 19.1% (3’385 reference words), which reduces to 17.2%
if we decode all eight dialogues with the same additional
feature stream STOP and to 16.6% if we choose the optimal
feature in a dialogue-specific way, a relative reduction of
10% and 13%.



Dialogue Base STOP Best Feature

e094ach1 19.6% 16.1% 15.9% UNVOICED

e095ach1 23.5% 21.6% 20.5% STRIDENT

e096ach1 20.9% 19.1% 19.1% STOP

e097ach1 15.6% 15.3% 14.0% FRONT-VOW

e100ach2 20.5% 20.3% 19.7% DIPHTHONG

e101ach2 15.9% 12.9% 12.6% LAX -VOW

e102ach2 17.8% 14.8% 14.4% ROUND

e115ach1 18.8% 17.6% 15.9% SYLLABIC

Table 1. Word error rates for the different dialogues of
speakerSNC. The worst feature for each dialogue is be-
tween 1.6% and 3.7% worse than the best feature and can be
worse than the baseline system. STOP is the feature which
optimizes overall performance on this speaker.

We see that although there is some variation in the choice
of the best feature, the most useful features seem to be con-
cerned with vowel quality or manner of articulation. Al-
though STOP is a relatively “good” feature in all dialogues,
there is a significant increase in word error rate, if we de-
code all eight streams with this feature.

4. EXPERIMENTS

The 10% to 13% gain achieved in these experiments shows
that the stream setup can potentially be used for adaptation
to speaker and utterances. We therefore decided to run fur-
ther experiments and compare this adaptation scheme to our
standard ML-based feature transform approach.

4.1. Feature Classification

Before running further ASR experiments, the feature de-
tectors were used to classify the test data into FEATURE-
PRESENTand FEATUREABSENT categories on a per-frame
basis, by comparing the likelihood scores produced for the
test-data, also taking into account a prior value computed
on the frequency of features in the training data. The ref-
erence for testing was given by the canonical feature val-
ues associated with the phonetic label obtained through a
Viterbi alignment of the transcription using the baseline sys-
tem. The automatic alignment used pronunciation variants
as well as optional silence and noises.

To see whether feature classification accuracy is related
to word error rate reduction on a per-dialogue basis, we
show the relevant numbers in table 2. There also does not
seem to be a clear correlation between (average) feature
classification accuracy and word error rate of the baseline
system.

The average feature classification accuracy for selected
features is shown in table 3. It is clear that very unbalanced
features (such as ALV-FR), which only appear in 0.5% of

Speaker Classification WER WER
Accuracy reduction

e094ach1 76.0% 4.3% 19.6%
e095ach1 74.9% 1.4% 23.5%
e096ach1 74.4% 1.4% 20.9%
e097ach1 75.1% 1.2% 15.6%
e100ach2 75.2% -0.2% 20.5%
e101ach2 75.2% 2.5% 15.9%
e102ach2 74.1% 3.1% 17.8%
e115ach1 74.3% 3.0% 18.8%

Table 2. Feature classification accuracy, word error rate and
relative improvement for speakerSNCand feature CARD-
VOWEL.

Feature Classification Frequency
Accuracy

VOICED 83.8% 75.2%
CONSONANT 77.5% 59.8%
ANTERIOR 75.7% 46.2%
SYLLABIC 76.5% 44.0%
VOWEL 77.5% 40.2%
CORONAL (worst) 73.0% 36.1%
OBSTRUENT 82.6% 34.1%
CONTINUANT 77.9% 29.2%
ALVEOLAR 78.5% 28.1%
CARDVOWEL 74.6% 28.0%
ALVEOLAR-RIDGE 78.1% 26.9%
STOP 79.1% 26.8%
SONORANT 80.0% 24.4%
ALV-FR (best, 99.0% 0.4%
rarest)

Table 3. Average Feature classification accuracy and fre-
quency for selected features. Frequency gives the percent-
age of frames assigned with the feature by the automatic
labeling procedure.

all frames, can reach very high overall classification rates;
this is a consequence of our initial decision to use binary
features as opposed to multi-valued features.

4.2. Feature Adaptation

In table 4 we summarize the results of our articulatory feature-
based adaptation scheme. We can reach a best word error
rate of 24.9% (8% relative) using only one Articulatory Fea-
ture, chosen in a dialogue specific way. If we choose the
best feature for every speaker, we can reach an error rate of
25.5%, which is still a 6% relative improvement.

It is interesting to note that the top-performing features
of speakerMBB(DNT-FR, INTERDENTAL, ALVEOPALATAL ,
Y-GLIDE in that order) are relatively rare and specific and a
listening experiment confirmed our suspicion that the record-



Speaker BASE ADAPT
Dialogue Speaker Feature

AHS 27.8% 25.8% 26.1% W-GLIDE

BAT 14.7% 13.2% 13.5% SYLLABIC

BJC 22.3% 18.9% 19.4% CARDVOWEL

BMJ 36.7% 36.2% 36.9% HIGH-CONS

CLW 21.4% 19.6% 19.9% CONSONANTAL

DNC 29.1% 27.3% 27.9% BACK-CONS

DRC 46.3% 42.2% 43.8% BACK-CONS

JDH 29.0% 26.9% 27.5% LOW-VOW

JLF 31.3% 27.9% 28.4% SYLLABIC

KRA 22.7% 17.2% 17.7% STOP

MBB 27.5% 25.3% 25.8% DNT-FR

RGM 25.8% 24.0% 24.7% ROUND

SNC 19.1% 16.6% 17.2% STOP

TAJ 31.2% 29.3% 30.1% Y-DIP

VNC 20.0% 17.2% 17.9% CONSONANTAL

WJH 51.1% 49.3% 49.9% HIGH-CONS

ALL 27.1% 24.9% 25.5%

Table 4. Word error rates for articulatory feature-based
adaptation. Adaptation can be performed by choosing the
best feature on a dialogue-level (column 3) or per speaker
(column 4, feature chosen in column 5).

ings exhibit prominent high frequencies, originating from a
tendency of the speaker to lisp. Unfortunately, there are
only two dialogues in which this speaker participated, the
single best features for these are LOW-VOW and DNT-FR

with other dental/ fricative features trailing not far behind.

4.3. ML Adaptation

Maximum-Likelihood linear transformations as described
in [11] are a general adaptation paradigm to adapt to any
kind of mismatch present in the test signal. In our case,
there should be no channel mismatch, as the baseline system
was trained with ESST data and gender differences should
largely be normalized by the VTLN transform. An initial
experiment, in which we computedone adaptation matrix
using the reference transcriptions to compensate for possi-
ble channel effects, improved the error rate from 27.1% to
26.9%, which is neglectable. As we’re using constrained
MLLR, means and variances are being transformed by the
same matrix, so that the transformation can be applied ei-
ther to the models or to the input features. Here, we trans-
form the input features, so that speed-up algorithms such as
Gaussian selection through bounding boxes can be applied
without further change.

The results for constrained MLLR adaptation are sum-
marized in table 5. If we perform supervised adaptation,
we can reduce the error rate slightly better than with the AF
adaptation schemes.

Speaker BASE ADAPT-Dialogue ADAPT-Speaker
Superv. Unsup. Superv. Unsup.

AHS 27.8% 25.0% 25.2% 25.2% 25.7%
BAT 14.7% 13.3% 13.8% 13.3% 13.3%
BJC 22.3% 22.9% 23.2% 23.7% 23.3%
BMJ 36.7% 36.2% 37.7% 37.6% 37.9%
CLW 21.4% 20.4% 20.6% 20.2% 20.5%
DNC 29.1% 26.7% 27.8% 27.7% 28.3%
DRC 46.3% 41.7% 44.1% 43.3% 43.3%
JDH 29.0% 28.1% 27.8% 27.4% 28.5%
JLF 31.3% 24.0% 25.6% 24.7% 25.8%
KRA 22.7% 18.2% 20.5% 18.9% 21.0%
MBB 27.5% 26.1% 27.6% 27.0% 27.8%
RGM 25.8% 23.0% 24.7% 24.2% 25.8%
SNC 19.1% 15.9% 16.6% 16.7% 16.9%
TAJ 31.2% 27.9% 31.1% 29.8% 30.0%
VNC 20.0% 17.1% 18.5% 19.1% 18.5%
WJH 51.1% 45.8% 47.1% 46.4% 49.1%

ALL 27.1% 24.7% 25.7% 25.4% 25.9%

Table 5. Word error rates for FSA (constraint MLLR adap-
tation in the feature space). This adaptation can be per-
formed using the reference transcriptions (“supervised”) or
on the baseline system’s hypotheses (“un-supervised”).

With these results we do not want to establish a gen-
eral superiority of one adaptation scheme over the other; as
the number of parameters (much larger in the AF case if
we count the feature codebooks) and the use of the refer-
ence transcripts (used for scoring purposes in the AF case,
for computing the adaptation matrix in the MLLR case) is
fundamentally different for both methods, the comparison
presented here would be inappropriate for that purpose. In
section 5 we will however discuss the speaker-adaptation
properties of the AF approach, which is the main focus of
this paper.

4.4. Combined Adaptation

Given two adaptation schemes, it is always interesting to
see how well they work when jointly applied to the same
system. In our case this means applying FSA to the code-
books in stream 0 and adding one additional feature stream.
It would also be possible to apply ML adaptation to the fea-
ture streams, but we have not yet run the experiment, as our
main interest is to understand the behavior of adaptation us-
ing Articulatory Features. In our case, we can reduce the
error rate down to 24.1%, which is an 11.1% improvement
over the baseline and still a 2.4% relative improvement over
FSA alone (24.7% word error rate).



5. ANALYSIS AND DISCUSSION

From the results presented in this paper, we conclude that
AF-based speaker adaptation is a viable alternative or addi-
tion to standard ML-based adaptation schemes.

Comparing speaker-based adaptation with dialogue-based
(supervised) adaptation, we can define the “speaker-fraction”
as the ratio of gain in a speaker-based adaptation scheme to
the gain in a dialogue-based adaptation scheme:

Fl =
WERBase,l − WERSpeaker,l

WERBase,l − WERDialogue,l

for l ∈ { MLLR, AF }. This factor is 67% for MLLR
and 74% for AF. Given the amount of data, this is not a
significant difference, so that AF-based adaptation does not
seem to exhibit particular speaker-specific properties that
normal ML-driven adaptation does not possess. However,
the results presented in 4.2 indicate that the optimal fea-
ture is not entirely unrelated to speaker properties, although
presently there is not enough data to settle this dispute.

6. CONCLUSION AND FUTURE WORK

The experiments presented in this work show that speaker
adaptation using articulatory information in our stream setup
performs comparably to standard (supervised) constrained
MLLR. The comparison between dialogue-based adaptation
and speaker-based adaptation presents no clear evidence that
AF-based adaptation captures more speaker-specific prop-
erties than standard MLLR; more data would be needed to
confirm our suspicions that Articulatory Features can in-
deed compensate for particular speaker characteristics, as
noted in section 4.2. We are also currently investigating the
possibility that Articulatory Features could also be useful
for lexical disambiguation. Experiments on hyper-articulated
speech (minimal pairs) imply the application of articulatory
features to the problem of lexical disambiguation, as ex-
hibited when processing decoder lattices or confusion net-
works. This approach might also allow to avoid the problem
of stream selection in an elegant way.
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Alex Waibel, “A one-pass decoder based on polymor-
phic linguistic context assignment,” inProc. ASRU
2001, Madonna di Campiglio, Italy, 12 2001, IEEE.

[10] Alex Waibel, Hagen Soltau, Tanja Schultz, Thomas
Schaaf, and Florian Metze, “Multilingual Speech
Recognition,” inVerbmobil: Foundations of Speech-
to-Speech Translation, Wolfgang Wahlster, Ed., Hei-
delberg; Germany, 2000, Springer-Verlag.

[11] Mark J. F. Gales, “Maximum likelihood linear
transformations for HMM-based speech recognition,”
Tech. Rep., Cambridge University, Cambridge, UK,
1997.


