
Gesture Recognition for Remote
Collaborative Physical Tasks Using Tablet PCs

Jiazhi Ou, Xilin Chen, Jie Yang

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA, USA

{jzou,xlchen,yang+}@cs.cmu.edu

Abstract

In this paper, we present effective and efficient gesture

recognition algorithms for building a system to support
remote collaborative physical tasks using tablet PCs. We
discuss problems of gesture recognition in detail. We use
a variable window to extract curvature changes to form
invariant local features. We then employ a hierarchical
classifier that consists of hidden Markov model (HMM)
and decision tree classifiers. HMMs are utilized to
classify closed gestures, while decision tree is used to
classify open gestures. Experiment results show that the
overall accuracy for all gestures is 96.4%. Accuracies for
closed gestures and open gestures are 96.9% and 96.1%
respectively. We have developed a prototype system
integrating gesture and live video to support
collaboration on physical tasks. Besides normal gesture
recognition, the system also supports gesture fitting,
freehand drawing, and the combination of the two. The
system can support both human to computer interaction
and human to human communication.

1. Introduction

Collaborative physical tasks refer to tasks in which two
or more people interact with real objects in the 3D world.
They play an important role in many domains, such as
education, industry, and medicine. As working force
becomes increasingly distributed, there is a critical need
for technologies to support collaborative physical tasks.
Prior studies of physical collaboration suggest that
people’s speech and actions in this context are inherently
multimodal, intricately related to the position and
dynamics of objects, other people, and ongoing activities
in the environment [1, 2, 3, 5, 7]. In particular,
communication during physical tasks combines both
speech and gesture. During verbal communication, people
use several types of gestures to clarify or enhance their
messages [1, 6]. Pointing gestures are used to refer to task
objects and locations. Representational gestures, such as
hand shapes and hand movements, are used to represent
the form of task objects and the nature of actions to be
used with those objects, respectively.

In face-to-face collaboration on physical tasks, people
can readily combine speech and gesture because they

share the same environment. Combining speech and
gesture is more complicated in remote collaboration
because of the need to reference external objects. Previous
studies of video systems to support remote collaboration
on physical tasks (e.g., [2, 3]) have repeatedly observed
that remote participants have difficulty communicating
because of their inability to gesture or point at objects in
the workspace. These communication problems have
negative effects on performance, in that remote
performance on physical tasks takes longer than
performance when the collaborators are co-located. To
facilitate remote communication on physical tasks, it is
thus necessary to provide a tool that allows remote
collaborators to use both speech and gesture in the same
way they would do so if co-located.

The majority of previous systems for remote
collaboration, however, have paid little attention to
supporting activities that must refer to the external spatial
environment. Consequently, gestural communication is
not explicitly supported by most existing computer
supported cooperative work (CSCW) technologies. The
objective of this research is to develop technologies to
support communication through speech and gesture
during collaborative physical tasks. In the current work,
we aim to develop an inexpensive multimodal system that
can be easily incorporated into existing video
conferencing systems. Our goal is to allow remote
collaborators to communicate about their physical world
through speech and gesture with the same ease as they can
do so when co-located.

We approach the problem by using pen-based
gesturing over video stream. The video stream plays a
dual purpose in the proposed paradigm: (1) it establishes
remote communication among collaborators, and (2) it
provides gestural communication media. The system
allows collaborators to share the workspace through video
connections. It also provides remote support for gesture
by overlaying pen-based gestures over video streams. Our
goal is to devise a system, using desktop PC and Tablet
PC platforms, that enables speakers and listeners to
produce and interpret both pointing and representational
gestures as readily as they do in face-to-face settings. The
preliminary idea has been evaluated by implementation of
a cursor pointing device [4]. User studies concluded that
cursor pointing is valuable for collaboration on physical

tasks, but that additional gestural support will be required
to make performance using video systems as good as
performance working side-by-side.

In this paper, we present a system supports remote
interaction using gestural communication over video
streams using video cameras, tablet PCs, and desktop
PCs. The system allows collaborators to share the
workspace through video connections. It also provides
remote support for pointing and representational gesture
by overlaying pen-based gestures on video streams. Our
objective is to find an effective and efficient way to
recognize and fit gestures. Therefore, we employ a
hierarchical scheme consists of hidden Markov models
(HMM) and decision trees.

2. Pen-based Gesture Recognition

With the progress in hardware, touch screen has been
widely used in various computational devices, such as
PDA and Tablet PC, etc. This highly stimulates the
researchers’ interests in Pen-based technologies. We use a
pen-based interface to implement gestural communication
over video streams. In a pen-based interface, a gesture is
represented by the trajectory of moving points. The task
of gesture recognition is to classify a sequence of points
into different predefined classes.

The problem we address in the paper differs from
online handwriting recognition [11, 13, 16]. Although the
number of gestures defined in our system is smaller than
those in online handwriting recognition systems, the
drawing style of pen-based gesture recognition is more
arbitrary. In a handwriting recognition system, input
samples will have almost the same orientation and size,
while in our system, gestures are identical under affine
transformation. For example, straight arrows may
represent the command to move a camera, and their
lengths and directions are parameters of each command.
While most online handwriting recognition algorithms use
x/y coordinates of sample points as input features, we
could not apply those technologies directly in gesture
recognition because they are not invariant of rotation and
scaling.

Technically pen-based gesture recognition can be
viewed as a graph recognition or classification problem if
we do not take their scopes and commands into account.
The earliest pen-based work is Sutherland’s Sketchpad
[18], which is also the first graphic user interface. [8]
described a gesture-based interface called GRANDMA.
GRANDMA specifies single-stroke gestures drawn by
mouse movement, beginning with the press of a mouse
button. He used a statistical method for gesture
recognition. First, thirteen locally and globally
geometrical features are extracted to represent the input
stroke. Then, the feature vector is classified as one of the
C possible gestures via a linear evaluation function.

Finally, a closed formula is used to calculate the weights
in the function.

Jorge and Fonseca used decision tree and fuzzy logic
method for online graphics recognition [9]. The
recognition process starts from the first pen-down event
until a set timeout value after the last pen-up. First, global
geometric properties of the input stoke are extracted as
features. Second, a decision tree is applied to filter out
unwanted shapes using distinctive criteria. Third, fuzzy
logic is used to associate degrees of certainty to
recognized shapes.

Jin et al. [10] proposed an on-line sketchy graphics
recognition algorithm. There are four pre-processing
steps. First, it removes redundant intermediate points
using polygonal approximation. Second, agglomerate
points filtering is employed to reduce hooklets at the end
of the lines and circlets at the turning corners. Third, end
point refinement is used to delete extra points for a self-
crossed stroke and extend endpoints for an open stroke.
Fourth, convex hull is calculated to select n vertexes to
represent the original line. After the pre-processing, m
points from the original n vertexes are selected with a
recursive vertex combination algorithm. The closed-shape
graph is classified according to the number m.

The problem of supporting gesture recognition in
remote collaboration on physical tasks differs from what
has been explored in previous research in many ways.
Technologies for supporting gesture communication in
CSCW must be different from those supporting human-
computer interaction (HCI). In HCI, a gesture-based
interface, which translates input gestures to coded data, is
designed to implement human-computer communication
through human-like styles. Humans are in the human
computer interaction loop. The gesture recognition system
recognizes the predefined gestures. On the other hand, the
function of a gestural tool in CSCW systems is to mediate
human-human communication. Instead of the human in
the loop, we have put the computers into the human
communication loop. The role and functions of the
computer have been changed. Furthermore, a gesture tool
might ideally have both HCI and CSCW functions. As an
HCI tool, gestures can be used as an input device for
camera control (pan, tilt, zoom). As a CSCW tool,
gestures are intended to communicate meaning to a
remote partner. In design of our system, we have fully
considered how gesture recognition can be implemented
to facilitate both to enhance interpersonal communication
and as a camera control device. Unlike existing gesture
recognition systems used for human computer interaction,
which support recognition only of predefined gestures,
our system supports recognition of predefined gestures,
freehand drawing, and a combination of the two. We
propose to use a hierarchical structure of classifiers that
consist of hidden Markov models (HMMs) and decision
trees to achieve good performance for the gesture

recognition task. We discuss our gesture recognition
algorithms in detail below.

2.1. Preprocessing

Like many other pattern recognition tasks,
preprocessing is necessary for enhancing robustness and
recognition accuracy. We have performed two different
preprocessing techniques before the feature extraction.

A user will draw a gesture at different speeds. This
means that the sampling rate for the same gesture is not a
constant, i.e., for a given period of time, the number of
samples is changeable. Several methods can be used for
this task, such as linear, B-spline, Bezier interpolation,
etc. In the current system we apply linear interpolation
before resampling the sequence of points.

Most of the people draw gestures with hooklet-like
segments, either in start or in the end. [10] states that the
hooklet-like segments happen at the end of the sketchy
lines, but we find that the hooklets are more likely to
happen at the beginning of gestures. Therefore, if we find
a sharp curvature change after a few points from the start,
we remove those points, as shown in Figure 1.

Figure 1. An example of removing the hook at
the beginning of the gesture.

2.2. Feature extractions

Hand written signal recognition systems uses either
local features ([11, 13, 14]) which include x (y) offsets,
slope angles, curvatures, etc. or global features ([8, 9, 10,
11]). In our system we first extract local features, which
are more informative. Because we want to extract features
that are insensitive to affine transformation, we use the
maximum curvature within certain window as the feature
to describe the gestures. To obtain a stable feature, we use

a window W, which contains a gesture segment sC (
∩

AB)
with length of L, as shown in Figure 2. We measure the
curvature θ of the segment as following:

1. Select points C, and D on the segment, so that

constant a is]5.0,0(, ∈== ��� cdCcdCdC
B

A
s

D

B
s

C

A
s

2. Calculate the angle θ between AC and BD to
measure the curvature of the segment. The larger
the angle θ is, the larger the curvature.

A

B

θ

C

D

Figure 2. An illustration of curvature calculation.

When we compute the feature, we need to consider that
the size of window and the coefficient c. Note that the
curvature may change with the scale of the gesture.
Therefore a small window may focus only on the detail of
the curve and ignore the real important shape information.
Similar to dynamic time wrapping (DTW) in speech
recognition, we use a variable window size to calculate
the curvature. We define the window size as:

SegmentNo

dC
L

gureture�= ,

where],[MaxNoMinNoSegmentNo ∈ .
The curvature sequence {θi, i = 1,…n} is the feature

that we use for classification. In order to differentiate the
rotation of the slope change (clockwise or counter-
clockwise), we add a sign to each θi. In addition, some
gestures are easy to classify with global features. We will
introduce them in detail specifically in Section 2.3.2.

2.3. Hierarchical Classifier

Gesture classification is a key part for gesture
recognition. Researchers have employed different
classification technologies for online pen-based input,
such as decision tree, HMM, and Bayesian network, etc.
Our design principle is simple, high accuracy, and robust.
In order to balance simplicity, accuracy, and robustness,
we combine decision tree and HMM into a classifier in a
hierarchical structure.

Our system recognizes 12 predefined gestures, which
can be classified into two categories by the distance
between the first point and the last point of the gesture.
The first category is called Closed Gestures, which
includes Ellipse, Triangle, Quadrangle, Pentagon, and
Star (Figure 3). The other is called Open Gestures, which
includes Straight Line, Check, Cross, Delete, Arrow, and
Round Arrows (Figure 4).

Ellipse Triangle Quadrangle Pentagon Star

Figure 3. Closed gestures.

Straight Line Check Mark Cross Delete

Arrow Round Arrow A
(Clockwise)

Round Arrow B
(Counterclockwise)

Figure 4. Open gestures.

To further classify gestures within closed gesture set

and open gesture set, we use different classifiers. Given
an input gesture, if we know the number of vertexes (large
curvature changes) and their orders, we can classify it by
simple rules. Vertexes can be detected by sharp curvature
changes, which can be achieved by the threshold method.
However, for the closed gestures, the concept of ‘angle’ is
quite vague sometimes. Curvature changes around obtuse
angles are small. Arcs with low curvatures (flat arcs) are
close to lines, arcs with high curvatures (sharp arcs) are
close to angles, and round angles are close to arcs (seeing
Figure 5). An explanation on this is that when a user
draws several continues corners, they could not control
the distribution of curvature change well. Hence ellipses
with sharp arcs, quadrangles with round angles, and
polygons with obtuse angles are hard to classify correctly.
Furthermore, if we rely on the angles detected, the
performance is very sensitive to the features. Mis-
detection of one or more angles due to a slightly noisy
feature will cause a wrong classified result. Therefore, we
model lines, angles and arcs statistically with HMMs, thus
local features are fully utilized. And we will present a
novel constrained HMM in the next section.

Sharp Arc

Flat Arc Round Angle

Figure 5. Examples of ambiguous angles.

Open gestures, on the other hand, have more
significant angles, and most of them are not so sensitive to
the noisy data. If we miss an angle for Arrow or Delete
gestures, they still can be recognized correctly by the
other detected angles. We use a decision tree, which is
fast and intuitive, to classify gestures in this category.

The diagram of this hierarchical is shown in Figure 6:

Figure 6. A hierarchical classifier.

2.3.1. HMM Based Classifiers for Closed Gestures.
Hidden Markov models are well known to model
sequential data and were successfully applied to speech
recognition, handwriting recognition, and other pattern
recognition tasks [12, 13]. We found that it produced
satisfactory results to classify closed gestures.

Observable Symbols
As described in Section 2.2, given an input gesture,

we extract curvature information θi, with sign that decides
the direction of the drawing (clockwise or counter-
clockwise). Because we don’t care this direction for the
closed gestures we defined in our task, we use the
absolute values as input features:

O = { o1, o2, …, on }, where oi=|θi|.
Discrete HMMs were used as generative models to
generate the features. Continuous value oi is quantized
with 20 levels (0 to 19) evenly when it is smaller than a
threshold. Values greater than this threshold are quantized
to one level (20).

2-State HMMs
Two 2-state HMMs were constructed to model

polygons (Triangles, Quadrangles, Pentagons, and Stars)
and Ellipses respectively. The rationale behind it is states
for polygons represent edges and angles respectively, and
states for ellipse represent flat arcs and sharp arcs
respectively. Training was processed using traditional
Baum-Welch algorithm. Initial state probability vector π,
transition matrix A, and output probability matrix B were
updated. The distribution of output probabilities for each
state (B matrix) is shown in Figure 7. We can see that
edge state and flat arc state tend to generate features
correspond to low curvatures. While angle state and sharp
arc state tend to generate features that correspond to
higher curvatures.

We have no prior knowledge on the probabilities of
these gestures, and assume they have equally the same
occurring probabilities. Therefore, by using the Bayesian
decision rule to classify polygons and ellipses, we have:

“Polygon”: If Pr (O | Polygon HMM)> Pr (O | Ellipse HMM)

“Ellipse”: Otherwise

Closed Gesture?

HMM based
classifiers

(Section 2.3.1)

Decision tree
based classifiers
(Section 2.3.2)

Yes No

Edge State

Angle State

Flat Arc State

Sharp Arc State

Figure 7. An illustration of output probabilities
for each state. The x-axises are the curvatures
and the y-axises are the probabilities.

Constrained HMMs for Polygons
To find the number of edges or angles generated by

the polygon HMM, one possible way is to track the
Viterbi path of the feature sequence and count the number
of transitions between states, the other way is to model
this number of transitions explicitly. The latter was
implemented in our system because it has more fertile
information.

First we define PATHm as the set of state paths that
have exactly 2×m-1 transitions between edge state and
angle state in the polygon HMM. More specifically, paths
in PATHm should repeat {edge state, edge state, …, edge
state, angle state, angle state, …, angle state} m times. We
model the probability of the number of edges given the
input feature as:

�
∈

∝
mPATHpath

HMMpathHMMpathOOedgesm)|Pr(*),|Pr()|Pr(. (2)

To calculate (2), we expand the polygon HMM
manually to a left to right model HMM′ (Figure 8).

E A E A ……

1 2 3 2*m

Figure 8. The expanded left to right model HMM′′′′.
E and A represent edge state and angle state
respectively.

And equation (2) becomes:
�
∈ mPATHpath

HMMpathHMMpathO)|Pr(*),|Pr(

)'|*2,Pr(HMMmstatelastO == (3)
Note that probability calculated in equation (2) is an
approximate value. It’s biased because when m is larger,
there are more paths. Therefore, we penalize the model
with more edges. That is, the model with m edges has a
positive factor penalty(m), which satisfies

,...4,3),()1(=>+ iipenaltyipenalty
The classification of gestures in polygon set is:

)}()|Pr({logmaxarg mpenaltyOedgesm
m

−

The penalty factors were tuned using the training data.
Both Pentagon and Star have five edges. We need a

global feature called crossing to differentiate them
quickly. It is defined as whether there exist two separated
segments that intersect each other. We use the way
presented in [11] to calculate Crossing. Obviously Star
has enough Crossing and Pentagon doesn’t have any.

This method can be easily extended to other polygons
or folded lines that have a fixed number of edges.

2.3.2. Open Gestures
Higher Level Features

While we don’t have the ‘blurred angle’ problem in
the open gesture category, we could use a threshold to
detect vertexes, that is, an angle is marked once the
curvature is larger than the threshold. But instead, we
want to learn the thresholds from the training examples.
Therefore, we first specify a set of thresholds {thredk |
k=1, 2, 3, 4 and thredi < thredi+1}. For each threshold
thredk, the number of vertexes V_NUMk and their
positions posk

1, posk
2, …, posk

v are recorded as higher
level features. To decide whether it contains curves or not,
we use the following ratio to see how well the detected
vertexes fit the original gesture:

�

�

=

−

=
++

++

= k

i
k

i
k

i
k

i
k

NUMV

i
pospospospos

n

i
iiii

k

yxyxDist

yxyxDist
Curve

_

0

1

1
11

)),(),,((

)),(),,((

11

(4)

Where (xi, yi) and resampled points, posk
0=1 and posk

v+1=n.
To detect arrows, we measure the ratio between the

lengths of the first and the second line segments:

)),(),,((
)),(),,((

2211

1100

kkkk

kkkk

pospospospos

posposposposk

yxyxDist
yxyxDist

Ratio =
 (5)

Features that are not dependant on the value of
thresholds are Crossing described in last section and the
majority of signs of curvatures Sign.

Decision Tree Classifier
In the training phase, for each gesture we extract

(V_NUM1, …, V_NUM4, Curve1, …, Curve4, Ratio1, …,
Ratio4, Crossing, Sign) as feature vector. C4.5 algorithm
([17]) is applied to select the most distinguishable
attributes and construct the decision tree. Attributes
included in the output decision tree are shown in Table 1.

Table 1. Attributes of the output decision tree

V_NUM1 Discrete
V_NUM3 Discrete
Curve2 Continuous
Ratio1 Continuous
Ratio2 Continuous
Crossing Discrete
Sign Discrete

In the test phase, only 7 attributes (out of 14) listed in
Table 1 are needed.

2.4. Gesture Fitting

To better support human gestural communication, we
provide a gesture fitting tool. Our system recognizes the
intentional shape a user is drawing and regularizes it. We
would like users to be able to draw arbitrary sketches, not
restricted by the graphs we can fit. While many free hand
sketching interfaces aim at accurate approximation to the
input strokes (e.g. [14]), we feel it is unrealistic in our
task if parts or all of a single gesture are potentially free
hand drawings. To address this situation, we proposed to
combine gesture fitting with freehand drawing.

A single gesture is segmented by the vertexes we have
detected. We verify a line segment using the most
intuitive way. If the distance between their end points is
shorter than the original length to some extend, we reject
it. Otherwise we connect them with a straight line. Instead
of trying to approximate the curves, which may be
intractable in some situations, we leave them as free hand
drawings connected with other line segments (either
recognized gestures or free hand drawings).

3. A Prototype System

We have incorporated the gesture recognition scheme
into a system to facilitate gesturing over video within the
context of an instructional collaborative physical task
where two or more people interact with real objects in the
3D world. The architecture of the system is shown in
Figure 9. The workspace is visually shared through video
cameras and equipped with tablet PCs, desktop PCs or
other handheld devices. Real-time video streams from
these cameras are sent to collaborators’ computing
devices in the workspace. A helper can make freehand
drawings and pen-based gestures on the touch sensitive
screen of a computing device, overlaid on the video
stream, just like using a real pen on a piece of paper in a
face-to-face setting. The results are observable by all
collaborators on their own monitors. Details of the
implementation are discussed in the remainder of this
section.

Since we want to overlay gestures over video streams
and display them together, we need two running threads:
one is for video communication, the other is for gesture
communication. Because they are concurrent
procedures—i.e., the order of these two threads are
undetermined—displaying them directly on the screen
will have flashing effect. Therefore, an image buffer is
prepared before the ultimate image is displayed.

Video cameras are essential to facilitate remote
collaboration. In order to reduce potential network delay
caused by the video server, we opted to use network IP
cameras, which are inherent servers, to solve the problem

of distributing network traffic. Each network IP camera is
a server and connected to the network independently;
other computers on the network can be its clients. Once
started, a network IP camera opens a TCP/IP port and
waits for its clients. When a connection is established, the
server’s status message and the client’s authentication
messages will be exchanged. If the client is authenticated,
video data will be sent in JPEG format upon a client’s
image request message. By using this technique, the video
flow and the process overhead is shared by all network IP
cameras. Furthermore, because jitter is more likely to
happen in an Internet environment because of a higher
chance of collision, we establish a local area network
(LAN) for our preliminary tests of the system. A wireless
router is used to connect network IP cameras, workers’,
and helper’s computers. The devices communicate with
each other locally, isolated from the Internet. In this way,
we can minimize effects caused network delay.
Disruption of remote gestures by network jitter was
investigated by Gutwin [15], and is an important issue we
will be addressing in future work.

Figure 9. Overview of system architecture.

After connecting to network IP cameras, the
communication among collaborators’ computing devices
is also in client-server mode. For example, the worker’s
computer can be a server and the helper’s computer can
be clients. A socket is created on the worker’s computer.
It waits and accepts client sockets from the helper’s
computer. After the establishment of a connection, a
helper can send remote gestures and commands through
socket communication, or vice versa. The trajectories of
freehand drawing and gesture recognition results are
observable on all collaborators’ monitors.

Pen-based gesture and freehand drawing consist of
sequences of points. Each sequence starts from the pen
touching the screen and ends when the pen is lifted. When
the helper is drawing, the sequence of points will be
added to a link list of the current gesture and sent to the
workers’ computers simultaneously. While drawing, the
helper can choose among freehand drawing, gesture

Video Streams

Gestures/Commands

Remote Helpers’ Side

Workers’ Side

Workers’
PCs

Cameras

Helpers’
Tablet PCs

recognition, or drawing normalization. In freehand
drawing, what is sketched will be shown exactly as drawn
on the screen. In gesture recognition mode, a predefined
gesture will be recognized and a certain command will be
executed. In the drawing normalization mode, the current
sequence of points will be sent to a gesture recognition
module immediately after the user lifts the pen from the
screen. The recognition module recognizes the shape that
the user is trying to draw (e.g., arrow, circle) and returns a
set of parameters to approximate the recognized shape.
The interface, on the other hand, will use these parameters
to synthesize and display the normalized shapes. There
are several parameters that a user can set for sketching,
including pen width and color of the drawing.

In the current experiment setting, a user can make two
sets of commands besides sketching. The first set of
commands concern erasing gestures already drawn. A
user can choose remove all gestures, the first gesture, or
the latest gesture. In addition, we are testing an automatic
fade-out function, in which each gesture fades out after a
predefined time.

The second set of commands is “undo/redo”. There is
a pair of buttons and a user can always undo the last
action (i.e., drawing or erasure) or redo what is undone.
Inverse action is taken after each undo/redo command as
shown in Table 2.

Table 2. Actions to Take for Undo/Redo

Last Action Undo Redo

Draw a Gesture Erase Last Gesture Resume Last Gesture

Erase Last Gesture Resume Last Gesture Erase Last Gesture

Erase First Gesture Resume First Gesture Erase First Gesture

Erase All Gestures Resume All Gesture Erase All Gestures

The third set of commands is to take a ‘snapshot’. If a

user wants to keep an image at any time, he/she can use
the snapshot command to save the image as a JPEG file
on the local disk.

4. Experimental Results

4.1. Experiment Setup

In order to demonstrate the feasibility of the proposed
methods, we have performed experiments to evaluate
accuracy of gesture recognition. We collected a total of
1337 gestures from 14 people. 666 gestures from 7 people
were used as training data to train HMMs and tune the
thresholds. 671 gestures from other 7 people were used as
test data. Then we switch training data to test data and test
data to training data. The performance was evaluated with
the test data in these two experiments.

We evaluated the gesture recognition accuracy in
macro level, which is computed by first calculating the
accuracy for each gesture individually, then averaging the
accuracy of each class. The overall accuracy of 12
gestures is 96.4%.

4.2 Results of Closed Gestures

The accuracy of closed gestures is 96.9%. Results of
individual gestures are shown in Table 3.

Table 3. Recognition Results for Closed Gestures

Gestures Accuracy Gestures Accuracy

Ellipse 99.1% Triangle 100.0%%

Quadrangle 89.2% Pentagon 96.4%

Star 100.0%

4.3. Results of Open Gestures

The accuracy of open gestures is 96.1%. Results of
individual gestures are shown in Table 4.

Table 4. Recognition Results for Open Gestures

Gestures Accuracy Gestures Accuracy

Straight Line 100.0% Check Mark 97.3%

Cross 98.2% Delete 92.8%

Arrow 94.6% Round Arrow A 94.6%

Round Arrow B 95.5%

4.4. Gesture Fitting

We also tested combination of freehand drawing and
gesture fitting together. An example of gesture fitting
combined with freehand drawing is illustrated in Figure
10.

Figure 10. An example of gesture fitting. Part of a
single gesture is free hand drawing.

5. Summary

Free hand
drawing

Recognize
d gestures

We have developed a system support gestural
communication over live video stream for remote
collaborative physical tasks using tablet PCs. Our task
differs from other gesture recognition systems in the way
that it supports not only human to computer interaction
but also human to human communication. Our current
system support recognition of 12 predefined gestures,
gesture fitting, freehand drawing, and combination of two.
In gesture recognition, we have used a variable window to
extract curvature changes as local features for
representing input gestures. We have presented a novel
hierarchical classifier that consists of hidden Markov
models and a decision tree. HMMs handle the problems
of ambiguous angles of closed gestures statistically. And
the constrained HMMs can be extended to gestures with
fixed number of edges and angles. While open gestures
have more significant higher level features, we propose to
extract features with different thresholds. And a decision
tree is used select the most distinguishable features. We
have demonstrated feasibility of the proposed algorithms
through experiments. Recognition results have indicated
promising performance of our algorithms. The overall
accuracy of 12 gestures is 96.4%. Accuracies for closed
gestures and open gestures are 96.9% and 96.1%
respectively.

6. Acknowledgement

This material is based upon work supported by the
National Science Foundation under Grant Nos. 9980013
and 0208903. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation. We’d like to thank
Rong Yan, Yan Liu, and Tal Blum for many useful
discussions on classifies.

7. References

[1] Bekker, M. M., Olson, J. S., & Olson, G. M. (1995).
Analysis of gestures in face-to-face design teams provides
guidance for how to use groupware in design. Proceedings of
DIS 95. NY: ACM Press.

[2] Flor, N. V. (1998). Side-by-side collaboration: A case study.
International Journal of Human-Computer Studies, 49, 201-222.

[3] Fussell, S. R., Kraut, R. E., & Siegel, J. (2000). Coordination
of communication: Effects of shared visual context on
collaborative work. Proceedings of CSCW 2000 (pp. 21-30).
NY: ACM Press.

[4] Fussell, S., Setlock, L., Parker, E., & Yang, J. (2003).
Assessing the value of a cursor pointing device for remote
collaboration on physical tasks. Proceedings of CHI '2003. NY:
ACM Press.

[5] Kuzuoka, H., & Shoji, H. (1994). Results of observational
studies of spatial workspace collaboration. Electronics and
Communications in Japan, 77, 58-68.

[6] McNeill, D. (1992). Hand and mind: What gestures reveal
about thought. Chicago: University of Chicago Press.

[7] Tang, J. C. (1991). Findings from observational studies of
collaborative work. International Journal of Man-Machine
Studies, 34, 143-160.

[8] Rubine, D. (1991). Specifying gestures by example.
Computer Graphics, 25, 329-337.

[9] Jorge, J., & Fonseca, M. (1999). A Simple Approach to
Recognise Geometric Shapes Interactively. Proceedings of
GREC’99 (pp. 266-276).

[10] Jin, X., Liu, W., Sun, J., & Sun, Z. (2002). On-line
Graphics Recognition. Proceedings of PG’02, pp. 256-265.

[11] Hu, J., Rosenthal, A. S., & Brown, M. K. (1997).
Combining High-Level Features with Sequential Local Features
for On-Line Handwriting Recogintion. ICIAP (2) 1997, 647-
654.

[12] Rabiner, L. R., A tutorial on Hidden Markov Models and
Selected Applications inSpeech Recognition, Proc. of the IEEE,
Vol. 77, No. 2, pp. 257-286, 1989.

[13] Yasuda, H., Takahashi, K., and Matsumoto, T., (2000). A
Discrete HMM for Online Handwriting Recognition.
International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 14, No. 5, pp. 675-689.

 [14] Sezgin, M., Stahovich, T., & Davis, R. (2001). Sketch
based interfaces: Early processing for sketch understanding.
Proceedings of PUI-2001. NY: ACM Press.

[15] Gutwin, C., & Penner, R. (2002). Improving interpretation
of remote gestures with telepointer traces. Proceedings of CSCW
2002. (pp.49-57). NY: ACM Press.

[16] Connell, S. D., & Jain, A. K. (2000). Template-based
Online Character Recognition. Pattern Recognition Volume 34,
Issue 1, 1 January 2000, Pages 1-14.

[17] Quinlan, J. R. (1993). C4.5.: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

[18] Sutherland, I., (1963). Sketchpad: A Man-Machine
Graphical Communication System. PhD thesis, Department of
Electrical Engineering, MIT, January 1963.

