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Abstract

In this work we present a system whkh automatically corrects disflucllcies in spontaneous
speeeh dialogues. DisHucllcies arc all kiwis of repairs and filler words which occur frequently
in spontaneous speech.
We adopt some ideas of statistical machine translation for the disflucncy correction task.
Thus the disflucllt speech can he RCCII as source language which Ita.•• to be translated into
a target language. The target language is fluent speech, containing no disftucnci0.l. The
statistical models of our system are trailJed 011 texts in whith dislluendes are annotated
manually. \Ve extract information about the structure of disflllcncies and ahout the context
in which they occur out of these anllotated texts. Then our system can perform the task of
disfluency correction on arhitrary sentences.
Advantages of this approach are that (l) no extensive linguistic knowledge is required to
develop the system, (2) rapid adapt.ation to flew target languages is possible awl (3) mod-
els for properties of dislluencies which are not. considcred in the current systcm can easily
incorporated.
We test our system on two different spontaneous speech corpora: Desides American English
dialogues we conduct experiments 011 ~latldarilJ Chinese sJH..'t.'Ch. On the English data the
system achieves a rL'Callof 77.2% and a precision of 90.2%. On the r..landarin Chinese data
the recall is 49.4% and the precision 76.8%. The laUer re~mlts seem to confirm that our
approach is applicable to multiple languages.
I\evertheless, our system must still be improved. A tighter coupling with speech reeognition
engines is desirahle, so that word lauin~ from a spc(~t:hn'l(~ognitioll systcm can be used a<;

input rather than manually transcribed speech. Furthcrmore the use of acoustic features for
disflucncy corredion remains to be cxamined.
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Chapter 1

Introd uction

1.1 Motivation

In Natural Language Pro<:essing (NLP) it becomes more and more important to deal with
spontaneous speech, such as dialogs betwccn two people or even multi-party meetings. The
goal of this processing can be the translation, the summarization or simply the archiving of
a dialog or a meeting in a written forlll.
In contrast to texts containing more formal language such as articles in a newspaper or
broadcast news texts, spontaneous speech includes a huge number of sentences which are
not fluent. The clements which make a scntence not fluent are commonly referred to as
"disflucncies". Repetitions or corrections of words uttered previously or complete restarts of
sentcnCL'S arc common disflucncics. Further more words like "well", "alright" etc. which do
not contribute to the semantic content of the text are considered to be disllllent, when they
are only uscd to fill pauses or to start a turn.
Ely deleting the disflllent elements in a given sentence, a "clean", Le. fluent sentence is
generated which represents the utterance originally intended by the speaker.
The following example shows a disfl\l(mt sentence aud the "clean" sentence which is the result
of deleting the disfillent parts from the original sentence:

Original sentence:
Clean sentence:

Well, the it has it has got a you know breakfast buffet.
It has got a breakfast buffet.

As can be SL'Cn from the example above, the "clean" scntence is much ea.<;ierto read. the
information the speaker wanted to convey by uttering the sentence is easier to understand
and the scntence is more grammatical and much shorter than the dislluent sentence. These
a.-;pects lIlay be important to consider for various applications in NLP (section 1.3). Thus
it might be desirable to have a system which automatically corrects disfluent sentences and
produces a more well formed text without disflucncies as output which can then serve as
input for NLP applications.

1.2 Scope and Goal of this work

The overall goal of this work is to develop a system which automatically corrects dislluencies
in a t.ext which is a transcription of spontaneous speech. \Ve assume that disfluCllcics occur
on scntence level and do not span over multiple sentences.
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Ncvcrthele:;s, the structure of the discourse in a spontancous speech dialog may also contain
phenomena which make it more difficult to understand. These phenomena could he called
di:;course related disflueneie:;. An example for that would he a misunderstanding where one
spcaker misinterprcts the contents of an utterance previously uttered by his dialog partner:

A: We could take a flight at six o'clock.
D: Six o'clock in the morning is too early for me.
A: I mean six o'clock in the evening.

A detection or even a correction of a discourse related disfillency would involve deep semantic
understanding of the ,1iscourse and the application of many sophisticated techniques involving
syntax and St~lIlantic..<;which is far beyond the scope of this work.
Furthermore we only consider textual phenomena and no errors like mispronunciation, wrong
intonation or stuttering. These errors can only be corrected when taking the acoustics into
account. However, the system we propose works on manually transeribed speech, where
acoustic errors play no role. If 011 the other hand automatically transcribed speech from a
spC{'(~hrecogni;"er was considered as input, we would have to deal with errors like t.his as well.
In contrast to manual transcriptions, automatically generated transcripts are very likely to
contain a lot of recogni;"er errors. That means that the words uttered by the speaker are not
tram;(Tibed correctly, they are omitted or words which have not been uttered arc inserted
in the transcription. Furthermore these transcripts do Hot contain any sentence boundaries
which complicate:; readability or further processing evcn more.
Although t.he system we propose here does not yet work together with a speech recognizer, its
design principals allow an extension in this direction. For spontaneous speech applications
manually transcribed speech eall not assumed to he available. Thus a coupling between
disfluellcy correction and speech recognition where recognizer errors and acoustic errors arc
treated must he implemented in further work.
One important goal for the system proposed in this work is. that it should acquire its disfiu-
cncy corrcction ahilities hy training on a disfiuent and the corresponding corrected text. After
training, the system should be able to perform dislluency correction on an arbitrary sentence
using statistieal models. That means that on the one hand no extensive expert knowledge
about syntax and semantics of a language should be necessary to train the system. Ou the
other hand the system should not usc static pattern matching rule:; (i.e. if some words match
a certain pattern, they are disfluent) for disfillelicy correction, but make decisions which arc
based on statistical models considering many features. These features arc drawn from the
given training corpus where clislluenciCl'lare manually anllotated. Corpora annotated ill this
way are not largely available, hencc we are confrollk.u with a sparse data problem. using this
corpus-ba."iCflal'proach.
Out of the annotated corpora text.ha,sed properties of disflucncics can be extraeted. This
can be the length or the position of a disfluency, the number of clisUuendes occurring in a
sentence or the context in which a disUuency occurs. All the featurL"Swhich are used in our
system arc described in more detail in section 4.2 and in section 3.3 where the feature-based
statistical models arc explained.
Although some authors have shown that acoustic and prosodic features such a.'ithe duration of
pauscs and words or intonational houndaries might be helpful for disfluency correction [Dea.r
l~taI., 1992], [Nakatani and Hirschberg, l!J!J.tj,we do not make lise of thelll within this work.
The only prosodic feature we use is the information about word fragments (words interrupted
prematurely) which however have been manually annotated in the transcriptions.
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Besides the idea of having a system which can operate without deep linguistic knowledge
another goal of this work is to examine whether our approach of correcting disfluencies in
spontaneous English speech can be generalized to other languages. Therefore experiments on
l\landarin Chinese spontancous speech have been conducted which seem to prove that our
system can he easily adapted to other languages as English.

1.3 Potential Applications

\Vhen dealing with spontaneous speech n..'Corded from dialogs or meetings, one goal of speech
recognition and NLP is to represent the speech in another appropriate forlll. An appropriate
form can be a written transcription, a summary or even the translation of the spontaneolL'1
speech into another language, which may he esscntial to enable people spe-aking different
languages to cOllllllunicate.
Typical systems that perform these tasks may have a structurc as illustrated in figure 1.1.
Speedl is recorded and then automatically transcribed by a speech recognizer. The output
from the speech recognizer is then either passed to a NLP liystem which for example translates
or sUlllmarize:-; the spN.!ch n.-'Cognizeroutput or it is directly archived on a hard disk. The
output of the NLP system may then be passed to a speech synthesizer or it may he archived
all a hard disk as well.

NIP
System

(Translation.
Summarization

etc.)

Figure 1.1: Typical system for processing spolltaneouli spt-'(.'Ch.

The idea behind archiving spontaneous speceh in a written form is to provide easy access to
the contents of a dialogs or a meeting which took place in the past. Ea."y acCCl-iSmeans that
one wants to have texts which are easy to read and one may want to provide (automatically
generated) summaries which allow quick information retrieval. In the first ClI •.<.;{l correcting
disfluencies is important to improve readability what has bccn shown ill the example in section
1.1. The automatic summarization task may be facilitak"(i a lot when summarization can be
<lolleon a fluent text because some non relevant or redundant information, which was present
ill the disfluent text because of filler words. repetitions and restarts of sentences is removed in
the correded text. Furthermore the input for the summarization system is more well formed
awl grammatical when disfluencies have heell removed which might he important when some
parsing is required.
For the purpose of speech-ta-speech tralL"latioJl olle can pass the automatically transcribed
SIWt"Ch through a machine translatioll system and then synthesize tlw translated text to spccch
again. However, one would rather likc a flucnt text than a t.ext packed with disfluencies a.<;
output of the translation system. The generation of a fluent translation will he lIIuch easier
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for the system whcn the input is already fluent. Furthermore the assumptions and modcls
in tralL'~lation systems are usually ba."ie<lon fluent l'ielltences and training corpora for thel'ie
systems are mostly availabl(l as fluent texts.
In order to provide fluent input to the NLP system in figure 1.1 the scenario can be extended
by using the disHuency correction system proposed in thil'i work as iIlustrah..'<.1in figure 1.2.
Here a disltuellcy torrection system is put hetwccll thc speech recognizer and the NLP system
ill ordcr to correct the disfluellt sp(~dl recognizer output and remove disfluencies from the
input of the NLP sYl'item.

S!,=h
recognizer

Disfiuency
Correction

NLP
System

(Translation.
ummarizalion

etc.)

S!,=h
synlhcsis

Figurc 1.2: System for processing spolitallt..'OtlSspeech using dbllut..'llcy correction system.

As we cxplailil~ ill the previous Sl..-"CtiOll,the present system works only on manually tran-
l'icrihed speed!. .\Iodificatiolls are nccessary in order to U)oiC it in a scenario described above.
However the architecture of our system allows that it only has to he extended and not to
be rebuilt ill order to work in such a scenario. Hence the system can he seen tl.'ia first step
toward a disfluency eorredion system in a spontaneous speech processing environment.

1.4 Approach

In section 1.2 we stated that we deal only with disfluencies which occur at sent.ence level and
which can be determined by inspection of manually transeriiwd words of a speech act. In
this case, the process of correcting disHucncics cau be seen as a pron~s of deletions: A fluent
sentence is generated from a disfluent one by deleting those words which do not belong to the
utterance which Wtl.'loriginally intended by the speaker. The followiug examplel'i illustrate
that:

original sentence: Alright well , -. got to plan this trip to Hannover.
dean sentence: We got to plan this trip to Hannover.

original sentencc: I have some trip some flights.
clean senteJl(~e: I have some flights.

To model this process, we adopt l'iOllieideas froUl statistical machine translation (S~'1T) which
are t.hen simplified and modified to nwet the requirements of the disHuellcy correction ta.'lk.
The ta."k of SIv1Tis to translate a given sentence from a source language into a target language.
To derive statistical models for this translation process, the idea of the noisy chauue1 is very
cOlllilionly used [\Vallg and \Vaihel, 19971: The sentence in the target language can be l'iccn a."l
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input to a noisy channel. The noisy channel adds noise to its input sentence and creates the
sentence in the source language as output. The goal of the translation is now to recover the
channel input whidl is the sentence in the target language given the channel output which is
the sentence ill the source language.
For the problem of disHucncy correction we can make use of this model by defining Huent
spet.ochto be the target language and disHllent speech to be the source language. Then the
model of the noisy chanuel can be reformulated as follows: A fluent sentence is the input of
the noisy channel. The noisy chauuel adds noise to the fluent sentence in form of disfluencies
and produces as output a disfluent sentence (figure 1.3). The goal of dis8uency correction i<;

then to recover the fluent sentence given the disfluent output of the noisy chanlJel.

noisychannel

C '~N
Clean (= fluent)sentence Noisy(= disfluent)sentence
(targellanguage) (sourcelanguage)

Figure 1.3: The model of the noisy channel for disfluency correction

Speaking in mathematical terms, we have a string C which represents a 8uent sentence and
a string N which is a dis8uent or noisy sentence produced by the noisy challnel. V./ewant to
find the string 6 that is most likely to be the input of the noisy channel given the channel
output N:

C = "'g max P(CIN)c (1.1)

Similar to SMT the probability P(CIN) in equation (1.1) can be modeled by decomposing
it into a translation model and a language lIludel for the target language. Dy application of
Bayes rule one obtains:

C = arg max P(GIN) ~ arg max P(NIC) . P(C)c c (1.2)

In equation 1.2 the translation Illodel is represl~llted hy the probability P(NIC) and the
language model by P(C).
As language lIlodels we usc ll-gram models which are wry COlllllJonin speech recognition
and SMT (section 3.2). In contrast, the translation model we use is very different from the
models which are cOllllllonly used in S!v[T. Our translation model is designed to meet the
special rCtluirements of disfluency correction. This is explained ill detail in section 3.3.
To train both models, a "parallel" corpus is required which eonsists of the same text in the
source and target language. In our ca.<;ethis is the transcription of spontaneous speech with
annotated dis811encie;. From this text the lluent text can he computed deterministically. The
parallel corpus is then tiRedto extract all the properties of disfluencies on which our tran.'ilatioll
model is based. The language lllodel is trailll-'fl on the fluent text which rcprci'icllts the target
language in SMT terms.
III the search pha.'iCthe string 6 is finally determined by first generating each possible string
C from N which can be generated by deletions. Then a probability is assigned to each
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hypothesis produced in this way according to cquation 1.2. The search over all hypothescs to
find the bcst one is finally done by building a lattice in which each path rcpresents a possible
string C. A dynamic programming ha."lcdsearch algorithm (similar to the Viterhi sC<1.rch
algorithm) is then used to find the hcst hypoth~is 6 in the lattice.
The algorithms to train the system are not very complex and do not require a lot of comp".
tational effort. This is however often the cn.~ for other NLP applications like Sf\fT. Further-
more. the search space which is built during decoding to find the best hypothesis is very small
compared to SMT. Thus even without any pruning the search problem remains tradable in
tcrms of memory and time.
The reason that disHuency correction using our approach docs not requirc as much computa-
tional effort a." S1.tT becomes evident, when considering the complexity of the two problems.
In SMT a word in a source sentence can he mapped to all arbitrary position in a target
sentence, awl the corresponding target word can have a numher of translations. As we define
disfluellcy correction simply a.-;a sequcnce of deletions of words, the 1Il1Inherof po!'il'iihletarget
sentences here is much smaller than in 51.fT (although it l'itill grows cxponentially with the
sentence length). Hence training and search for disfl.uency corredion is more tractable than
for 5~lT.

1.5 Overview

After this introduction chapter 2 dt'Scrihes in dctail the phenomenon of dislluencies in spon-
tanoous spe(~d1. First we descrihe all types of disflllencies we consider in our system. Then
a classification schemc for disfluencies which is uscd by many authors is prt'Sented. Finally
:-lomerelated work is reviewed which has bccn done in analysis. automatic detection and
correction of disflucllcies.
The statistical models used in our approach are pre;ented ill detail in chaptcr 3. In this
chapter we review some ha."ic concepts of 5MT and present somc principals of statistical
language modeling which are used in the language llIodel (;omponent of our system. Then
we describe our translation model which is ba.-;ed on some S1.IT concepts but still differs
~:-lentially from the traIL-;lation models known froUl 5~fT. Finally we cxplain how exactly we
model the different properties of disfluendes which arc used in the translation model.
In chnpkr 4 the corpora we used for our experimcnts are de."lcrihed. These are the Ameri-
mil English VERBMOBILcorpus [Wahlster, 2000] and the ~landa.rin Chillese Call1lome cor-
pus [Wheatll~y, 1997) which we uscd to demonstrate the potcntial of our system for rapid
adaptation to different languages. In section 4.2 we analyze and compare several properties
of disfluencies whir:h can be found in the different corpora. These properties are encoded by
the statistical models which arc described in chapter 3.
Chapter 5 deals with SOUleissues COllc(~rtIingthe training and the implementation of Ollr
system. Some ideas for decoding and the structure of the lattice we usc arc discussed. Then
the exact implementation of the models introduct~d in chapter 3 is explained.
The results from our experiments on thc English VEROMOBILand the 1fandarin CallHoIllc
corpus are presented in chapter 6. Furthermore some examples of the output of the disfluellcy
corrcction system for thc English VEROMOBILcorpus are givcn.
III chapter 7 we draw some conclusions from our work and point out some possibilities for
further work.



Chapter 2

Disfluencies

This chapter deals in more detail with the phenomenon of disllucncics in Spolltall< ..'Ous speech.
In section 2.1 we show that disHuendes can be grouped by different types. Then a pattern is
presented with which the structure of disftuellcies (the "surfa.ce structure") can he described
(section 2.2). In section 2.3 we finally review some work which has been aOlle about disflll.
cucies up to 1I0W. \Vc distinguish betwccn theoretic studies about disftuencies (section 2.3.1)
awl systems for automatic detection and correction of IlisHuCIlCics (section 2.3.2).

2.1 Types of Disfluencies

In this section we describe types of disflucncies which can be used to classify all disfillcncies
we cOllsider for our system. In the corpora we use, disflllcncics are anIlotated <uxording to this
classification. However the annotations for the VERB"fODIL mrpus slightly differ fcom the
annotatiolls for thc Mandarin Call1Iomc corpus. Details arc given below after the explanation
of the different disfluency types.
In the VERB"fOBIL corpus disftucncies arc partly annotated manually by human transcribers
following the transcription conventiolls in [Durger, 1997J and partly annotated aut.omatically
using the DIASuM"f-System proposed in [Zeclmer, 2001J. Thus we follow the definitions of
these two works for the definition of our disfluency types.
From the mauual transcriptions we drew mainly information about complex disftuencics rep-
etitions or corrections of phrases or restarts of whole sentences. Simple filler words are not
annotated in the transcriptions of the VERBMOBILcorpus. Therefore we used the DIASUMM.
System which provides information about filler words.
The fact that part of the disfluency annotation of the corpus is created automatically by a
system which of course docs not perform this task without errors is a dear deficiency. Howcver
the performance of the DIASm.IM-System for idelltifying those disftuencies for which we use
automatic annotation is reported to be very good in [Zedmer, 2001] and for the lack of time we
were not able to provide mauual disfiuency annotations. Filler words are annot.akd correctly
in ahout 90% of all cases by the DIASUM~I.System on a test set from the SWITCHBOARD
eorpus. Manual inspection of the automatically annotated transcripts from thc VERBMOBIL
corpus indicates, that reasonable results arc produced here a"l well.
The different types of disflllencies we consider are givcn by the sources of information (Le.
manual transcriptions and the DIASUMM-System) which are availahle. This does not howcver
restrict our definition of a disfluency, Le. there are no phenomena which we would like to
consider as disllucncy but which are not anlJotatcd in our corpus.
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In table 2.1 all types of disfluencies considered ill the VERBMOOILcorpus are preseJlh~d,
examples are given and the information whether the annotation iRobtained manually (TRL)
or automatically (DIASUMM) is provided.
Note that the DIASU.MM-S:ystemmarks words like "yeah" or "okay" as filled pauses when
anllot.ating the VERB}IOBILcorpus. Thus one can not anymore distiuguiRh filled pauses
and discoursc markers by considering whether they are lexicalized or not. Furthermore, in
a sClltence like "Yeah, we would arrive eight o'clock." the word "Yeah" which is classified
<-1..'>filled pause helps the speaker to start his turn and thus has t.he fundian of a discourse
marker. Even single utterances like "Yeah.", "Okay." or "Oh" have a discourse function in
so far, as they indicate the sJleaker that one is listening and in the first two cas<'-"Sthat one
agrees with him/her.
\Ve distinguish these two disfluellcy types only because this distinction is made in the anno-
tation of the corpus (performed by the DIASUMM-System). However, this dist.inction plays
no role when features for disfluellcy detection and correction are extractl-'<.1.In all analysis of
disHuencies and results we make, we will explicitly consider the case that discourse markers
and filled pauses can be merged into one category.
For the distinction of the categories "Rcpetition or Correction" and "False Start" it is im-
portant to consider whether the phrase which ha-<;been abandolJed is repeated with only
slight or even no changes in the syntactical structure (substitutions, insertions or deletions of
words). That identifi<.-"Sit. as a correction or even an exaet repetition. If a completely different
syntactical structure with different semantics is chosl~1lfor the repair, the observed disflllency
is a false start.
As already mentioned the disHuency annotation for the 1.fandarin Chinese Calillome mrpus is
slightly different from the annotation for the VERD~OBlLcorpus. False starts and r<,petitions
are marked using exactly the same rules as for the anllotation of the VERBMODILcorpus. The
disflllency type filled pause comprise:; all disfluencies which would marked either a.,>filled pause
or a.'>discourse markt~r occording to the annotation convention for the VERBMOBILcorpus.
As we explained above, it is more natural t.o consider these two disHllency t.ypes a.<;one single
type. Thi:; disHuency type will be abbreviat.ed with "FP" in the following to distinguish
it from t.he filled pausc type used in the VERBMOBILannotation. Interjection:; and editing
terms are not anllotated at all in the Mandarin Chinese CaliHome corpus. The data. was
annotated manually by native speakers of Chinese [Huang, 2003].
The dislluency classificatioll just pre:-;ented is important to dcfine what we consider as disflllcnt
text and it will he lL,>edwhen reporting ret'mlts, in order to illustrate the performance of our
system for single types. However, thc disflucllcy correction system we propose does not
distinguish at all different disfluency types for correding them. It might he helpful to do
:-;0 as different disfluency types differ largely in their structure and their properties, however
mudl more aunotated t.ext would be required in order to have enough data.. The current.
algorithm for distluency correction and the statistical models the algorithm uses do 1I0t rely
on type specific properties of disHmmcics. The advantage of this approach is, that slight
dmngcs of the definit.ion of disfluency types do not affect the correction algorithms or the
formulation of the statistical models. Therefore it was easily possible to adapt our system to
the 1;fandarill Chinese corpus with its slightly differcnt disllllcncy type c1a-,>sificatioIl.
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In the following a pattern is presented which can be used to descrihe the structure of dis-
fluenciC". In [Shriberg, 1994] this pattern is C<1.11ed"surface structure" of disftuencies as only
characteristics of disfluencies are eonsidered which are observable from the text. The un-
derlying explanatory factors concerning the processes going on in the speaker's mind during
dislluency production are not taken into account for description of the surface structure of a
disfluency. As well studies about disl1uencies and works about automatic corredion of the.,*~
phenomena make lise of the existence of such a surface structure. Howe\'er the terminology
which is wied differs. In our description we follow (Shriberg, 1994].
As showlI in figure 2.1 each disfluency can be divided into three sections: The reparandum,
then - after the interruption point - the interregnum and finally the repair. Qne or more of
these componcnts IIlay be empty. The reparalldum contains those words, which are originally
not intended to be in the uttcrancc. Thus it consists of one or more words which will be
repeated or corrected ultimately (in C1:l.."leof a repetitiou/corr<.-'Ction) or abandoned completely
(in case of a false start). The interruption point marks the offset of the reparandulll. It is
not connected with any kind of pause or audible phenomenon. The interregnum can consist
of an editing terrn, a non lexicalized pause like "uh" or "lIhm" or simply of an empty pause,
Le. a short moment of silence. In many CCL.W-'" however, the interregnum of a disfluency is
empty and the repair follows directly after the reparandulIl. In the repair the words from
the reparandulIl are finally corrected or repeated (repetition/correction) or a complete new
sentence is started (false start). Note that in the latter case the extend of the repair can not
be determined.

Interruption point
j

Let us, okay, let us take a look here.
~ '--.,--J' • '
~ ; ~

Reparandum lnterregnum Repair

Figure 2.1: Surface structure of disflueneies

Obviously, the terms just introduced can be used to explain repetitious/corrections, false
starts and editing terms. When assuming that the reparandum and thc repair mn he empty
and only the interregnulIl is pre:-;ent, the prc:;ented sUl'facc structure fits as well for discourse
markers/filled pauses and interjections, which can be seell 1:I.."ldiJoifluenciesonly consisting of an
interregnum. The examples in figure 2.2 show two examples with eithcr empty interregnum
or empty reparandulll aud repair.
In section 1.4 we explained that rlisftllency correction llIeans the deletion of those words
originally not intended by the speaker. Considering the surface structlll'e ahove, it is easy
to see that these arc the words ill the reparanduHl and interregnum. The deletion of thCl'e
words produces that fluent sentence the speaktlf wanted to utter originally. Note that the term
disfluency comprises reparalldum, interregnum and repair. Disfilleut words or the deletion
region of a dislillency are defined to be only the words of the the reparandum and the
iuterregnurn. Note however that "deletion region of a disflucncy" and "disfluency" are often
used as synonyms. Thus the length of the deletion region of a disflllency is meant when
speaking of the length of a disflucncy.
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So we will, we can go there
~~~
~ I ~

Reparandum Interregnum Repair

How about, well, next week?
~~~

~ t ~
Reparandum Interregnum Repair

Figurc 2.2: Disftucncics with either empty interregnum or empty repair allll reparalldum
respectively

2.3 Related Work

In this sed ion we review sOllie work which has been done in thc past about disffuencies. First
wc summarize some interesting findings about several properties of disfiuencies prcscnted in
st.udies dealing with spontancous speech. Then somc approaches for automatic disfluency
correction will he di:>cussoo.

2.3.1 Studies on Disfluencies

Spontaneous speech has been a research tupic for mallY years. Thus there are a number of
studies which investigate the phenomenon of disfiuencies occurring frequently in spontaneous
spee<:h. Scveral studies inve!'itigate the proCl..-'Ssesgoing 011 the the speaker's mind during
disftuency productiun. \\'e are however lIluch more intercsted in observable cues which can
he useful for disfinell(:y idcntification in spontaneous spl..-'L'Ch.Therefore we focus in this section
on thc studk'S ill [Shriberg. 1994J al\ll iNakatani and Hirschberg, 1994J where characteristics
of disfillcllcies arc described which can be extracted out uf the text or the !'ipecch signal.
The goal of Shriberg's work is to find regularities in disfiuCllCYproduction using a data-
driven approach. Therefore manual tran!'icriptions and digitized waverorms of three large
speech corpora arc examined. The curpora used are

• the ATIS corpus: human-computer dialogs in the air travel planuing domain,

• the American Express/SRI (A~.fEX) corpus: human-human air travel planning dialogs,

• the SWITCHBOARDcorpus: human.lmman telephone conversatiolls on ,,'arious topics

Thcse three corpora are analyzed with respect to different featurcs, where features are defined
to be observable characteristics ill the data. Five different feature dimcnsions are cxamined:

• Domaiu features which include all iml)()rtant a:.;peds of the speech setting like discOllrsc
subject, communication mode etc .

• Speaker features a.."sociah~dwith the individual producing disllucncies, such as age or
gender of the speaker.
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• Sentence features which refer to the sentence in which a disHuellcy occurs without
referring to the actual words in the sentence. Examples are the position of a disfluency
in a sentence or the number of disfiuencies per sentence .

• Acoustic features which are concrete measmements of properties of the speech signal,
e.g. the duration of words or pauses .

• Pattern features taking properties of single disfluencies into account such as their length
or their type.

Shriberg classifies disfiuencies according to their pattern and sentence features and develops
a very detailed classification system. Disfluency analysis are thcn conducted for particular
types and for all disflllencies as a whole. We summarize only the results of the latter analysis,
since they arc more important for our work. Disfiucncies arc analyzed for the three corpora
according to the different featme dimensions. We present some of Shriberg's findings about
sentence, pattern, acoustic and domain features in greater detail since we found them helpful
for the disfluency correction task.

Sentence features

The rate of fluent sentences a.<;a function of the sentence length can be predicted by an expo-
nentialmodel for the S\VITCHBOARDand A.\IEX corpora, i.e the number of fluent sentences
decn~a."es exponentially over the sentence length. For the ATIS corpus a IinC<'l.rdecrease is
reported. Note that the sentence length is mea."lurcd in efficient words, where Shribcrg de-
fines the efficient words of a sentence to be only those which arc not considered as disfluent.
However she reports a correlation betwccn efficient and total sentence length.
Furthermore the numher of disflllcncies per sentence is !ihawn to he growing roughly linearly
with the sentence length (again measured in efficient words). This trend is stronger for
the SWITCHBOARDand the AMEX corpus and weaker for the ATIS corpus. However, for
the disfluency per word rate (which is obtailled by dividing the number of disfluencies per
sentence by the number of efficient words per sentence) some irregularities can be observed
for SWITCHBOARDand AMEX. For short sentence lengths this rate is lower than for longer
sentences where it is on a constant level. Shriberg suggests that this anomaly may be due to
many short sentencf'-'l consisting only of filler words without semantic content which arc not
considered a.s disfillellcies ill this analysis.
Finally the position of disJluencies within a sentence is analyzed for the three corpora. The
result is that disfluencies are lIluch lllore likely to occur at sentence-initial positions than at
sentence medial positions. Note that sentence-initial filler words like "well", "alright" etc.
are not considered as disflucllcies.

Pattern features

The length of the deletion region of a disHuellcy is a pattern feature which is analyzed.
Exdudillg filler words (which have a deletion region of length one), the number of disfiuencies
OV(lrthe length of their deletion regions is de>cribed with an (~xponetltial model, Le. the
number of disfluencics with a deletion region of length k decrca."lesexponentially with k. This
trend is reported for all three corpora.
\Vord fragments are words which are aborted prematurely. An analysis is conducted, where
the presence of fragments within disfluellcies is examined. As a result it is reported that 23%
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of the disfluencies in the SWITCHBOARDcorpus, 27% ill the AMEX corpus and even 58% of
the disfluencies ill the ATIS corpus contain a fragment. Shriberg remarks that most of the
fragments occurring within disfluencies mark the offset of the reparandum.
Finally c1isfluencieswith words in the interregnum are examined. The lIIost important finding
here is that only between 10% and 15% of all the disHucncies in the three corpora have an
interregnum which cont.ains one or more words. The rate for the ATIS corpus is reported to
be significantly lower than the rates for the SWITCHBOARDand A1.fEX corpus.

Acoustic Features

Acoustic features are analyzed for filled pauses which Shriberg defines to b(~only the sounds
"nh" and "ullin" and for one-word repetitions without words in the interregnum. For lilled
pauses Shriherg finds that the vowel duration is significantly longer than the duration of the
same vowel in other words. The most interesting finding for one-word repetitions is that
the first word (i.e. the repa.randllln) is lengthened compared to the same \vord occurring
elsewhere. The second word (i.e. the repair) is slightly shortened. Furthermore a special
characteristic of the fuudamental ff(~qllencyfor filled pauses and the first word of a one-word
repetition is reported.

Domain Features

From her analysis Shriberg concludes that there are a number of similarities between the
AMEX and the SWITCHBOARDcorpus concerning the different feature domains. The ATIS
corpus seems to differ from both of these corpora concerning disfluency characteristics. Kate
that t.he SWITCHBOARDand the AMEX corpus consist of humall-to-humall telephone dialogs
while the ATIS corpus mnsists of computer-to-humall dialogs. Nevertheless Shriberg notes
that there are also some similarities betw(~n all tlm'lC torpora. Some effeds concerning
pattern and sentence features for example can be described with the same (exponential)
models, sometimes even using the same parameters.

Nakatani and Hirschherg examine atomitic and prosndic properties of disfillellcies which
lIlay be Ust-'<.1for modeling them ill correction systems or speech recognizers [:-.l"akataniand
Hirschberg, 1994]. They focus on speech "repairs" which correspond to om disflucncy types
repetition/correction and false start. Analysis are conducted on a subset of the ATIS corpus.
While no cues are found identifying the reparandulll onset, 73% of all repairs are reported
to contain a fragment at the reparaudulIl offset. Note that the corresponding figure reported
in [Shriberg, 19941 is only 58% for the ATIS corpus. Some properties of fragment.s are
prcscnted which help to det(~ct them during speedl recognition. 91% of all fragments contain
one syllable or less alHl vowel initial fragments are not very likely while fricative initial
fragments are very likely to be ohserwd. Furthermore the authors report that whenewr the
aetnal word a,'isociated with a fragment could be identified by the human transcribers, it was
much more likely to he a (~ontent word than a fundion word.
Int.erruption glottalization and coarticulation are two other phenomena which occur at rcparan-
dum offsets. For 30.2% of all disfillcllcies interruption glott.alizatiull is fouml at the reparan~
dum offset, usually a.'isociated with a fragment. Coarticulatory effects of acoustically missing
subsequent phouemes are reported to occur at the reparanduUl offset a..• well. The authors
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suggest to make use of these phenomena to distinguish between reparandum offsets and fluent
phra.'ie offsets.
Similar to the findings ill [Shriberg, 1994] disfluencies with words in the interregnum occur
very rarely (9.4% of all repair8) in the data examined by Nakatani a.nd Hirschberg. Therefore
they don't consider these cue phra.<;esto he helpful for disHuency detection. For the dislluen-
des eontaining no words but only silence in the interregnum they report however that pau8al
duration is significantly shorter than for silences occurring in a fluent context. Neverthe-
less their experiments show that pausal duration alone can 1I0t bc used to reliably idcntify
disfluencies as too mallY fa.lse positives occur. Finally a slight but reliable difference in the
fundamental frequency between the reparandUln offset and the onset of the actual repair is
found.
In the analysis of the repair part of a dis81lellcy the authors focus on prosodic properties
of the repair offset. They suggest that the identificatioJl of the repair offset may be helpful
for dislluency correction. Analysis of all dis81lencies shows that 83% of the repair parts are
markL'ti by intonational phra.'ie boundaries.

2.3.2 Automatic Processing

In this section we will review some work which has been done in the past about automatic
processing of disflucncics. Where ever it is possible we will report results in terms of recall
and precision a." defined for example in [Beeman, 1997]:
The recall rate is the numher of disfluencics processed correctly ("hits") over the total number
of disfluencies which actually occurred in a test text:

recall =
hits

hits + misses
hits

total disfluencies
(2.1)

The precision rate is the number of disfluencies processcrl correctly over thc number of total
items which have been considered as disfluency by the algorithm which include hits and false
positives:

(2.2)
hits

precision =
hits + false positives

Recall and precision are commonly ul'ed to me,1.'iure the performance of systems for auto-
matic disfluency detection and correction. Comparison of these figures for different systems
proposed by different authors is difficult however. This is because different corpora are IL'ied
for testing the systems and differcnt types of dislluendes are considered. Furthermore the
annotation and the choice of the test data varies from f-<l.'leto ca.'i(~,which makes the ta."k of
disfluency processing sometimes more and sometim('$ less difficult. In some cases for example
hand labelcrl interruption points arc given which already identify the site of a disfillency in a
sentence and sometimes only sentences are considcred which contain at lea.'it one disflucncy.
All this must bc noted, wheu we report in the following the results achie\'(~d by different
systems.
In the pa."t 20 years a lot of systems for automatic disflucncy dctection and correction have
been proposed. In our presentation of some of these systems we distinguish

• rule based approaches, whieh rely on syntactic information and simple matching rules
to find word correspollliences between reparandum and repair,

• statistical approaches, whkh make IISCof statistieal models for disflucllcy processing,
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• hybrid approaches, eombining the two other approaches and

• ~ystems which model disfluencies for speech reeognition.

Rule-based approaches

20

The first attempt toward automatic processing of disfiuencies is described in [Hindle, 198:~].
In this work correction strategies for di~fiuencics are investigated which arc implemented
as extension to a deterministic parser. In a corpus of narrative speech with about 1500
sentences interruption points of disfiuencies (i.e. repetitions/corrections and false starts) are
hand labeled. Hindle assumes however that they can be reliably ideutificd by an acoustic
edit signal. Applying editing and restart rules deterministically from left to right, Hindle's
system is able to corred about 97% of the disfluencics occurring in the text. Note that
the identification of the interruption point of a disfiuellcy using acoustic clles is still an
open problem. [Nak..1.talliand Hirschberg. 1994] found some clles such fl."pausal duration
which might be used for this tfl.'lk, however they are not reliable enough to <l(~conntfor all
disfiuencies (.s<.-'Ction2.3.1).
Parsing techniques combined with pattern matching approaches are investigated as well in
[Carbonell and Hayes, 1983] in order to process extra grammatical input for natural language
processing systems. However no spoken language is a..'lsllmeda..'linput for such a system but a
sequence of words typed by a user. In order to identify and to corred repairs the system looks
for explicit corrective phra.."cs (Le. editing terms like "I mean") and takes the mnstituent
found after this phra..'leas the corrL'Ction for the constituent before the corrective phrase.
Another mrredion rule is to take the first phra.<;e,wlwll two syntactically and semantically
ideutical phrases appear consel:utively in a scntence.
A systern for repair detection and correction for the ATIS corpus is proposed in [Bear et aI.,
1992] where pattern matehing rule-; are mmbined with syntactic and semantic knowledge.
The disflueucy types considered in this work correspond t.o repetitions/corrections according
to our definition, which rnay of course include editing terms in the interreguum. Discourse
markers/filled pauses, interjections and fabe starts are not cOllsidered.
The system uses a two-stage model in order to incorporate information frorn multiple knowl4
edge sources. In the first stage pattern matching rules are applied to identify potential
disfillellcies in the test corpus cOllsisting of 10517 sentences. The pattern matching COIIl-

pouent w,es repeated words and syntactic anomalies like "a the" or "to from" a." cues for
repairs. Results for this pattern matching approach are reported in terms of correction rates
or detection rates for mmplete sentences which contain at least one disfiuency. How many
disfiucllcies actually occur ill a sentence is not considered. In terms of successfully detected
disfiucnt sellteuces the system achieves a recall of of 76% and a precision of 62% using only
the pattern matching compollent. Fol' disfluellcy correction using pattern matching (again in
terms of completely correded s{~lltences)a recall of 44% and a preeision of 35% is reported.
Note that the pattern matching component docs not re!Juire any annotated texts for training,
but rule~ have to hc defined manually which refied the typical pattern.'l of disfiuencies.
In the second stage of the system a natural language processing component is used to dis.
tinguish actual repairs from false positives in the set of sentences identified as potcntially
dislillent in the first stage. Each of these senteucc!'i is parsed hy the !'iystem. If parsing suc-
ceeds a IInent sentence is hypothesized. Otherwise some repair patt.erns are applied and the
selltencc is parsed again. If parsing is suce<~ssful,the new sentence is the hypothesized cor-
rection, otherwise it is marked with "no opinion". The parsing component is n~ported to be



2.3 Related Work 21

quite accurate in the detection of repairg in the given set of gentences and a Lit less accurate
for the detection of false positives. Out of 68 correctly identified repairs in the second stage,
62 can be appropriately corrected. Explicit r('$lIlts in terms of recall and precision measuring
the performance of the combination of the hvo stages of the system are not reported.
Certain acoustical clles for disfluency detection are investigated as well, but no experimental
results using acoustic knowledge are reported.

Statistical approaches

In [Nakatani and Hirschherg, 1994] prosodic and acoustic cues for disfluency detection and
correction are examined. The results of the analysis of the ATIS corpus for such cues are
already presented in st~ctioll 2.3.1. Here we de:;cribe briefly a system for disfluency detection
ill the ATIS corpus proposed in [Nakatani and Hirschberg, 1994]. This system combines
the prosodic and acougtic cues which the authors found to he useful for disflucncy detection
with cues which are observable from the text. The system USCgdecision trees generated
by the CART-Algorithm (degcribed for example in [Huang et al., 2001]) in order to detect
the interruption points of "repairs". The "repair" types which are considered correspond to
repetitions/corrections and false starts according to ollr definition. The algorithm generates
decision trees in a way that the prediction error rate on cross-validation data is minimized.
The decision trl-'Cs are trained on 202 utteranc('}> and te:;ted on 148 utterances with both
training and test set containing at least one repair per utterancc. They apply question:;
about the following acoustic/prosodic and textual features, which are manually annotated.
Acoustic prosodic featurcs:

• duration of pauses (= silences)

• occurrence of word fragments

• occurrence of filled pauses

• energy peaks in the speech signal

• amplitude of the speech signal

• fundamental frequency

• accentuation

Textual features:

• position in a utterance

• number of words of an utterance

• wonl-matchings in a window of three words after thc current word

• (Part.of-Speech) POS-tags in a window of four words around a potential interruption
point

• repetitions of function words sharing tile Sallie POS-ta~
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For the best decision tree generated by the algorithm using thel'e features a fl'Call of 86.1%
and a precision of 91.2% on the test set is obtaiued. This tree uses particularly information
about silencC:-i,fragments, filled pauses, word matchings, function word repetitions, POS-
tags and fundamental ffl,'tluency. Note that the results apply for disfluency detection (not for
correction) and that each sentence of the tel't l'et at least contains olle disflllency.
The goal in [Bccman, 1997J is to model speakers' utterances in spontaneous speed\. III order
to do so the author claims that it is nec(.'Ssary to segment the utterance into intonational
units, to detect and correct speech repairs and to identify discourse markerl'. These tasks are
combined with POS based statistical language model which assigns a POS category. to each
word and predicts the next word, given the history of the previous words.
This system is trained and tested 011 the corpus "Trains" which consists of 98 dialogues (6163
speaker turns) dealing with manufacturing and shipment of goods in a railroad freight system.
The distluencics Hccmall considers in his work are "repairs" and discourse markers, which
are both subdivided into several subtypes. According to our definition Beeman's "repairs"
are repetitions/corrections and false starts, discourse markers corrf'~"polld to our discourse
markers/filled pauses and interjectiolll'.
For the identification of discourse markers a HewPOS category for snch words is defined. pas
categories are l'imply assigned using the knowledge about preViOll!'iwords as POS tags. !\.Iore
complt,'x disfluencies (repetitions/corrections and false starts) are idelltifi{,'{\by tagging the
interruption points, i.e. tags between words are used. These tags are assigned by d{'Cisiontrees
applying questions about previous words, pas tags, intonational boundaries and silences,
which is the only acoustic feature used to generate the trees. In order to correct (~omplex
disfluencics it is necessary to identify, i.c. to tag, the reparandum onset. The tag for the
reparandllm onset is placed in a way that the hypothesized reparandulll onset or the words
prcce(.'(lillg tlH~onset pf(.'(lict optimally the repair. III ca..,e of rcpetitiolls/eorredions word
correspondences in reparandum and repair are used as predictors. \\'ordl' preceeding the
hypothesiz(.'() rcparandum onset are used for the prediction of thc repair in ca."e of false
starts.
Hccman reports that his system improves POS-tagging by 8.1% and language model per-
plexity by 7.1%. For the detcction of eomplex disftucncics (repetitious/corrections and false
starts) the system achieves a rL'Callof 7G.8% and a preeisioll of 86.7%. The rf'-"ults for cor-
redioll are a recall of 65.9% and a precision of 74.3%. For discourse marker identification
tlw system performs cvcn better with a !"eeallof 97.3% and a precision of 96.3%. For this
disllucncy type detection and correction results are the samc, as only the words which havc
been identified as discourse marker have to he deleted for corredioll.
A disfluency correction component for spoken language systems is proposed ill (Spilker et al.,
2000J. In this work the authors partly address the problem that speech recognizer output must
btl iL'isurrwdas input for a disflueucy correction component rather than manually transcrihed
speech. Thus the system is given a lattice a." input. In this lattice paths containing repairs
are hypothesized and paths containing possible corrections are inserted. The l'Yl'tem works 011

the German VEllBMOBIL corpus, the German counterpart to the corpus wc arc using in this
work. The only type of disfluencies which are considered arc "'modification repairs" whidl
correspow\ to our repetitions/corrections.
DisHul,'ucyproc<~ssingis divided in two steps. First acoustic and prosodic cues and word frag-
ments are used to identify potential interruption pointl'. Then a statistical model using prin-
cipals form statistiea! machine translation is used to segment disflllencies into reparandum,

IpOS catf'gori('s are usually simpl(' gralllluatieai tf'rms likr adj('(:th.c, prf'positioll. Illodal v('rb etc.
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interregnum and repair. Correction is seen as the deletion of reparandulll and interregnuIll.
The model determincs the segmentation of a disfluency by translating a possible reparanclum
into the corresponding repair. In onler to reduce search space reparanda and repairs may
not excaxl the length of four words each. Besides the actual words, the translation model
takes paS-tags and semantic c1a..'lsesinto account.
Several problems of lattice processing arc addressed in this work. pas tags and their proba-
bilities are represented in a separate tag latticc. Givcn and interruption point, the algorithm
takes all possible paths of the lattice into account going through the word berore the potential
interruption point. Finally possihle correctiolls are inserted as new paths into the existing
lattice.
Although a framework for disflucncy proccssing using speech recognizer output is proposed
ill this work, results are reported on tcsts with manual transcriptions only. For disflnency
detection a recall of 71% and a predsion of 85% is reported. The system corrects disfluencies
with a recall of 64% and a precision of 84%.

Hybrid approaches

In [Zechm~r, 2001J the DIASuMM-system is presented which is a system for creating sum-
maries of spoutanoous speech texts. An essential component of this system, which we partly
use to obtain the disfluency annotations for the VERBMOBILcorpus (section 2.1), performs
the detection and correction of disflucncies. This component is trained using the Penn Tree-
bank, a treebank of thc SWITCHBOARDcorpus provided oy the Linguistic Data Consortium.
DisflllenC)' annotations are added to the trccbank by human annotators. For testing Zechller
uses manually transcribed excerpts of different corpora:

• the Call Home and CallFricnd corpora which consist of telephone couversations betwccn
family membcrs or fricnds

• recordings of group meetings at the Interactive Systems Lah at Carnegie Mellon Uni-
versity

• recordinb'S of the TV shows NewsHour amI CrossFire which Zechncr characterizes to
consist of more formall'peech than the other corpora

The disftuency types considen~d in this \vork correspond almost exactly to the types we defined
in section 2.1. (Note that we simply adopted Zechner's definitions for those disftuency types
which are anllotated oy his system in our corpus.) Only "empty coordinating conjunctions"
serviug 110 important connective role in the discourse are not considered by our system but by
the DIASuMM-Systcm. The rea.'lOIlfor this is that the words marked as empty coordinating
conjullctions in our corpus by the DIASUMM-System have an important discoursc fundion in
ollr opinion.
Different types of disfluencies are treated with different methods by Zedmer's system. A rule
ba..<>edpas tagger [Brill, 1994J tags fillcd pauses, discourse markers, editing terms and empty
coordinating conjunctions. The tagger is trained on 1.4 million of aUllotated words from
the Penn Trccballk in order to develop context based rules for a..'lsigningpas tags to words.
Simple wont repetitions arc detected by a f(~petitioll detection script, which marks rcpetitions
of word or pas sequences with a length of up to four words. More complex corrections are
not considered as they appear very rarely according to the author. Finally a decision tree
is trained on 8000 8elltcnCL'Sin order to idelltify false starts. As fcatures the decision tree
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encodes words, pas tags and chunks of a context free PaS-grammar ba.<;cdchunk parser.
The chunk parser takes the POS sequences for the words in a sentenctl as input and parses
them into chunks which are simple graIIlIuatiC<1.1concepts like noun phra.<;psor prepositional
phra.<;cs.
The results in disfluency correction and detection for the DIASuMM-system differ across
the different test corpora. Generally the system performs better on the corpora involving
more spontaneous spl.-'Cchthan on the formal spel.-'Chcorpora. For the disfluency types which
the DIASuMM-system annotates in our corpus (discoun;e markers, filled pauses and editing
terms), recall and precision rat('$ over 90% on a SWITCHBOARDtest set arc reported. As
no over all remits for disfluency correction arc reported in Zedmer's work, we evaluated his
system ourselves all his test set from the Call Home and CallFriend corpora. We ohtained a
recall of 51.9% and a precision of 59.4%.

Disfluencies and speech recognition

In [StoIcke and Shriberg, 1996] a standard n-gram language Illodel is extended to model
explicitely disflucncies ill spautallf~oUs spct~~h. The authors assume that predictions of the
language model arc more accurate, when they are ba.<;edon the fluent context of the word
to be predicted. Therefore their language model marks dislluencies which a.re then amittoo
for the pn~lietions of following words. In order to identify disftuencies, they are treated like
words. They are predicted given the context in which they occur and assigncd a probability.
The language model is trained on 1.4 million words from the SWITCHBOARDcorpus, anllotated
with disftucncies. Testing is performed 011 17500 words from the same corpus. The disfluency
types which are considered are filled pauses like "nh", "uhm" etc., exact word repetitions
and false starts with not more than two words ill the reparalldulII.
Experiments are performed where the proposed language model is compared to a standard
language model. Only very slight improvements in perplexity can be ohserved. Furthermore
the word error rate does not improve much, whell the proposed language model is used in a
speech nx:ognizer instead of a standard model. However in experiments where only repetitions
and false starts are modeled an improvement of the perplexity for the local context of these
phenomena is achieved. For fill(~lpauses the contrary is the case. Thus the authors conclude
that filled pausps themselves are the best predictor for following words. Interestingly howe••..er,
the modeling of filled pauses improves the perplexity of the model, when the utterances are
segment.ed acmrding to linguistic criteria instead of acoustic crit.eria. This is explaim~l with
the observation that filled pauses tend to occur at linguistic boundaries. Therefore they are
important to indicat.e linguistic boundaries in acoustically segmented utterances.
The goal of [StoIcke et aI., 1998] is to idelltify disfluencies and sentence boundaries in auto-
matically transcribed speech. A prosodic model and a modified II-gram language model are
illcorporated in a speech re<;ognition syst.em to perform this ta.<;k.
1.2 million words from the SWITCHBOARDcorpus are used for training, 231K words for
development and testing 011 manually transcrihed speech and finally 18K words for testing
on automatically transcrihed spf'Cch. For experiments on automatic transcriptions the best
100 hypotheses of the speech recognizer are used. Filled pause8, repetitious/corrections and
false starts are the considered disfluency type.'i.
The prosodic model uses decision tn~~ generated with the CART-algorithm ellcodillg features
about the duration of pauscs, final vowels and final rhymes, fundamental frequ('I1cy patterns
and sound-to-noise ratio. The language model predicts "event" /word pairs instead of single
words, where events arc defined to be disftllelld(~ or sentence boundaries.
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Experiments with both models separately show that they dett-"Ctup to 90.0% of the events
correctly in manually transcribed speech and III' to 76.1% in automatically transcribed spc<-"Ch.
Furthermore lip to :~.7% improvement of word accuracy for the recognition engine is reported
when the disfluellcies are modeled. For the combination of both lIIodels even better results
are reported: up to 9:1.0% of all events are detected in the manually transcriptions, 78.1% in
the automatic transcriptions and the word accuracy improvement is 5.7%
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Name Abbrev. Description Example Source of
annotation

Repetition REP Exact repetition or correction If I can't find don't TRL
or Correc. of words pfCviously uttered. know the answer myself,
tion A eorredion lllay involve sub- I will find it.

stitutions, deletions or inser- If if nobody wants
tions of words. However, the to influence President
correction continues with the Clinton.
same idea or train of thought
starten previously.

False Start FS An utterance is ahorten and We'll never find a TRL
restarted with a new idea or day what ahout lJext
train of thought. month?

Editing ET Phrases of words which occur We need two tickets, DIASUMM
T(~rm after that part of a disfluency I'm sorry, three tickets

which is repeated or correctl->d for the flight to lloston.
afterwards (REP) or even
abandoned completely (FS).
They refer explicitely to the
words which just previously
have been sa.id [Shriberg,
19941, indicating that they arc
not intended to belong to the
Iltteranct~.

Discourse DM Words that are related to the Well, this IS a good DIASUMM
Marker structure of the discourse in idea.

so far that they help hegin- This is, yon know, a
ning or keeping a turn or serve pretty good solution to
a.<;acknowledgment {Heeman, our problem.
1997J. They do not contribut.e
to the semantic content of the
discourse.

Fillt..'d UH Non lexicalizcd sounds with uh, uhln etc. DIASUMM
Pan.'.;e no semantic content
Interjedion IN A restricted group of non lex. uh-huh, Inhm, nUll, TRL

icalized sounds indicating af- uh-uh
tirmation or negation. In our
corpus they v.-eremainly lisen
for back-channeling awl have
thus no semantic content.

Ta.ble 2.1: Types of disfluencies; The hold parts in the example sentences refer to the parts
to he deleted in order to obtain a fluent scntelJ(:e



Chapter 3

Statistical Models

This chapter deals with the statistical models we are using in Ollf system. As we adopt some
ideas from statistical machine translation (SMT), first a very brief introduction in the ba.'lic
models of SMT (section :J.l) is given. In section 3.2 the general ideas of statistical language
modeling arc expiaiu<..'t1and some tedllliqucs are introduced which arc applied to the language
model we are using for ollr system. Section :J.3 deals with the "translation" model we use
ill our system to "translate" disflllCllt spa'Ch into flucnt spL"CCh. After the derivation and
the mathematical formulation of this model, we explain in that section how the different
properties of disflucilcies are encoded in the translation lIlodel.

3.1 Statistical Machine Translation

In this section some basic ideas of SMT are summarized briefly. First we review the "noisy
channel" - approach on which the mathematical IIlodels of SMT are basoo. Theil three dif-
ferent types of translation models are explained which are commonly \Ist~d in SMT. In our
description we mainly follow [Vogel ct aI., 2000]. Details about the models we present can
be found in [Stephan Vogel and Hermanll Ncy and Christoph Tillmanll, 1996J and [Brown
el aI., 1993).
The goal of S!\.,tT is the translation of a string of wordli S = sf = 81 ... sJ of length .J ill
a source language into a string of words T = tf = tl ... tJ of length I in a target language.
Thus the translation problem is to find the lIuknown words tl, ... , tJ and the unknown length
I of the target string given the source string S.
In [Wang and Waibel, 1997J this translation problem is explained using the model of the
noisy channel which receives the string T in the target language as input, adds noise to it
and produces the string S in the SOlln~elanguage as output. The translation prohlem then
is to recover the channel input T given the challnel output S. This is done by determining
that string T fur which the probability of hdug the channel input given the channel output
S is maxima!.

T = arg max P(TIS)
T

(3.1 )

The argmax-operation dellotes the search over all possible strings T in order to determine
the "hest" string T.
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By applying Bayes-Rule to the probability P(TIS) aIle obtains:

P(TIS) = P(SIT). P(T)
P(S)

As thc denominator does not depend 011 T, on can determine i' as follows:
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(3.2)

(:3.3)t = "'g max P(SIT). P(T)
T

In equation 3.3 the probability P(T) dcnotes the language model hased on the target language
and thc probability P(SIT) denotes the translation Illodel which spedfies how words from the
source language arc translated into the target language. In the following we are explaining
the translation model in larger detail.
A key issue of the translation model is to define the correspondence between the words Sj

(1 :::;j :::;.1) and ti (1 ::; i ::;l) of a sentence pair (sf, to. Very often the assumption is made
that there is a pairwise correspondence between the source and the target words so that only
all pairs (.'Ij, td Illllst be considered to find the hest translation. An even marc restrictive
assumption is that each source word is assigned to exactly aile target word.
Ba.-;cdon these assumptiom; one can define the alignmeut mapping:

j -7 i= (lj (3.4)

which a.'lsigns a source woni .'lj in pOfiitiollj to a targct word tj in position i = {lj.

For a numher of Indo-European language pairs (Spanish-English, French-English, Italian.
German etc.) one can observe strong localization effects for the alignlllcnts. That Illeaus
that if position j in thc source sentcnce is mapped to position i in the target sentence, it
is very likely that position j + 1 in the source sentence will be mapped to a position very
close to i in the target sentence, in many ca.<;cseven to position i+ 1. That is why it might
be desirable to make the alignment aj dependent on the previous alignment aj_1 for these
languages.
This relationship is mvered by the Hidden-~Iarkov-Model (II~I~.l) alignment proposed in
(Stephan Vogel and Hermann Ney and Christoph Tillmann, 1996J. In this lIlodel for the
source striug sf a scquellce of 'hidden' alignments af = al ... aJ is assumed, so that the
probability P(SIT) can be written as follows:

P(SIT) = P(sfltf) ~ P(JI/) .L P(s{, a{ltO
"f

(3.5)

(3.6)

The probability P(.II1) is the probability for the sentence length which has to he included
for normalization reasons. III the models presented here and in most models which are used
in current machine translation systems this probability is however set to be uniform. The
probability P(,'I{,afltf) can be decomposed into the product over the probabilities for each
position in the source sentence j to have the word .'Ij and the alignment OJ given the words
...{-t, the alignments a{-l \vhich have been computed already and the target string t{:

J

p(.'If It{) = P(.1II) .L IT P(Sj, Ojls{-l ,a{-t , t{)
(If j=1

By applying the 1.1arkov it$sulllplion that there is only a first order dependency for each
alignment aj (i.e. aj depends only on aj_.) one ohtaills:
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p(.,flt:) = P(JI!). Lf TIf~, P(sj,ajlaj_"tf)
P(JI!) .Lf TIf=, (P(ajlaj_', I, J) . P(Sjlt,,))
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(3.7)

In the second part of equation :J.7 the probability P(Sj, ajlaj_i, tf) is decomposcd into an
alignlllent probability P(ajlaj_i, 1,./) and a lexicon prohability P(sjlta). The alignmcnt
probability models the assignment of position j in the source scntence to po..'lition OJ in the
target :-;entence. Given this assignment the lexicon prohahility determines the actual word ta)
which will be put at position Qj = i in the target sentence. For the formulation nf the lexicon
probability the assumption is used, that there are word-to-word correspondences betwccn
target and source words. This is why Sj depends on ta) rather then all the whole target
. Istrmg tl'

Because of mathematical requirements the lexicon model represents the probability of .'ij

given taj although it is our goal to determine the unknown word faj. This goal is achieved
hy considering the prohability P(Sj Ita)) as fUIlction which has to be maximized depending
only on ta,.
When the first order dependency in the HMM model is r(.'<1ucedto a zero order dependency
where the alignment aj only depends on the current position j in the source sentence, a
model is obtained which is similar to the Ulodel2 proposed in [Drown et aI., 1993J, cOIllIllonly
referred to as IDM2 model. For this model the following identity can be shown which is
important for computational reasons as the problem of considering all po.."i."iihlesCtluences af
is solved:

p(sfltf) = PlJl!)' Lf TIf:, (P(ajlj,tf). P(SjJt.,))

= P(JII) . TIf:, L,[~l(P(ilj, I, J) . P(SjJt;)) (3.8)

This model can be further simplified evellmore hy :-;etting the alignment probability P(ilJ, 1,./)
uniform:

P(ilj,!, J) = ~ (3.9)

The modclusing this uniform alignment prohahility is mrnmonly referred to as ID:M! model
{Drown et al., 1993J.
The Ulodels introduced above arc commouly used in SMT. I\ote that these models allow that
a word in the source St~lltence is aligned any\vhere in the target sentence. For the system
proposed in this work such a flexible aligument is not nece:-;sary. As we explained in section
1.4 the corredion of disflucncies can be seen as a sequence of deletions in a given sentence
rt!lluiring 110 word reorderillgs, insertions or substitutions. Thus, in our terms "alignment"
means that a word is either aligned to itself or it is dcletCtI which can be interpreted as an
alignment to the empty word f., This is the reason why the model we prescnt in section 3.3 is
much simpler and mmputationally morc tractable than the models which arc uscd in S:\IT.

3.2 Statistical Language Modeling

Language modeling is a crucial part of SMT systems. Howcver it is very important a.'iwell for
applications in sp(.'<.-'Chrecognitioll and finally for ollr disflllency correction system. Although
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we start our explanation here from the S:MT point of view. the theory we present is applicahle
everywhere where language models are necessary. Kate that we concentrate here on statisti('~1
language modeling. 11any other language modelinp; techniques exist as well and arc commonly
used ill different applications.
In the following the basic ideas of statistir .•.•llanguage modeling arc describ(.'(l mainly following
(Jelinek, 198:1] and [Huang et aI., 2001J. Then some techniques used ill the language lIIodel
of our disfluency correetion system will be introduced.
When considering again the search problem to find this string T with

the probability P(T) denotes the language model on the target language. RememiJer that for
our application the language model models fluent speech containing no disHuencics anymore.
The idea of the language model is to predict the next word of the target string given the
words which are already known, i.e. the words precet ..'tiing the current wonl. Given the string
T = tl'" t[ this idea can he expressed formally as follows:

/

P(T) ~ P(t, ... til = IIP(t;[t, ... t._d
i=1

(3.10)

However the probability of having ti given all the history t, ... ti_1 wonld btl very hard to
estimate using a given training text, as for a vocahulary size of V there are Vi-l different
histories. (For V = 100 awl a history of 5 words there are IOOr; = 210 different histories, of
which the major part will never be observed in a given training text, even if it is tremendously
large.) That is why histories arc usually put into a smaller number of equivalence cla."lses
in order to estimate probabilities. One way of doing this is to define two historil.'S t.o be
equivalent iff the Ia.<;tn - 1 words preceding the current words coincide:

(3.11)

(3.12)

That means that ollly the n - 1 last words are considered for the prediction of the current
word. These kiwis of language models are called II-gram language models and they are often
used in statistical machine translation and speech recognition. An example is t.he trigram
language Illodel, where equation 3.10 is simplified a.<;follows:

/

P(T) = IT P(t,lt._,t'_I)
i=l

Generally, trigram prohabilities can he estimated from a given training text lIy calculating
the relative frcqueneies that the word ti occurs after the history ti_2ti~" That means that
the count C(ti_2ti_lti) for ohserving the string ti_2ti_lti is divided by the count C(ti-2ti-l)
for observing the history ti-:lti-l no matter whieh word oeeurs at position i:

1'( I ) C(tj_,t._,ti) (:U3)t, t._,tj-J " C( )ti-zti-l

However when using thiR method, most probability estimates would be zero or very small as
even in a very large training corpus most of the poloiloiihletrigrams ti_zti_lti do not occur at
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all or only once as explained above. That means that the well formed sentence "Cleda knows
Kenny" will be assigned a zero probability, if the name "Kenoy" does not occur with the
history '"Cleda knows" ill the training data. In that ca.-;ethc count C(Cleda knows Kenny)
would he :lero and so thc probability estimate for P(KennylCleda knows) would be :lero.
In order to overcome this problem, different smoothing techniques have heen proposed which
make usc of a more general history when the more specific history is not observed in the
training data. Very commonly shorter histories are used if longer histories can not be found.
In our example the word '"Kenny" would then be predicted by the bigram probability
P(Kennylknows), the unigram probability P(Kenny) or simply the uniform probability ~
where V is the size of the vocabulary. Which probability is finally cha.<;endepends on the
information which is available from the training corpus.
Smoothing is a techniquc which combines higher order n.grams with lower order II-grams
(i.e. II-grams with larger values of n with It-grams with smaller values of n) in order to
produce more robust probability estimates for UUSl-'Cnevcnts and to avoid zero probabilities.
Smoothing can he done by interpolating lower and higher order n-gram models or by hacking
off to a lowcr order model, whell a probability can not IJe estimated using a higher order
llIodel.
Thc following equation gives a very general definition of the backing-off method (V is the
size of the vocahulary):

if C(ti-n+l til > 0
if C(ti~n+! til = 0, n > 1
if C(td ~ 0

(3.14)

That means whenever a count for a givcn II-gram has not been observt.'<1in the training data,
the model backs off to (n-l).grams. In order to assure that thc probability estimates for all
possible words ti givcn a specific history ti-n+l'" ti_1 still sum up to 1, it is important that
some of thc probability mass of the higher order model is taken away to distribute it among
the estimatcs using the lower order models. a(tilti~n+! ... ti-tl symbolizes this modificd
probability for the higher order model. The factor ')'(tilti-n+I'" ti-tl assures that only the
probability mass which Im..<; lwen subtracted from the higher order model is distributed among
the estimates using lower order models.
A very simple hacking off method is absolut.e discouutiug which is IISt'J as one smoothing
method in our system. For absolute discouuting a fixed discount D :5 1 is sllbtractt.>d from
each non-zero n-gram couut. The probability mass gailK'<1in this way is then distributed
among those prcdictions which have an u-gram count of zero. Hence equation 3.14 must be
modified a.<;follows iI•.'! follows:

if C(ti_n+l'" td > 0
ifC(ti_!+l ... td =O,n > 1
if C(t;) = 0

(3.15)
C(ti_n+l'" ti_I_) counts the number ofuuiquc words occurring after the history ti_n+! ... ti_l
in the training data. (This count is rIOtequal to C(ti-n+l'" ti-d which counts the occur-
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rences of the history ti_n+l'" ti in the training data.) The factor
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has beell adjusted in a way that t.he absolute discounting probabilities for all possible words
ti given a particular history sum up to one.
The count C*(ti-n+l,'" ti-I, til is different for the highest order II-grams used in a language
model and for all other n-grams:

C*(ti_n+l ... ti_l,td =

{
C("-n+I'" ',-tl
Lt;;C(t;_n. ...t.l=o C(ti_n+1 ... ti) =: C(ti-n+l'" td

fur the highest order ll-grams
for all other II-grams

(3.16)
The reason for this choice of C* is again that the probability t~stiIDates for all words ti given
a particular history sum up to one. We give all example for the probability estimates for
a bigram language model using absolute discounting. \Ve for simplicit.y we tl.,>sumethat all
words have heen seen during training, i.e. C(ti) > 0 for all ti ill the vo('-abulary. Thus 110

discounting factor is subtracted form the unigram probabilities. It can be easily verified for
this example that

L Pab3(tilti-I) = 1.
all words ti

if C(ti, ti-d > 0

if C(ti, ti-d = 0
(3.17)

In equation 3.17 the variable n from equation 3.15 equals to 2 for the higher order estimates
and to one for the lower order estimates.
Linear interpolation is another way to overcome the problem of zero counts for many longer
n-grams. An interpolated language model uses for every probability estimate higher and
lower order n-gram models, no matter if n-gram counts for the higher order models are zero
or not, while back-off model'l do 1I0t. In mathematical terms, an interpolated II-gram model
call be expressed tl.'l follows:

nnterp(tilti-n+1 ... ti-I)

= qn' P(tilti-n+l'" ti-I) + qn-l' P(tilti-n+2 ... ti-I) + ... + ql .P(td (3.18)

The non-negative weights qi Illust sum up to 1:

Equation :1.18 call be written tl.'la recursive equation a.'l follows:

Pmterp(tilti-n+l'" ti-tl
= Pn' P(tilti_ll+l'" ti-d + (1 - pJl)' Pinlerp(tilti-n+:l ... ti-d (:l.l9)
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The disfluellcy correction system prop0!'icd in this ,vork uses a language model which com.
hines absolute discounting with interpolation. The implemcntation of the language model
component was not done within the context of this work. \Ve rather use the language mod.
eling toolkit which is part of the current SMT system at Carnegie Mellon University. The
combination of interpolation and absolute discounting proofed to perform well in machine
translation applications. The following mathematical formulation represents the combination
of both techniques:

Pcombinf'd(tilti_n+l'" ti-d =
max{C(ti_n+1", ti) - Dn,V}-~~~~~-~-~~ +

C(ti_n+l'" ii-I)

C( Dn ) • C(ti_n+lo .. ti-I-)' Pr-Ombined(tilti-n+2 ... ti_l)
ti-n+l'" ii-l

(3.20)

Prombined = -b foc a word which ha.."not been seen during training.
As for absolute discounting we give an example for a bigram language model using the
smoothing technique prcscnted above. Again we a.<;sumeCUd > 0 for all words in the
vocabulary and don't discount the unigram probability. Again in can be ciL.'lilyverified that
the probabilities for all words given a spedfic history sum up to one.

(3.21)

The discounting factors D,~for this language model are dctermined iteratively: For each
model of order n the discounting factor is adjusted that the quality for this nth.onlcr model
is optimized. An nth_order model is defined here a.'lthis modcl which considers only In-grams
with m ~ fl.

The optimization criteria is to minimize perplexity on a cross validation !'letfor the particular
model. The "optimal" discounting factor is found by itcrath"ely trying a small set of different
di.scounting factors between V and l.
Perplexity is often used to I1wa."ure the quality of a lauguage model. It can he roughly
interpreted as the average number of possible candidates for the ncxt word given a certain
history. Another way to explain perplexity is to Sl,'eit as the average branching fador of the
language lIIodel when a text is pre:;ented to it.
Formally perplexity for a giwn text T with leugth ITI is defined a.<;

where

is the average amount of information (in hits) which is necessary to determiue or specify a
word in the text T. P(T) is simply the probahility the lan~uage model would assign to the
text T.

Some implementation details of the language modeling component we lIf~eill om system work
arc descrihed in section 5.1, since it uses a sophisticated method to determine the counts
which are required for prohahility estimations.
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In this !'iection the !'itati!'itical models used for the di!'iflucncy corredion !'iystem proposed in
thi:'l work arc described. First we describe the overall translation mouel which '"translates"
disfiuent speech into fluent speedl (section 3.:1.1). In sed ion 3.3.2 we present the properties
of disfluendes our translation model Usc.<!.Each property is encoded by oue of five statistical
mod(~ls. All five models compose together the overall translation model.

3.3.1 OverallModel

As alnw::1ymentioned in sedion 1.4 the idea of the noisy channel which we already explained
for S:-'.1Tis u:'lcd for disfluency correction as well. While in statistical machine translation
a string S in a source language should he translated into a string T in a target language,
the goal of disflucncy correction is to "translate" a noisy string N which may contain some
disfiuencies into a clean string C where all disfiueneies are removed. Hence the disflllent
string can he eom;idered a.'isource language awl the fluent string as target language. Similar
to translat.ion machine translation the goal is to find this clean string C alIlong all posRible
dean strings, for which the probability of observing it, given the noisy string N, is maximal:

(; ~ argmax P(C1N) = "'gmax P(NIC) . P(C)c (3.22)

The probability P(C) denotes the language triode! of fluent speech without disllucncies. In
section 3.2 we explained already how to model this prohability. This section concentrates on
modeling the probability for obRCrvinga disfluent string N given the fluent string C: PP •••.'IC).
Remember our a.'islllllption that the correction of disfiuencics is a sequence of deletiolls to
be made in the disflueut string in order to obtain the corrected fluent string. The fluent
string represents then the originally intended utterance (section 2.2). Thus insertions or
substitutions or even reonlerings of words are lIot necessary to correct a disfluency. The
following example illustrat.es that:

Distlnent string N:
Fluent string C:

Let's meet
Let's meet

on Monday, no. on Tuesday.
on Tuesday.

To model this process of deletions, we adopt the idea of alignments hetween the words of the
source aud the target sentence from Sr-,.'1Twhich we modify for our requirements. For the
re;t of this sed ion, we set IV to be a disfluellt string of length J with the words nj and C to
be a fluent string of length I with the wonb Ci:

lV = n{ = Ttl .. ' nJ

C = c{ = CI ••• C[

As in SMT we introduce for the string n{ a sequence of hidden alignmelltR a{ and rewrite
the translation model probability P(NIC) <l."lfollows:

[,(NIC) ~ P(JI/) . P(mlJ. C) .L,I'(nf. "fleL I,J.m) (3.2:1)
.f

Equation 3.23 shows, that we now have to calculate the sum over all possible alignment
sequences in order to determine the probability P(nflcf). P(.llI) denotes the prohability for
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having a disfluent sClltence of lcngth J givcn thc length ofLhe fluent scnt.euce I. We don't use
a scntence length model in our system, so we set P(JII) to he uniform. Neverthelcsl'i, there is
a correlation between the lcngth of the disOliellt scntcnce and the Ouent sentence, as shown
in [Shriberg, 19941 for example. We Illodel thil'i correlation iudir<.-"Ctlyusing the probability
P(rnIJ, e), which il'iprobability for having Tn disflucnci('$ in a potcntially disflllent sentence
with the lcngth J. Thus rn is the number of deletions per sentence where a deletion is delinetl
as a deletion of a contiguous word SeqUCIlCC.Although the length of deletions may vary a.."l
we will show latcr, it is obvious that I decrea..<;(~swith growing Tn. Thcrefore wc decided to
lIlodel the correlation hetwccn Tn and J rather thcn the correlation hetween I and J or even
both correlations in order to keep the number of parameters we have to learn low. Given a
particular J, there are much lcsl'ipossible values for Tn than for I.
Alignments in SMT usually allow that position j in the source sentence is mapped to an
arbitrary position i in the target sentence (section 3.1). Our definition of alignment is more
restrictive: A position j in the sourcc scntence is either aligned to position 0 in the target
sentence or it is appended to the target sentence, i.e. it is aligned to its last position, when
we a.<;sumethat the target sentence is gcncrated from left to right. The aligulIlent of the word
nj to position zero means that it does not occur in the targct sentence as we hypothesize
it to be disfluent, hence it is deleted. Appending nj means that we hypothcsize it to be a
fluent word which belongs to the utterance originally indented by the speaker. Formally our
alignment mapping is defined as follows:

{
j-tO

Uj: j -+ i = max,i;<j{ad + 1
if the word at position j is deleted
othcrwise (:1.24)

Note that in our ca..<;(~for a givcn pair of strings (rtf, c{) the number of possible aligmnents
for which the probability P(nf, alle{, I, J,m) is non-zcro is very small. In most cascs there is
cven only one reasonable alignmcnt, between given clean and disfluent strings. The example
below shows all possiblc alignments betwccn a disftllent scntellce containing a correction and
the c.orrespondillg fluent sentcncc. The reasoll for this slllall number of possible alignments
is, that - a.."lexplained above. no word reordcrings occur in disflucncy corredion.

on tuesday

Let's

1
Let's

meet

1
meet

o •.
/1~~>.,

on monday, no, on_ -.•.- _-.-.._-...-.-..-..•.
tuesday

1

Figure 3.1: Example for alignmcnt betwccn Ttf and c{. Thc dotted lines indicate the possible
second alignment, which is howcver very lIulikely.

In ordcr to eliminate the sum over all possible alignment sequences in equation 3.23, we lL'iC of
thc so-called maximum approximation. The sum is r('placed by thc maximum operator, which
determines this alignment, wldeh contributes most to the overall probability (equation 3.25).
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The maximum approximation is sometimes used in SMT as well (for examplc in [Stephan
Vogel and Hermann Ney and Chrb,toph Tillmantl, 1996]).

P(NIC)" P(JI!). P(mIJ,C). maxP(u/,afH,!,J,m) (3.25)
"f

Two propcrties of the set of possible alignments between a disfillent and a fluent sentcnce
allow us to make use of this approximation:

• As illustrated in figure :t1 there are only very few possihle alignmcut sequences for a
sentence pair, i.e. there are only few terms in the sum of equation 3.23 .

• There is one alignment sequence which is assigned a very high prohability. All other
sequences have very low probabilities.

As in sr.•.I'I' we can now decompose the probability P(nf, af]c{, 1,.1,m) into the produel owr
all positions j of the probabilities to have the word nj and the alignment aj, given the words
n{-i and the alignments a{-l which have already becn processed:

J

P(nf,afIcLI,J,rn) = IIP(nj,ujln{-I,a{-I,ef,I,.I,rn) (3.26)
j=l

Assuming that the probability for having nj and Uj depends only on n{-l, a{-l and Cj with
i = tlj = maxk<j{ad + lor i = 0 wc obtain equation 3.27. The last line of this equation is
obtaiuecl by decomposition of the conditional probability.

P(nf, uflc{, I, .I,m)
J

IIp( 1
;-1 ;-1 )

nj,Uj Ttl ,al ,Cj

f=l
J

= IIP(ajln{-l, a{-l ,cd' P(njln{-l, a{-l, aj, c.;)
j=l

(3.27)

(3.28)

Now we consider the probability P(Ttjln{-l, a{-I, aj, Ci) from the last line .of equation 3.27
ami shmv that it can be ignored during the search for the best hypothesis C because it docs
not depend on G according to some a."sumptiolls we make. We claim that this probability is
evaluated a." follows:

{

1 if Ci = nj and aj f::. 0
P(njlnrl,a{-l,uj,r.;)= 0 ifc.;f::.rtjandajf::.0

P(nj) ifaj=O

If (lj = 0, thcn the word nj is deleted because it is a disflllcnt word. In this Cll .•<;C we make
no special a."isumptions about nj and claim that it is determined by the a.priori probability
P(nj). If Uj f::. 0, then (lj = i = Illaxk<j{ad + 1. In this case the word Ttj is dctennined by
Cj which is given. Thus there are only two choices for the prohability of nj. The probahility
for observing this nj with 7tj = Ci = caj is one, since it is the only word which fits when Uj

and Cj are given. Therefore the probability for ob~rving another word Ttj with nj f::. C1 has
to be zero.
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(3.29)

Ag one can SL"C from equation 3.28, the probahility for ob~erving llj does only depend on c[ in
RO far, that we distinguish whether nj equals to Cj or not. We take this into account by simply
not considering those pairs (nj,uj,caj) in our ~earch, for which the probability evaluates to
zero. For the case OJ = a the probability does not depend at all on c{ so we can ignore it
during searcJl because of the argmax-operatiotl.
Note that we would have to <:unsider this probability, if the words nj and c; were different
with a certain probability. This would be the ca.'>e,if our input was automatically transcribed
speech by a speech recognizer, where the translation from llj to C-i included the correction of
recognizer errors.
Hence only the "alignment" probability P(aj Inj,n{-I ,a{-I ,C;) remains to be explained. This
probability is composed of five different models, each modeling one property of disHuencif'~"we
consider to be important for disHuency correction. \Ve chose these five properties as we found
evidence in our data that they arc u:wflll for modeling disHuencies (section 4.2). Findings
in several studies about disfluencif'B (e.g. [Shriberg, 1994]) confirm these choices. However
there are ccrtainly some more properties of disl1uellcie.'iwhich could be modeled in order to
improve the performance of our system, in particular acoustic properties. This will be left to
further work.
We obtain the total alignment probability by summing up the prolJahilities contributed by
each of the five models we use and dividing the sum by the total number of models we
used. We will explain that in sollie ca."iesnot all of the five models ('.Qutribute to the over all
probability. Therefore we define the assignment function Q which evaluates to olle for the
prohability Pu, if Pu contrihutf'$ to the overall probability and to zero otherwise. Thus we
can express the "alignment" probability a." follows:

P( .[ j-I j-I .)_ p _ E~=IPu
a] 1l, ,al ,q - alignment - 5

L:.:l a(P.l
Note that because of this formulation of the total alignment probability, it is comparatively
easy to add further Illodels. The probability for a new model is incorporated by simply adding
a term in the sums in the enumerator and the denominator.

3.3.2 l\Iodels for Properties of Disfluencies

In this section we explain t.he five different models which contribute to the alignmcnt prob-
ability. For each model we give first a verbal description and then present a mathematical
formulation which expresses the model using our definition of alignments presented in the
previous section. The following five properties of disfluelleies are modeled;

• position of a disfluency in a Sl~ntellce

• length of the deletion region of a disflucncy

• length of the deletion region of a disfluellcy with a fragment at the end of the reparan-
dum

• context of words in which a potential deletion occurs

• context of deletions in which a potential deletion occurs

The probability estimates for the models are ha."iedon the relative frequencies for the param-
eter values of each feature. Some statbtics about these estimates will be presented in section
4.2.
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Position of a disfluency in a sentence

As prcscnted in section 2.3.1 onc of the findings in [ShriLerg, 1994J is that disHucncies are
much more likely to occur at sentence initial positions than at sentencc medial positions.
The analysis of our data confirms the:;e findings. Thus we decided to use a model which
assigns different probabilities for deletions/no deletions of words at a sentellce initial or a
scntence medial position. We do not distinguish between different medial positions, since the
distribution of deletions/no deletions at medial positions is almost uniform. The position of
a disHuellcy is lIlodeled hy the probability Pl. We define thc position of the first word of a
disHuency as the position of this disHueucy.
Thus PI decides \vhether the word at position nj ill the source sentence is deleted given only
the information about its position j. Formally this can be expressed as follows:

(3.30)

Length of the deletion region of a disftuency

This model take." into account that the number of disHuencies decrea.'ics rapidly over length
of their deletion regions. In [Shriberg, 19941this behavior is dcscribed with an cxponential
model, which fits pretty well for the corpora examined in this work. We do not use such
a model, because the distributions of our data differ from an eXJloncntial IIlodel for short
deletion regions. This Ulay be due to the fad that we cOllsidcr all types of disfillcncie.", while
Shriberg considers only repetitions/corrections and false starts for her model, and no filler
words.
The probahility P2 uses the information about thc rapidly decreasing number of disfiuencies
with increasing length of their deletion region as follows. It modcls the probability that the
wonl at position j is deleted or not given the information ahout the deletions of the words
directly preceeding position j. Thus P2 depends only on the previous alignments which
contain the information about previous deletions.

PAUjlu{-t, n{-t ,cd = P(ujla{-!, cd (3.31)

P2 is only part of the ovcrall alignmcnt probability, when position j is ill a hypothesized
delet.ioll region. That means that it models tlw length of a deletion, given that there is a
deletion. Thus P2 does not contribute to the decision whether a deletion will start at position
j or not. Therefore it is olle of the probabilities for which the function Ct evaluates to zero
in SOIIU:~ ca.'.;cs:n(P:.d = 0 whenever therc is no deletion region hypothesized at the current
position.

Length of the deletion region of a disftllency containing a fragment

In most of the works we reviewed in sed ion 2.:1 fragments are found to be very useful for
disHuency detection an correction. They can be lisen to deted the offset of the rcparandum.
Thus the ta."k which remains in ordcr to be ahle to delcte the reparandum is to determine
its onS(~t. vVeanalyzed the length of deletion regions of disflucncics with a fragment at the
end of the reparandulll in order to create a prohabilistic Ulodel which helps to determine the
reparalldmn onset.
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P3 uses the resulting distribution of this analysis (length of deletion regions over number
of disfluencies containing a fragment) to model the probability that a word at position j is
deleted, given that a fragment occurs at position j + d.
As we know the complete source sentence when we start correcting it, we aL<;()have the in.
formation about all fragments in the sentence. However our mathematical modeling restricts
liS in so far, that we can't assumc the source sentencc to be givcn completely, but only the
words n{-l when processing nj. Therefore we use the a-priori probability P(Jj+d) to predict
a fragment at position j + d, which can howcver be ignored during search as the probability
does not depend on c{. Thus we obtain the following formulation for P3:

(3.32)

P3 is another example for a probability which sometimes docs 1I0t contribute to the overall
probability for the alignment model. This is the case, whenever no fragment occurs in the
current sentence after the position j which is currently processed.

Word context in which a potential deletion occurs

Very oftcn disflllencies are phenomena which can be detected and corrected when taking the
local context into a<:count. This is evident for discourstl makers like the word "wcll" which
is disflllent in the sentence "Alright, well, let's take the flight tomorrow" but fluent in the
sentence "\Vell done!". The lcft context "alright" in the first sentence indicat(~ that "well" is
a real discourse marker, the right context "done" in the second sentence indi(".atesthat "well"
can not bc deleted as a disfluency in this sentence. Short repetitions and corrections can also
be identified using the local context. Qne word repetitions like "I I" or syntactic anomalies
like '"he she" arc a good example for this.
\Ve use a model which decides whether a word is deleted or uot given the local word context.
The probability P4 denotes this context model. Formally the context IIlodel predicts the
alignment aj for position j, given the word nj at this positioll, the previous word nj_l and
the following word nj+l.

Again we have to use of a.priori probabilities, this time P(nj+I) and P(nj), in order to
determine njH and nj which we can't a.'lsumeto he given according to our modeling. However
the~'>Cprobabilities do not depend on c{ and call thcrefore be ignored during search. Thus we
can express P4 as follows:

(3.33)

Deletion history of a potential deletion

Finally we predict the alignment Uj for position j given the word nj at this position and
the two previous alignments Uj_1 and Uj_2. \Ve call the model performing this prediction
"binary context model" since the deletion history (encoded by the previous alignments) can he
desnibed with a binary sequeIH:e: 0 for deletion, I for no delet.ion. The goal of implementing
this model is to examine the hypothesis that the knowledge about the previous deletions and
the current word is sufficient to predict the deletion of the current word. An advantage of
such a model compared to the context model would be that much less parameters have to
be learned. This is beneficial especially in situations of data sparseness. As we will show in
chapter 6 however this hypothesis seems to he wrong.



3.3 IITranslation" lvIodel 40

The probahility Ps denote the binary context model. Its mathematical formulation looks as
follows:

(:1.:14)

Some more details ahout how the different models make use of the data acquired from the
training corpus will be given in sectioll 5.2.3.
\Ve conclude this section by presenting another way to combine the five models which proved
to he more efficient in our experiments than just taking the average of all probahilities.
Remember that the model represented by the probability P3 predicts a deletion at position j
given that there is a fragment at position j+d. Instead of adding this probability to the other:;
and taking the average as over all probahility, we tried to use p., in order to explicitely favor
those hypotheses in which sollie words precccding a fragment are deleted and to penalize
those hypotheses where these words arc not deleted. That means that we add PJ to the
other probabilities when a deletion is hypothesized and we subtract it when no deletion is
hypothesized at position j.
For darity we skip now the given information for each prohability (i.e. a{-i, n{-! and Ci) and
denote the over all alignment probability for a deletion at an arbitrary position <1.." PaJignment(O)
awl for no deletion as PaJignmeftt(i) re~"pectively. In the same fashion we write for the proba-
bilities of the models composing the overall prohability P",(O) and Pu(i) respectively.
Kow we can express the new way for combining the different models as follows:

(3.35)

Kote that n(r1) does not occur in the denominator in order to make sure that PaJignmf'nt(O) +
PaJignment(i) sums up to one for each position j.



Chapter 4

Corpora

This chapter dC1icribes the two corpora we dml with in this work: The English VERBMOBIL
corplL" on which most analysis and experiments arc done and the :\fandarin Chinese CaIlHollle
corpus which is used to investigate the portability of our system to other languages than
English.
In seetion 4.1 we give some general information about t.he two corpora. The setup for the
recordings and the contents of the dialogs is explained and some details about the transcrip-
tiom. are given. Furthermore we present important statistics about the two corpora. Finally
we compare some characteristics of both corpora which we cOllsider to he important for our
work.
In the next section the properties of disfiuencies arc analyzed and compared for the two
corpora. \Ve present distributions for each disHucncy property which is used in onc of the
models we explained in section 3.3. Some of these distributions are directly used in the
corresponding modcl.

4.1 Corpus Characteristics

4.1.1 English Verbmobil Corpus

The goal of the VERBMOBILproject was to build a spcedHo-specch translation systcm being
able to cope with spontancous spe~xh. Besides the English corpus, German a.nd Japancse
corpora exist. The information we present about the data in the following is drawn from
[Kurcmatsu et aI., 2000] . A fletailed description of the VERBMOBILproject can be found
in [Wahlster, 2000].
The transcriptions which we arc using are taken from the English corpus of the VERDMOBIL2
project and consist of of 127 face-to-facc dialogs of American English speech. In the dialogs
two people who play the role of business partners make a travel arrangement for a trip to
Hannover. They have to schedule a date which is suitable for hath, find a flight, agree on a
hotel and optionally dicuss possibilities for going out in the evcning or visiting sights. The
following documents were provided previously to the recordings: calender sheets, a flight
timetable and hotel information.
Both subjects were native speakers of America in English and they were instructed to speak
freely without any restriction." concerning pronunciation. They sat face-to-face on one desk
and interfereJl(~es by the dialog partlJer (i.e. cross-talking) were allowed. The domain wa'.
restricted by instructing the speakers to stay with the topics of organizing their UW,illesStrip.
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The goal of these role playing scenarios was to achieve a realistic dialog situation for the
recordings.
For each of the dialogs an orthographic transliteratioll is provided which we use in this work.
Words are transcribed according to orthographic rules of the specific language and syntactical
structures such 3.':iperiods, question marks and commas are marked. \Vord categories like
nam<..'S,number or foreign names are indicated by spedal dlaracters. To meet the special
requirements for annotating spontaneous speedl, phenomena like disruption of s(~lltences,
false starts, repetitions, corrections,interjectiolls, hesitations, word fragments, pauses etc. are
anllotated as well. Out of these annotations the information about repetitions/corrections,
false starts, interjections and fragments is extracted for our work (section 2.1). Periods
and question marks are used to separate sentences in one tuTU. All other annotations in
the transcripts are ignored. Note that in the VERBMOBIL project a turn is defined as one
contribution of a dialog llarticipant (for example IAlexandersson et al., 1997]). ThllS one turn
can cOllsist of multiple sentences.
The criteria when to mark words as repetition/correction, false start or fragment (in VERD-
MOBIL knninology "aborted articulation") can be found in [Burger, 1997). Hemember that
we adopted these criteria for our definition ofrepetition/mrrection, false start and interjection
(section 2.1).
Table 4.1 preseuts important figure~ about the Engli~h corpu~ from the VERB~lOBIL 2 project.
The sentence count which we determined differs from the count reported ill [KlITematsu et aI.,
2000] which is 16525. This may be because we count a turn which consist~ only of a single
word fragment as one sentence. Furthermore we have only a vocabulary of 2290 words while
in [Kurematsu et a1., 2000J a vocabulary size of 2557 is reported. The reason for that might
be that we don't consider fragments to he part of the vocabulary.

Dialogs 127
Turns 10566
Sentences 1658:;
Words 118356
Vocabulary 2290
Speakers 60

Table 4.1: Corpus statistics for the VERBMODlL corpus

4.1.2 IVIandarinCallHorne Corpus

The Mandarin Call1-iome corpus was collected and trallscrib<..'tiby the Linguistic Data Con-
sortium (LDC) in 1997. It consists of 120 telephone conversations betwecn native speak-
ers of ~laudarin. For our experiments we used the manual trallscriptions provided by the
LDC [Wheatley, 1997]. As for the VERBMOBIL eorpus, we first outline the setup for the
reconlings of tlw data and then present important (~OTIHlS statistics.
The data which is available consists of transcripts which cover contiguous 5 or 10 minute
segment.s taken from recorded conversations l3.':itingup to 30 minutes. The participants
which were recruited for the reeordillgs were given a free choice of whom to call and there
wcre no guidelines concerning what they should talk about. 1-Iost participants ealled dose
fricnds or family memhers oversea..•. All speakers were aware that they are recorded.
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The corpus is split into a training set which consists of 80 dialog fragmcnts each lasting 10
minutes, a dcvelopment test set consisting of 20 dialog fragmcnts each Ia.'iting 10 minutes
and finally an evaluation test set consisting of 20 dialog fragments wherc each lasts only 5
minutf'-'i.
Mandarin Chinese texts usually contain no spaces between words. For the tran.'lcriptions of
the Mandarin CallIlome corpus however, a segmentation wa.,>performed in order to provide
the actual word st-'<luellcefor each utterance. The ;<,DragollMandarin Segmcntcr" was used
to create this segmentation automatically. ~lore detailed information and further references
about the segmentation procedure and segmentation principals arc given in the dOCllmenta.
tion of the transcription of the corpus [Wheatley, 1997]. Wc describe here only the key idea
of the automatic segmentation.
The automatic segmenter ust-'Sa lexieon in order to break down a given string of Chincse
characters into known and unknown words. The latter ones do IIOt appear in the lcxicon
and arc usually single-character words. Each hypothesized word is assigned a cost, which
is computed from its frequency. The word frequencics are determined from another text on
which the lexicon wa.,;build. The cost of a eompletely scgmented string is the sum of the
costs of its words. Thus a dynamic programming approach (".anhe used in order to find the
lowest cost segmentation for each string.
For our experiments we used the training set to extract all thc features from the corpus
we need for our system and to train the language model. Testing \vas performed on the
evaluation test set. As no parameter tuning using a cross-validatioll set is performed for our
system, wc didn't use the developmcnt test set.
In table 4.2 important corpus statistics about the training set and the evaluation test set
are presented. While there are morc sentences than turns in the VERBMOBIL corpus, the
Mandarin CallHome corpus has more turns than sentences. The re&'iOIlfor this is the different
definition of turn for the two corpora. As explained above, a turn can consist of multiple
sentences in the VERBMOBIL COrpIL'l.For the 11an<iarin CallHome corpus a turn is defined to
he a continuous stretch of spccch which starts and ends with a pause iWheatley, 1997J. Thus
one sentence can consist of multiple turns.

~ Training set I Evaluation test set I
Dialogues 80 20
Turns 26305 3335
Sentences 22089 2178
Words 178781 23318
Vocabulary 6995 2131
Speakersl HiO 40

Tahle 4.2: Corpus statistic.'> for the j\.fandariu Chillese CallHollle Corpus

4.1.3 Comparison

An important difference between the VERBMOBIL corpus and the Mandarin CallHome corpus
is the variety of topics. Whilc the topic is restricted to travel arrangements in the VERBMOBIL

lIn each cou\'erMtioll usually the participant recruited for the recordings and the dialog partner he called
wl're involved. However ~ometimCl; there were 1110rethan ol1e dialo/i: partners, when the telephone was passed
around.
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corpus. the speakers ill the Mandarin Call1fome dialogs mn chose their topics freely. This
is certainly one reason why the vocabulary of the ~'Iandarin Call1Iome corpus is more than
three times larger than the vocabulary of the VERBMOBILcorpus, although the Mandarin
CaliHome mrpus comprises ouly little more words than the VEHBMOBILcorpus (~ 179000
words vs. ~ 107000 words).
Furthermore we measured the percentage of words in the test set vocabulary which have
not been seen during training (Le. the OOV-Rc1.te). Remember that we used the prl..-'tiefined
splitting of training and test set for the 1.1andarin CallHolHc corpus. For the VERBMODIL
corpus we uscd 10 disjoint test sets each consisting of 10% of the whole corpus in order to
avoid biased results. For each test set the remaining 90% of the corpus were used for training
(section 6.2). For the VERBMODILcorpus we found an aOV-Rate of 7.8% while we have
2:1.8% for the Mandarin Caliliome corpus.
\Ve believe that because of the much larger OOV-Rate for thc 1.1andarin CallHoUie corpus the
task of disfluency correction for this corpus is lIluch harder then for the VERBMODILcorpus.
Especially the language model al\fl the two models relying 011 the context of an potentially
dislluellt word (context Ulodel and binary context model, section 3.:t2) have to cope lHuch
lIlorCoften with unsccn events in ca.-;eof the Mandarin CallHome corpus than in ca."ieof the
VERBMODlLcorpus.

4.2 Disfluency distributions

In this seetion we analy;;,e the disHuencies in the two corpora. First we pr~ent the statistics
of disfiucncies by type. Then mu:h property of dislluencies is analyzed which is modeled by
one of t.he models introduced ill section 3.3.2. Interesting differences between the two corpora
concerning the disfluellcy properties are compared. Further details about how our system
actually uses the results of the analysis arc presented in section 5.2.3. Note that the figures
we report for the )"landarin CallHome corpus always apply to this part of the corpus we lL';e,
i.e. the training set and the evaluation test set.

4.2.1 Disfluencies by type

In section 2.1 we explained that we consider slightly different disfluency types for the two cor-
pora. For the English VERB"10BILmrplls we consider fal'lCstarts (FS), repetitions/mrrections
(REP), editing terms (ET), discourse markers (DI\1), iiiled pauses (UB) and interjections (IN).
For the Mandarin CallHollic c.{)rpusonly false starts (FS), repetitions/corrections (REP) and
filled pamws (FP) are considered, where the latttlr type corresponds to the two types DM and
un in the English VERBMODILcorpus. (Sec section 2.1 for the exact explanation of these
t.erms.)

English Verb mobil corpus

Tallie 4.3 shows the the ahsolute and relative counts for each disHuency type in the corpus. In
t.he last two rows the percentage of sentences containing one or more disHuencil~ is displayed.
First we use all sentences in the corpus for the total numher of sentences. Then only those
sentences which contain at lea."t one disfluency are taken into account. Thesc are 8790
sentences which is about 53% of the t.otal number of sentences in the corpus. However most
of these sentences (7251) cont.ain only one disfluency.
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Note that all filler words with no semantic content, Le. filled pauses and discourse markers
make up together 63.7% of all disfluencics. In 41% of all sentences and in 78.5% of all disfluent
sentences at least one of these filler words occurs. That lIIeans that this is a very important
category of disflllencies to be treated by the correction system. However filler words are
mostly easy to identify, as the word itself and the local context provide strong evidence for
their identification.

UH I IN I Total !~ REP I FS I ET I DM
Absolute counts 2303 1209 155 1248 5776 336 11027

Relative counts 20.9% 11.0% 1.4% 11.3% 52.4% 3.0% 100%
Percentage of sentences con- 10.7% 6.2% 0.9% 7.3% 34.3% 2% 53%
taiIling at least one DF
Percentage of sentences con- 20.3% 11.8% 1.8% 13.7% 64.7% 3.8% 100%
taining at least one DF con-
sidering only disfluellt sen-
tences2

Table 4.3: Disfluencies (DFs) in the Bnglish VERB MOBIL corpus

Mandarin Call Home corpus

Table 4.4 illustrates the distribution of the three disfluency types which are annotated in the
Mandarin CallIIome corpus. As in table 4.3 the percentage of each disfluency type of the
totalnurnhcr of disflllencies and the percentage of sentences containing at lcast one disfluency
considering all sentences awl disflllellt scntences only is shown.

~ REP I FS I FP I Total I
Absolute counts 9603 241 11745 21589
Relative counts 44.5% 1.1% 54.4% 100%
Percentage of sentences (:on- 30.2% 1.0% 34.7% 50.4%
taining at least one DF
Percentage of sentences COIl- 60.9% 1.9% 69.9% 100%
taining at least one DF con-
sidering only disHllent sen-
tences2

Tablc 4.4: Disflucncics (DFs) in thc 1-1andarin Chinese CallHome corpus

\Ve note that the percentage repetitions/corwctioll,s in t.he :-'1alldarin CallHomc corpus IS

milch highcr than in the English VERB~[()BlL corpus. However filled pauses (Le. discourse
markers/filled pauses for the English VERDMOBIL corpus) are still the most frequcnt phe-
nomcnon in both corpora, although the perccntage is higher for the English VERBMOBIL

corpus than for the Mandarin Call1Iomc corpus. This again suggests that disfluency cor-
rection lIlay be harder for the f\.landarill Call HOlliecorpus than for the English VERDMOBIL

2The \"dlUl'S in this row sum up to morc than 100% as it is possible tbat disfill('ncies of different typE'S occur
in onf' sentl'nte.
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corpus, as filler words are easier to correct than repetitions or espeeially corrections of phrases.
For filler words it is mostly sufficient to consider the \vonl itself and the loml context to iden~
tify it. For repetitions/corrections the onset and offset of the reparandum must be identified
which is a harder task.
The rates of total sentences which arc rlisflueut are in the same region for both corpora
(53% in the English VERBMOBIL corpus and 50.4% in the Mandarin Callilome corpus).
'Vhen considering the rate of disfluencies per word, one can find however that the I\'lalldarin
CallHome corpus (0.119 DFs per word) is more disllucnt than the Enp;lish VERBMOBIL corpus
(0.093 DFs per word).

4.2.2 Number of deletions per sentence

The number of deletions per sentence which has to be marie for disHuency corredion is
modeled in our system by the probability P(ml.J, C). In this probability m is the number of
deletions which have to be made in a source sentence with length J in order to obtain the
mrresponding correded sentence C. This probability is included in the overall translation
model (sedion 3.3.1). In the following we present some statistics on which our modeling
of the prohahility P(mlJ, C) is ha.'il.>d.As there a.re a lot of parameters to estimatc whcn
for each sentence lcngth J each possihle number of dcletions 111 is considered. we introduce
equivalence c1a.'isesfor different sentence lcngths and numbers of deletions per sentence.
Note that the number of disfluellcies pcr sentence is exactly equal to thc number of deletions
which ha.'l to he ma.de to correct a sentence perfectly. This is because we assume that cach
disflueucy can he corrected by rleletillg a sequence of words. In case of filler words these are
just the words themselves. For rcpetitions/corrections and false starts, the reparalldllm has
to be deleterl (section 2.2). Thus exactly one deletion of a contiKuouS word string is required
to correct a disfluency. Therefore we usc the number of disfluencie.s per sentence to model
the Ilumber of deletions which havc to be madc for corredion.

English Verbmobil corpus

First we analyze number of disfiucllcies per sentence for the English VERBMOBIL corpus
without considering the scntence length. Table 4.5 shows the distribut.ioll for the number of
distluencics per scntcnce, grouped by disfluency type and in total. According to this table
there are 8790 sentences which are non~fluent. Thc major part of these ::;elltcuces contains
only one disfiuency (82.5%).
Whcn cOllsidering the number of disfluencies per sentence grouperl by type one can see that
particularly cOIIlplex disfluencies (i.e. repetitions/corrections and false starts) tenrl to oecur
multiply in one senteuce. The reason for this might be that sometimes multiple corf(~tions
or restarts are necessary until thc speaker finally expresses what hc/she intended to say. Note
that the totalullmher of sentences with Tn disfluelldes (last column of table 4.5) is not equal
to the sllIn over all sentences e<lntailling m disfluencies of a particular type (Le. the sum over
all entries in a row of the table). This is hecausc dislluencies of rliffereut types can occur in
one sentence.
Figure 4.1 shows the rate of disfluencies per sentence Icngth. For sentences with length
of mon~ than 20 words only .•..ery little data exists. Tlwrefow we think tha.t the resulting
estimates for sent.ence leugths over 20 words are too unreliable to plot them ill t.his graph.
For the other sentence lengths aile can ohser .•..e a roughly linear growth of this ratc exccpt
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Number of DFs per sen- IlEP FS ET DM UH IN Total
tence
1 1408 896 153 1168 5612 336 7251
2 287 117 1 37 79 1074
3 62 21 2 2 310
4 28 4 107
5 2 31
6 I 10
7 4
8 1
9 1
10 1
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T-<ible4.5: Number of disfluencies (DFs) per sentence for the English VERBMOBIL corpus

for sentencc lcngths one and two. For sentence length two howcver, the deviation from the
linear trend is Ilot so large.
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Figure 4.1: Rate of disfluencics per sentence for the English VERBMODIL corpml

The distribution of disfluencies per sentence motivated us to distinguish only between :-;eu-
tences with zero, one or more than one disfluencies: 7793 (47.0%) sentences do not contain a
di:-;flllencyat all, 7251 (43.7%) sentences coutain exactly aile disllucncy and only 1539 (9.3%)
sentences contain more than one disHuency.
According to the trend shown in figure 4.1 we chose equivalence classes for sentence lengths.
Since there are 4100 sentences with consist only of one word (24.7% of the whole Humber of
sentences), and an anomaly for the rate of disflllcncies for this sentence length can be observed
in figure 4.1, wc lise all {~xtra class for this sentencc length. Furthermore we put scntcnccs
with 2 to 10 words ill oue class and sentences with 11 to 20 words in another class. Finally
sentences with more than 20 words are put in one class as very little da.ta is available here.
Table 4.6 shows thc choice of equivalence classes for seutcnce lengths and number of deletions
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per sentence. In parentheses relative frc1luencies are shown, which we use as probability
estimates to predict the number of deletions per sentence given the sentence length.

I Sentence length (from - to) ~ [) DF 1 DF > 1 DF I Totall'lentences
1 661 (0.16) 3439 (0.84) o (0.0) 4100

2 - 10 558G (0.G5) 2539 (0.29) 524 (0.06) 8649
11-20 1291 (0.45) 1001 (0.35) 585 (0.2) 2877
> 21 255 (0.27) 272 (0.28) 430 (0.45) 957

Tdhle 4.6: Equivalence classes for sentence lengths and number of disfIucIlcies (DFs) for the
English VERDMOBIL corpus

!\.lanclarin CallHome Corpus

For the English VERD~OBIL corpus we ohserved that most disfillcnt sentences contain only
one disflllency. This is also the casc for the Mandarin Call Home corpus, however there arc
much marc sentences containing more than aile disfiuency than in thc English VERD~IOBIL
corpus. 12044 (49.G%) sentences do not contain a disflllency, 70G3 (29.1%) sentences contain
exactly one disfluency and 51(jO (21.:3%) sentences contain more than one disflllencies. Nev-
ertheless we use the same equivalence cl11.<;sesfor the numbers of disfluencies per sentences
which we used for the English VERBMOBIL corpus.
For the rate of disfiuencies per sentence we found an interesting difference between the English
VERBMOBIL corpus and the Mandarin CallHome corpus. While in the first one there is an
anomaly for sentence length one, because the rate of disfiucncies is significantly higher than
for the surrounding sentence lengths, in the latter corpus this rate is significantly lower than
for the surrounding sentence lengths. For the other sentence lcngthli we observe a roughly
linear growth in both eorpora. The rate of dis8uencies over the sellteuce length is eompared
for both corpora in figure 4.2.
Although there are different kinds of anomalies for scnteuce length one, we use the same
equh<Llence cla.<;scsfor sentcnce lengths for both eorpora. This can be done, a.<;there is only
an anomaly for sentellee length one, which is put in an extra class.
Table 4.7 shows for the different sent.enee length equivalence classes the number of sentences
with zero, one and more than one disfluencies for the Mandarin Call Home eorpus. In paren-
theses the relative frequencies for having a sent.ence in one of the different cla.<;sesare shown.
From this t.able the difference for scntence length one for the two corpora can he s(~n 11.<;
well. While in the English VERBMODIL CorPUHthe relative frequency for one disfluency in
a sentence with length one is 0.84, it is only 0.04 for the 1landarin CallHome corpus. That
means that most ont.-"-wordscntences are fluent in this corpUH.

4.2.3 Position of a disfluency in a sentence

The position of a disfiuency in a sentence is modeled hy the probahility PI whieh is one of
the five probabilities whieh contrihut.e to the overall translation model. \Ve explained already
that we only distinguish between initial and medial positions of disflucncies in a sentence.
The exact position of a disflllcncy within all possible medial positions plays IJ() role (sedioll
3.3.2).
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Figure 4.2: Rate of disfluencies per sentence for the j'.•..tandarin CallHome corpus (solid line)
comparcd to the English VERIJMOBIL (XlrpUS(dotted line)

I Scnt.ence length (from - to) ~ o DFs 1 DF > 1 DF I Total sentences I
1 4037 (0.96) 133 (0.04) o (0.0) 4170

2 - 10 7077 (0.49) 5443 (0.37) 2004 (0.14) 14524
11-20 865 (0.20) 132~ (0.30) 2208 (0.50) 4402
> 21 65 (0.06) 158 (0.13) 948 (0.81) 1171

Table 4.7: Equivalence da."il'icsfor sentence lengths and number of disfluencies (DFs) for the
Mandarin CallHome corpus

English Verbmobil corpus

Table 4.8 shows the number of disfluencies at initial aud medial positions, the number of
potential locations for disfluencies at these positions and finally the relative frequencies for
disfluencies at initial and mcdial positions which are obtained by dividin~ the number of
disfluencics at a particula.r position by the number of potential locations at this position. The
numher of potential locations for disfluencies at all initial position is simply the number of
sentences in the corpus. The number of potential locations at a medial position is the number
of all potential locations minus the number of potential locations at an initial position which
is equal to the number of words in the whole corpus minus the HlImber of senteun ..'S. '''Ie
define the position of a dis8uency to be the position of its first word.
In table 4.9 dis8uencies are grouped by position and by type. Except repetitious/corrections
and editing terms all disftucncies occur more oftcn at initial than at medial positions. This is
most prominent for discourse markers/lilled pauses which can be explained hy their function
of helping the speaker to start a turn. Analyzing the data showed that this was mostly the
ca.'lc. Note that the relative frequency of 0.46 for a dbfluellcy at an initial position is much
higher than the corresponding figure reported in [Shriberg, 1994]. This is probably because
Shriherg does not consider filler words (i.e. discourse markers/filled pauses) for her analysis
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~ Initial Position I !"tedial Position I
Number of DFs 7664 3363
Number of potential sites 113583 101769
Relative frequencies 0.46 O.o:l

Tahle 4.8: Disfillcllcies hy position for the English VERB MOBIL corpus

of disfluencies by position.

Initial position 498 685 82 808 5259 3:J2
Medial position 1805 524 73 440 517 4

Table 4.9: Disfluellcies by position and by type for the English VERB~WBIL corpus

Mandarin CallHome corpus

50

The distrihution of disfluencies at lientence initial and sentence medial positions for the )".lan-
darin CaliHome corpus is shown in table 4.10 in the same style ali in table 4.8 for the English
VERIlMOBIL corpus. Although the relative frequency for having a disfluency at a sentence
initial position is higher than for having a disfluency at a lientence medial position as in the
English VERBMOBIL corpus, disfiuencies at sentence initial position are less likely to occur
than in the English VERB~WBIL corpus, and disHuencies at medial positions are more likely
to occur.

~ Initial Position I Medial Position I
Number of DFs 7663 13926
Number of potential sites 24267 177832
Relative frequencies 0.32 0.08

Tahle 4.10: Disfiuencies by position for the Mandarin CallHome corpus

Because of the differences betwl.-'Cnthe relative frequencies for disllucncies at initial and medial
positions between the two corpora, it is interesting to compare the percentage of disfluCllcics
which occur at initial and medial positions. This is illustratl,(! in table 4.11. We see that in
the English VERDMOBIL corpus milch more dis8uencies occur at initial positions while in the
1.fandarin Call1lome corpu."i the major part of disfiuellcies occurs at medial pOflitions. This
agrL'l..-'Swith the differcllces in relative frequencies we observe.

4.2.4 Length of the deletion region of a disfluency

The length of the deletion region of a disfluency is modeled by the probability Pz which
contrihutes to the overall translation model (sed ion :3.3.2). The statist.ics presented helow
confirm the intuition that the number of disfluencics with a delet.ion region of k words de-
creases rapidly with k.
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~ English VERB MOBIL I !\.1andarin CallHomc I
Initial Positions 69.5% 35.5%
Medial Positions 30.5% 64.5%

Table 4.11: Percentage of disfiucndes at initial awl medial positions for the English VERB-

MOBIL and the Mandarin Cal1HolIlc corpus

English Verbmobil corpus

Table 4.12 shows the number of disfiuellcics grouped by type and by length of their deletion
region. 8402 disfillencics (76.2% of all disfincncies) have a dcletion region of length onc. Out
of these disfiuencies 6327 are discourse markers/filled paus(~s (57.4% of all disHuencics). This
is easy to understand as discourse markers/filled pauses are usually single words like ';right",
"well", "yeah" etc. Longer occurrences of these phenomena arc sequences of filler words like
"Well, right, we can do that". Furthermore we note that only repetitions/corrections and
false starts have dcletion regions which are longer than four words. However such deletion
regions occur very rarely (in 2.2% of all disfluencies).

~ REP ~ UII ~ Total I
1 1:171 356 12 946 5381 3:16 8402
2 580 358 143 294 372 1747
3 188 229 7 19 44:1
4 85 103 I 4 193
5 42 69 111
6 23 50 73
7 6 20 26
8 5 14 19
9 3 6 9
10 3 3
11 1 I

Table 4.12: Distribution of disfluencies over t.hc length of their dcletion regions (lod) for the
English VERB MOBIL mrpus

Thc distribution of the length of the deletion regions of all disHuencies is illustrated graphically
ill figure 4.3. As explained above, the number of disHllcncies is high for one word deletion
regions and decrea.'iCSrapidly for the other lengths.

Mandarin Call Home corpus

Table 4.13 shows the distrihutiOll of disHuellcies o\"(~rthe length of their deletion regions
grouped by types and in total for the Mandarin Call Borne corpus. Similar to this distri-
bution for the English VERB MOBIL corpus, one can observe that, except for false starts, all
disfillencies ha.ve mostly deletion regions of lellgth olle (72% of all disHuellcies). As ill the
English VERBMOBIL corpus, filler words make up the biggest part of disflucncies with deletion
regions of length one. Gcnerally, ill the MalHiarin CallHome corpus longer deletion regions



4.2 Disfluency distributions 52

9000 840

8000

7000

• 6000~c<; 5000-1: 4000
E,
z 3000

2000

1000

0

-443--"3
111 73 26 19 9 3

2 3 4 5 6 7 6 9 10 11

Length of dele lion region

Figure 4.3: Length of deletion regions fur the English VERBMOBIL corpus

(up to 17words) occur in comparison to the English VERB~fOBiL corpus with deletioll regions
up t.o 11 words.
Figure 4.4 shows the relativc frequencies for disflucndes over the length of thcir delction
regions for thc English VERBMOBIL corpus (hlaek bars) and the Ylandarin CallHolllc corpus
(whitc bars). Thc figures arc ohtaincd by dividing the Humber of disflucllcics with deletion
regions of a particular length by the total number of r1isfluencics. One can see that only
for dclction rcgions uf length one disflucncies in the English VERBMOBIL corpus are more
frequent than in the ~Ialldarin Call Home corpus. III all other ca.'ies the disflucncy frequcncy
for the Mandarin CallHomc corpus is higher. This anomaly might be partly due to the fact,
that our disftuellcy type "interjection" (non.lexicalizcd sounds of affirmation and ncgation,
mostly with hack dmnneling function) which comprises only disflllencies with deletion regions
oflength one, is not considered ill the Mandarin disflucllcy annotations. In all other ca.<;csthe
higher bars for the l\.fandarin Chinese corpus support our claim that thc Maudarin CallHomc
corpus is Illore disfiuent than the English VERB~IOBIL corpus.

4.2.5 Length of the deletion region of a disfluency containing a fragment

The prohahility P3 of the overall translation modcl. models deletion regions of disflucllcics
containing a fragment. Supported by the findings of many authors (section 2.3), we as,sUInc
that fragments indicate the offset of the reparandum of a disflllency. \V(l exalIlined this
<-k..•sumption only for the English VERB MOBIL corpus, sinl.e 110fragments are annotated in the
Mandarin CallHome corpus.

English Verbmobil corpus

Table 4.14 shows the numbcr of complex disfluellcics (i.e. false starts awl repetitionsjeorrections)
which have a fragment at the end of the reparandum. In the last colulIln the figures are shown
for both disfiuency types together. The pcreentage of the total number of t1isfluencics of a
partk~ular typc is shown in the Ia...•t row. Somc condllsiolls can he drawn from the tablc.
First we note that fragments indicate indeed reparalldum offsets, i.e. it is vcry likely to have



4.2 Disfluency distributions

Length of deletion region REP FS FP Total
1 5111 19 10573 15703
2 2529 61 910 3500
3 1040 57 183 1280
4 479 37 61 577
5 214 23 10 247
6 110 18 5 133
7 50 12 1 63
8 27 4 1 32
9 18 5 1 24
10 9 2 0 11
11 2 1 0 3
12 6 0 0 6
13 2 0 0 2
14 2 0 0 2
15 1 1 0 2
16 0 1 0 2
17 3 0 0 1

53

Table 4.13: Distribution of disfluencies over the length of their deletion regions for the Man.
darin Chinese CallHome Corpus

a reparandum offset at the location of a fragment. 011 the other hand the percentage; in
the last row of the table show that fragments to not account for all complex disfluencies.
Furthermore it is important to remark that of the 753 fragrneuts which occur at the end of
a reparandum of a disfluency 476 fragments (63%) occur in "one-word"-disfluencies where
the reparanduIIl comprises only the fragment. Thus we note that fragmeuts are important
to locate reparandum offsets but other mcam; must be used as well for thc fulfillment of that
task.

~ Total I ill FS I in REP I in REP and FS I
Number of fragments 914 221 532 753
Percentage of total DFs for thCRetypes 18.:~% 2:~% 21.4%

Table 4.14: Fragments at the end of the reparanda of false starts aud rcpetitions/corrections
for the English VERBMOBIL corpus

Our statistical modeluscs the information about fragments in order to model the length of
deletion rcgions of disfiucncies which contain a fragment at the end of the reparandum. The
corn~ponding distribution is shown in figure 4.5. Note that the trend that the number of
disfiuencies decreases rapidly with increasing lcngth of the deletion rcgioll can he observed
as well here and in figure 4.3, where the length of the deletion regions for all disfluencies is
illustrated. However the difference between the bars for length one and length two is larger
in 4.3 which is due to the huge number of filler words of length olle.



4.2 Disfluency distributions

0.9

0.9

54

~U 0.7
c•:J 0.6;;
;;
'0 0.5
~
~ 0.4
~go 0.3

"~ 0.2

0.1

o
2 3 4 5 6 7 8

Length 01deletion region

Figure 4.4: Relative frequendes of disftuencies for different lengths of deletion regions; English
VERDMOOIL : black bars, Mandarin CallHome: white bars

4.2.6 \Vord context in which a potential deletion occurs

The context model is modeled by the probability P4 of the overall translation model. It
considers the two words surrounding the current word in order to predict the deletion of the
current word (section 3.3.2). We present here fiomc statistics which illustrate how reliable
our estimates for the context lIlodel are. Thus we analyze how often the different words in
a particular context occur. Since we arc faced with a sparse data problem in our corpora,
we never consider for a word Wj the left word Wi_l and the right word Wi+l together, but
we lise word "higrams". \Vonl unigrams are used when 110 reliahle estimates for bigrams are
available. Thm; we distinguish the following events:

• left bigrams: Wj_lWj

• right bigrams: WjWi+l

• unigrallls: Wi

English Verbmobil corpus

Table 4.15 l'lhows tlw occurreIl(:es of left awl right higrams and llnigrams for the English
VERB MOBIL corpus. \Ve distinguish between the different events oC<:llrringonly Ollce, less
than tllf(~ times and at lea.'it thf(~l times. This is because we decided that an estimation is
only reliable if an event has been seen at lea.'lt three times. For each event type in parentheses
the percentage of events is shown which occur Onctl, less than three times or at lea.'lt three
times.
\Ve can Sl'l' from the tahle that for higrams only about l of all such events OC(;llrat least
three times. That means that in most <:a.o.;esno bigrams can he used for predictions. Even for
lIuigrams only ahout 50% of all events occur Inorc than three times. Therefore we decided
to construct equivalence da.'lses for the words in our corpus. These classes arc found by an
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Figure 4.5: Length of the deletion region of disfluendes with a fragment at the end of the
reparalldUlII for the English VERBMOBIL corpus

I Occurrences ~ Left bigrams I Right bigrams Unigrams

1 13021 (60.0%) 13295 (59.6%) 860 (37.6%)
<3 16134 (74.3%) 16489 (73.9%) 1149 (50.2%)
>3 5584 (25.7%) 5827 (26.1 %) 1141 (49.8%)
Total 21718 22316 2290

Table 4.15: Occurrences of left and right bigrams and IInigrams for the English VERBMOBIL

corpus

unsupervised learning technique proposed in [Kneser and r\ey, HI93]. The proposed algorithm
determines classes in that way that the probability for a language modcl ha.<;cdon these da.<;s{~s
to predict the training text is maximized. The wordda..<;sesarc obtained by using a clustering
tool frolll the CLAUS I toolkit [Ries et aI., 1996].
Table 4.16 shows the occurrences of the different events when each word of the text is assigned
to its class. 474 wordclasses are uscd here.
\Ve see that the percent.ages for events occurring at least three times improve lIluch. For
unigrams all events are found more than three times in the corpus.

Mandarin CallHome corpus

Table 4.17 shows the occurrences left and right bigrams and unigrams for the 1'Iandariu
CaliHome corpus in the same style a.•• table 4.15 for the English VERDMOBIL corpus. The
percentage of events occurring at lea.'lt three times is even smaller than in the English VERB-
MOBIL corpus. The reason for this is that the vocabulary of the !\ilanrlarin CaUHome corpus
is more than three times larger than the vocahulary of the English VERDMOBtL (~orpus but
the l\lalldarill CallHome corpus comprises only little more words than the English VERBMO-

DlL corpus (section 4.1). !\cverthelcss we did Hot construct word equivalence cla.<;sesfor the
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Occurren(~es Left higrams Right bigrams Unigralns
I 6814 (44.2%) 6793 (43.8%) o (0.0%)

<3 9402 (61.0%) 9:163 (60.4%) o (0.0%)
> :1 6002 (39.0%) 6134 (39.6%) 474 (100.0%)
Total 15404 15497 474
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Table 4.16: Ocnlrrences of left and right bigrams and unigrams when each word is assigned
its e'luivalcuce class for the English VERBMOBIL corpus

Mandarin CallHome <:arpus, as the usc of classes for the English VERB MOBIL corpus did not
improve our results (section G.2).

I Occurrences I Left Contexts I Right Contexts I No mntexts I
1 44789 (72.4%) 45214 (72.3%) 2906 (41.5%)

<3 52778 (85.3%) 53318 (85.3%) 3979 (56.9%)
>3 9079 (14.7%) 9216 (14.7%) 3016 (43.1%)
Total 61857 (100%) 62534 (100%) 6995 (100%)

Table 4.17: Occurrences of left ano right bigrallls and Ilnigrams in the Mandarin Calli lome
corpus

4.2.7 Deletion history of a potential deletion

The prohability H, of the overall translation model denotcs the binary context mooel. This
model considers the last two oeletions in the current hypothesis in order to predict the
deletion of the current woro (section 3.3.2). The parameters for this mooel are learned from
the data similar a.,<; for the context lIIodel. We !'limply analyze whether the words Wi-2 and
Wj-l precet:~dillgWi are dbfluellt or not. As for some words not enough data is available to
make reliable estimates using a deletion history of two words, we are also interested in the
deletion history of one word or even in the deletion history of zero words. Thus we distinguish
the following evcnts (the deletion history of a word Wi is symbolized by its alignment history
ai-2ai-l):

• deletion history of two preeeeding words: ai-'l, ai_I> Wi

• deletion history of onc prececdillg word: (Ji-1, Wi

• deletion history of zero preceeding words: Wi

Note that the la..<;tevent type is identical with the IInigrams in the context lIIodel. Since this
model did not prove to be successful in our experiments with the English VERBMOBIL corpus
(scction (i.2), we did not implement it for the Mandarin CallHomc corpus.

English Verbmobil corpus

Table 4.18 shows the different events occurring ollce, less than three times and at lea..•t three
times in the same style as table 4.15. Similar to the context model, we assume that estimates
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are reliable enough only, if they are based Oil events occurring at least three times. \Ve see
that the percentage of events occurring at least three times is generally higher a..'l for the
context lllode!'

Occurrences Two prececding words One precl.>edingword No context

1 1440 (42.0%) 1106 (39.2%) 860 (37.6%)
<3 1909 (55.7%) 1472 (52.2%) 1149 (50.2%)
>3 1519 (44.3%) 1350 (47.8%) 1141 (49.8%)
Total 3428 2822 2290

Table 4.18: Occurrences of different events for binary context model for the English VERB-
MOBIL corpus



Chapter 5

Implementation

This chapter deals with the implementation of our disfluCllcy eorreetion system. In section
5.1 we describe sOllle important implementation details of the language mouel component
of OUT system. Section 5.2 deals with the search problem to find the best hypothesis. The
search algorithm and the data structure 011 which the algorithm is executed arc prCficnted.
Finally the exact implementation of the five models we introduced in section :J.3 is described.

5.1 Language Model

The equations for estimating the language model probabilities presented in section 3.2 show
that obtaining COliuts for certain wont sequences is ~'Sselltial to calculate these estimates.
Many language lllodel implementations calculate the IIcccssary counts during a training pha.o.;e
and store for each n-gram the probabilities which are estimated using the counts from the
training corpus. Thus the language model can he represented a.~a lookup table, which maps
every II-gram to a certain probability.
The language 1Il0dei implementation used in our system works differently: during training
a sulfix array is creatl-,<Iwhich allows to calculate counts efficiently at runtime. \Ve use
this language IIlodel implementation bffause programs for constructing suffix array ba.'l(~d
language lIIodels and an interface for using such language model ill a decoder were already
available. They are used in the SMT toolkit which is developed at the Carnegie 1-Iellon
University in Pittsburgh.
An advantage of sultix array haseliiallguage models is that quite long histories <:allbe easily
used for predictions when they have bccn sccn often enough during training. A lookup table
based language model would have to store for example all 7-grams which have been seen
during training in order to he able to usc 7-grams for predictions .. \Iost of these 7-grams
would be stored ill vain however, since they would never be used when an unknown text is
presented to the language model. In contrast to that, the suffix array ha.'ied language model
call determine quickly at runtime whether a 7-gram for prediction is available, without haviug
to store all 7.grams during training. In the following the suffix array based language modc1
component we lise is explained briefly.
The irlea of a suffix array is illustrated in figure 5.1. Besides the training eorplls an array
of pointers (i.(~. the suffix array) has to he stored. The pointers direct to the words in the
corpus in a way that a lexicographic ordering is established: Let S be the suffix array and i
aud j two indices of this array. Then:
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i < j => 51i] ";,,, 5IJ]
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(5.1)

The predicate :S:lexwhich symholizes the lexicographic ordering remains to be explained. Let
W and V be two sentences with

~v= WI ... WI'" Wn

V = VI ••• Vk ••• Vm

Let furthermore Sri] (i.e. the i1h position in the suffix array) direct to WI and S[j] (Le.
the j'h position in the suffix array) direct to Uk. The word sequences wI = WI ... Wn and
vk = Uk ... Urn are defined as suffixes of the sentences Wand V. Then Sri] <'ex S[j] means
that wi is ordered lexicographically before u;'Jl. Let for example wI he ;owillhe nice". Then
uk can be "will be now;o, as "nice" is ordered hefore "now", however uk can't be ;Owhere
it wa.••yesterday" as "will" is ordered after "where". :-fow we can define that Sri] :S:'ex S[j]
holds, when either Sri) <lex S[j] holds or S[iJ alHl S[jl direct to words WI and t'k so that

n _ mw, -vk'

Figure 5.1: Suffix array and corpus with the vorabulary a,b,c consisting of the two sentences
"hhaha" and "cbab"

Now a.'isume we want to obtain the count C(WIW2'" Wh) for calculating a certain probability
estimate. This is done by c!etermilling two indices ifir~t and ita"t so that the following
conditions hold:

• S[ifir.,tJ and S[i'a~d direct to positions in the COTJl1L'iwhcre suffixes WIW2 ... Wh begin .

• For all j < i fir!! holds S[jJ <'ex,h S[i fir~t] .

• For all k > ila~t holds S[k] >/cx,h S[itustJ.

Then ilasl-i first +1equals to the count C(WI W2 ... Wh)' Note that the predicate <'ex,h means,
that only suffixes of a maximum length It are considered for lexicographic comparison. Figure
5.2 shows an example how a count is determined.
The indices ifirst and i/ast eH.1l hc determincd by a binary search in O(logN) where N is the
length of the suffix array.
This suffix array language model implementation is used in our system in order to build
languagc lHodels which comhine absolute discounting with linear interpolation as dc:>cribed
in equation 3.20. During training the ,suffix array is constructed and the discounting factors
for the lIlodeL••of different order are dctermined. Probabilities for predictions arc estimated
at runtime using the suffix array.
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Figure 5.2: Finding the count C(b, a) in a suffix array

5.2 Decoding
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In this section, we explain the decoder as implemented in this work. Decoding means to find
the heht hypothesis for a 8uent string among all hypotheses we consider.
Some parts of the code are t.aken from the S~,lT toolkit from which we adopted as well the
language model implementation. These parts cOlIlprbe classes for treating texts, vocabularies,
strings aud arrays efficiently and some basic cla..<;seswhich can be used to build lattices.
However, the major part of the code, including all cOlllplex algorithms, ha.';been implemented
within t.he context of this work.
As already explained in section 1.4, we construct our search sp;u:e hy generating each possihle
hypothesis (Le. each "dean" string) C which can he generated by deletions from a potentially
dis8uellt source string (Le. "noisy" string) N. For each deletion which is m;ule, a score1is
assigued to C. All geuerated striug:-; arc stored in a lattice in whkh we finally search for the
best string 6.
Given a string N = Ttl ... TtJ one can repre:-;entC uniquely hy the alignment sequence which
is ohserved during the creation of C from N. This is because the alignment for all words
which do not appear in C are zero alHl the other alignments represent the position of the
particular word in C. In t.his section and in our implementation we dl..-'Scrihethe idea of
alignment differently: All alignment is zero for a deletion and one for no deletion. The original
alignments can be ohtained from these "simplified" alignments hy counting the Humher of
nOli-zero alignments preceeding the current alignllll'nt. Figure 5.;} shows a string I'll, an
alignment for N and the resulting string C which is uniquely determined hy this alignment.

5.2.1 Search space reduction

\Ve explained ahove that it is sufficient to store the corresponding alignments ill order to store
all generated hypotheses. This might be done emdently using a binary tree, as illustrated ill
figure 5.4.
In this t.ree each node represents a possihle alignlllellt Uj for the word nj. The incoming edge
of the node representing Uj gets a..<;signeda score that this alignment ill made. The scores
are assigned to the incoming edges and lIot to the nodes themselves, what f;u:i1itatt~ the

I\Ve usc !;Cores instead of prohahilitif'S as we do all uur calculations ill log-space. This is l'xplailled in larger
detail in Sf'Ction 5.2.1.
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Figure 5.3: A source string string nf, an alignment af and the corresponding hypothesis c{

", ", "J

Figure 5.4: Binary search tree to store the aligulIleuts corresponding to hypotheses; An edge
gets the score So, if its end node repre;cnts a zero alignment, and the score 81 otherwise

generation of a lattice out of the tree in ordcr to reduce the search space. In a lattice one
node can have multiple incoming edgl.'Sreprcsentiug differcnt alignment histories. Since the
scores which are assigned depcnd vcry often on the alignment histories, assigning one score
to each edge is easier than a..<;signinga list of scores to a node where each incoming edge of
this node must be distinguished.
In a binary tree the number of nodes grows exponentially with its depth. This property
is usually not desirable in terms of memory consumption and time required for searching.
Furthermore there are a lot of paths in the binary sean~h tree which represent very similar
hypotheses which are only different in a few alignments (figure 5.5). We decided to make use
of these similarities in order to reduce the search space.
Thii'i reduetion of the search sp<u~eis done by defining some criteria under which two partial
paths can be merged. These criteria are chosen in a way that no information gets lost. That
means that only merges are performed which do not make the a.'isigtllllent of i'icores to an
edge ambiguous.
Two partial paths can be merged if(2;

• the partial paths have the same lenp;th
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Alignments:

Paths in a tree:

o 1 101 I 1 1 I
o 0 101 I 1 1 I
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Figure 5.5: Two very similar paths in a binary search tree

nJ n, nJ
0

S,

S

s, 0

1 s,
~1~1

Figure 5.6: Lattice which is generated by applying the merge criteria on a binary ~earch tree
of depth thrcc; The edges get the scores So and S1 a,.-;signedas in the binary search tree

• the partial paths have the sallie number of deletions (i.e. the same number of contiguous
zero alignments)

• the length of the current deletion region in both partial paths is the same

Applying these critcria to a binary search tree, we obtain a lattice which is illustrated for a
tree with depth three in figure 5.6.
Table 5.1 shows the number of nodes in a lattice compared t.o the corresponding binary
search tree of depth n. While the number of nodes in the binary tree grows exponentially
(depth(n) = 2n+1 - I), we only ohscl've a growth for the lattice which is a hit marc than
quadrat ic.
The lattice structure which is huilt for different. st.rings IV with eqllallength is always the
same. This is Iweause the st.ructure is only determined by the possible alignments and not by
the actual words. Furthermore, always the whole lattice which contains all possible partial

20nf' can show that hf'C,allseof th(':;(' thrt>e conditions partial path!' arc only Ull'rgl'd if the 1t:'lIgth of the
current deletion region is zero.
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Number of lattice nodes 3 7 13 22 :14 50 70 I 95
Number of binary tree nodes 3 7 15 31 63 127 255 I 511

In

Table 5.1: Number of nodes of a lattice and of a binary ~earch tree of depth n.

hypotheses is built. As the search space is slilall enough after the merges have been applied,
no pruning is dOlle. The lattices for two strings of equal length only differ in the scores which
are assigned to the different edges.
In our implementation we do not lise directly the search criterion presented in equation a.22,
but we take the negative logarithm of this equation. Thc advantage of doing so is that
cOlllputationally expensivc multiplications become summations in log space. Furthermore we
are not confronted with the problem of very small numbers which arises when multiplying a
lot of prohahilities which arc naturally < 1. Hence our new search criterion looks a..<;follows:

6 = argll~lI(-log(P(NIC)' P(C))) = argll~II(-logP(NIC) -logP(C)) (5.2)

The negative logarithm of the "translation" probability -log P(NIC) can be rcwritten as
follows using the maximum approximation from equation 3.25 and equation 3.26:

-logP(NIC)

'" -log (P(Jj!) . P(mIJ, C) . '~rP(u" o,lei'!, J,m))
= -log (P(JI!) . P(mIJ, C) . lI:rfl P(uj,oj!n{-l,o{-' ,ef, I,J, m))

J

= -log P(JIl) - log P(mIJ, c{) - Ill~XL log P(nj, (lj In{-l, a{-t, C{, 1,.1,m) (5.3)
Ul fool

Note that the sentence length probability P(.lII) in equation 5.3 is 1I0t considered during
search, because we decided to set it uniform as explained in section 3.3.
When working with scores (i.e. negative logarithms of probabilities) the goal of our search is
to find the path with the sma1Jp",t,score. The different scores are H.-,signedto the paths of the
lattice as follows: During construction of the lattice - logP(nj,ajln{-l, a{-l, C{, I,.1, m) is
assigned to cach edgc. This score consists of the contributions of the five models introduced
in section ;J.3.
The language model probability is <l8signedduring search. Whenever a node is visited it gets
a language model score assigned for observing the word a."isociated with the node, givcn the
history. For each node a list of different language model probabilities must be storoo, <l8there
can be different histories, i.e. different paths which lead to a node as illustrated in figure 5.7.
Notc that the languagtl lllodel scores are assigJlI~1to 1I0dl~Sinstead of the incoming edges.
This is however only an implementation detail, which does not change the basic ideas of our
algorithm.
At tlw end of the search a lllllllhl~rof paths are availahle, which are arranged in a.n N.best
list. Each of these paths is now assigned a sentence end probability from the language model
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">,
I

11;-1

o

P(fl;Ifl;-3 0j_2)

Pen} nj_2OJ_I)

P(fl;1 "i-I 0j_3)

Figure 5.7: Different paths with different histories leading to one node; For this node a list
of diffNent language model probabilities must be stored

(P(scntence endlhistory)) and the score -log P(ml.J, C) for having Tn deletiOlls ill this path.
Then the best path (or tlw N best paths) can be extracted.

5.2.2 Dynamic Programming Search

It still remains to be explained how seardl is adually done. \Ve use a dynamic programming
approach with some similarities to a Viterbi search. In order to be able to explain the search
algorithm we define K •... KJ to he J disjoint subsets of nodes of a lattice. Subset Kj
contains all nodes of the lattice which are IJ.'lsociatedwith the word nj, i.e. which represent
the alignment Uj. Furthermore we define that eadl uode in the whole lattice has a unique
index. Thus the subsets Kj can be written as follows:

Ko ~ {ko}
K1 ~ {k1, ... ,kIKdJ
K2 = {kIKJI+b ... kjKII+IK:lj.}

Note that subset Ko only contains the start node of the lattice which is a.ssociated with no
word but only with a begill-of.sentence marker.
Given these subsets our algorithm can he explained intuitively a.<;follows: The best partial
path to node ku E Kj is determined by choosing the node kv E Kj_1 as previous node to ku
that the overall score to get from the start node ko to ku is maximized. The overall score
is determined by adding the score for the best path to get fwm the start node to klJ and
the score to get from kv to ku. The best path from ko to kv h:L.'i alrea.dy been determined.
following the principle of dynamic programming.
The score which is a.'lsigned to a path kil, kh, kh ... kjm is simply the sum over the scores
for getting fwm kj;_1 to kjj for all 1 < i ::;:Tn. Thus one can show ea.••ily that the algorithm
descrihed above finds a global optimum, i.e. the overall best path.
Now we define the search algorithm formally. Let SKj (k'j) be the score for the partial path
fcom the start node ko to a node ku in subset Kj. Let furthermore BKJ (ku) he a lJaek pointer
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to the node kv in Kj_t which precedes the node ku 011 the best partial path from ko to ku.
Finally, let tvu be the score for getting from kv to ku. Then we can describe our algorithm
inductively:

Initiali<lation:

SK.(ko) = 0

ilK"(ko) = 0

Induction:

SK.(kl.l) = min SK-_1(kd+tI1.l
J k,EKj_l J

BKj (ku) = arg m~n SKj_1 (kd + tlu
kIE1\j_l

Termination:

Best score = min SKJ (kdk,EKJ

Best end node = k- = arg mil~ BKJ(kd
k/EII.J

Backtracking:

kKj_1 = B(kK))

(kKl ••• kKJ) repr<..'Sentsthe best alignment seqllence3.

5.2.3 Translation l'vlodel

In this this sectioll we give some implementation details about the five different models
contributing to the overall "translation" model. To make the following explanatiolL', ea.•ier
to understand we describe all models in terms of probabilities instead of scores.

Position of a disftuency in a sentence

The probability for having a deletion at an initial or medial position is simply estimated by
using the relative frequencies shown in table 4.8. Thus the two edges leading to the two
nodes in K1 (they represent the alignments for nIl are assigned the prohahility for having a
deletion or no deletion at an initial positioll. All othcr edges are assigned the probability for
a deletion or a 110 deletion at a merlial position, according to the alignmcnts their end nodes
repre..'>eut(figure 5.8).

3The node kKj is that 1I0de from thl' ~Ilbs('( Kj which L('loll~ to the hest alignment M'quencc.
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Figure 5.8: Assignment of the prohabilities for having deletions at initial or medial positions

Length of the deletion region of a disfluency

The assignment of probabilitkcos for different deletion lengths is a bit Illore complex. As
iliustrate,1 in figure 5.9, the lIlodel which a.'lsigns this probability is only IISOO within a deletion
region. It docs not contribute to the decision where a deletion region starts. In a deletion
region each edge leading to a node representing a zero-alignment is assigned the probability
P(L > i). Here I is the length of the deletion region in the start node of the edge which is
a."sigucd P(L > I). The randolll variable L is described by the relative frequencies for the
lengths of the different deletion regions in the training mrpllS. Thus its distribution can be
mIllputed directly from the distribution of disfluencies Q\'cr the length of thcir deletion region
,L'i presented in figurc 4.3. Edges ending in nodt~Swith a nOll-;o;eroalignIllcnt are a.<;signedthe
"deletion end" probability P(L > I) with the same I as above.

Figure 5.9: Assignment of probabilities for different lengths of deletion regions

Length of the deletion region of a disfluency containing a fragment

The probability for having a deletioll at position j given that a fragment occurs at position
j + d is estimated by relative frcqucncies as well. They are ohtailled by considering the
distribution of deletion lengths shown in figure 4.5. The probability is added to the prohability
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already associated with an edge, when this edge ends in a 1I0derepresenting a zero alignment.
Otherwise it is suhtracted from the probability already associated with the edge (figure 5.10).
When adding or subtracting probabilities we make sure that the owrall probability still
relllaiIL~between zero and one.

Fragment

Figure 5.10: Assignment of the probability for a deletion or 110deletion in the prcscnce of a
fragment

Word context in which a potential deletion occurs

The context model predicts the deletion of the word nj given the context nj_l and nj+h

thus it predicts the alignment OJ. We assume again that the alignment OJ for a word nj is
either zero or one. The correspondence to the alignments in our translation model i:'lstraight
forward H.."l explained ahove. In order to learn the parameters for the model, we extract right
and left bigrams and unigrams (section 4.2.6) from the data, together with the information
whether the current word is disfluellt or 1I0t. (The information whether the word nj we
extract from the data is di:'lfluent or 1I0t is coded as alignment: aj = 0 means that nj i:'l
disfluent and therefore has to be deleted for correction; Uj = 1 means that nj is fluent) Thus
we store the following events together with their counts:

• triples for left higrams: (nj_i,nj,Uj)

• triples for right higrams: (nj,nj+i,aj)

• tuples for lllligram:'l: (nj,aj)

III order to derive probability estimates, left and right bigrams are combined if they haven
been seen often enough during training. Oth(~rwise we hack off to ulligrams or to even
more simple estimates. III order to formulate the prohability estimates for the prohability
P(Ujlnj_i,nj,nj+l) from equation a.33 we make the following definitions:
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ifC(nj,nj+d 2: 3 or C(nj_i,nj) 2: 3
if C(nj) ,,3
otherwbe
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(5.4)

The a..•signmeut of the context model probabilities to the words of the different hypotheses is
straight forward. For each edge repn.-"Sentingthe alignment aj \ve know the words nj-b nj and
nj+i from the source sentenee. Thus we simply calculate the estimate for J)(aj Jnj-i, nj, 1tj+l)
for each edge according to the definition in equation 5.4.

Deletion history of a potential deletion

Finally we explain the implementation of the binary context model. Remelll11er that this
lIIodel predicts the alignment aj for the word 1tj given the two previous alignment aj_2 and
aj-i. The parameters for this model are learned from the data, in the same way as for the
context model. Thus we store the following events together with their counts (the information
whether a word is disfJucnt or not is again codt~1 as alignment):

• deletion histories of two words: (aj_2, Uj_I. nj, aj)

• deletion histories of one word: (aj_i, nj, aj)

• deletion histories of zero words: (nj,aj)

For the calculation of the prohability estimates we always usc the longest history which has
been seen often enough during training. Otherwise we back off to a shorter history. In order
to express the estimates for P(ajlnj,aj_t,Uj_2) from equation 3.;$4. we make the following
definitions:

Then we can ddinc the probability estimate for the binary context model a" follows:
if C(nj,aj_\,Uj_2) 2:;1
if C(nj, flj_tl 2: 3
if C(nj) " 3
otherwise

(5.5)

The probability estimates for thc words of the different hypotheses are calculated using simply
equation 5.5. The '~d.riablt."S(!j-2 and aj_1 are assigned hypothesized values for the alignmcnts
of the two previous words.



Chapter 6

Results

In this chapter the results from experiments with our system arc presented. In section 6.1 we
explain some measures which we use to evaluate the performance of our system in addition
to recall and precision. The results oCthe experiments on the English VERBMOBIL corpus are
discussed in sedion 6.2. In section 6.3 some results of experiments 011 the Mandarin Chinc..<>e
CallHomc corpus are presented. Finally we compare the rcsults we obtained from our system
with results reported in some other works about disflllcncy detection and correction (section
6.4).

6.1 l'vleasures for Evaluating the Disfluency Correction Per-
forrnance

Recall and precision which are explained in se(~tioll 2.:3.2 are very important to c\'aluate
the performance of a disflllcncy correctioll system. Furthermore we prcl'ent somctimcs the
absolute numbers of hits and false positives which occur in a test set. In our terminology hits
are those disfluencies where the deletion region is deleted completely by our l'ystcrn. False
po."litivesoccur when only words which do lIOt belong to the deletion region of a disflueney
are deleted.
In addition to these figures we consider the cas0.i in which our sYHtemdelet0.i only parts of
the deletion region of a disfluellcy or where a deletion region is overlapped by a deletion of
our (vrrection sYl'tem (figure 6.1). In the latkr case, there is a llumiler of possibilities how a
deletion region of a disfluellcy ('.an be overlapped by a correction system deletion. The actual
deletion region can he covered partly by the correction system deletion, HOthat only at one
of its boundaries non-disfluent words are deleted or it can be covered completely. In this
case non-disfluent words can be deleted either only at one boundary or at both boundaries
of the deletion region. Neverthelcss from the point of view of the correction system only one
deletion of a contiguous word sequence is dOlle. Tlwrefore we classify this event as deletion
overlapped by the correction system, aud not as two or three deletions which may COIl.<;istof
hib, false positives and partly deletions of dcletion regions.
However, partly deleted and overlapped deletion regions usually don't playa very impor-
tant role in our results and therefore are lIot presented for all system a..'lpects we discuss.
Nevertheless it is important to b(~aware of the fact, that these two phenomena exist.
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Figurc 6.1: Deletion regions deleted partly (first picture) or overlapped by deletions of the
correction system (two possibilities in the second and third picture)

6.2 Results for the English Verbmobil Corpus

This section deals with the experiments we eonducted on the English VERBMOBIL corpu..'l.
First wc describe briefly the setup for our experiments. Thcn the results of the experiments
arc presented. To conclude this section we illustrate the performance of our systcm with

sOllieexamples.
In section 3.3 we showed that a number of diffcrent models are used to assign the overall
score to a hypothesis. \Ve try to improve the performancc of our system by increasing or
dl-'Creasing the weight with which these models contribute to the overall score. Howcver,
given the time constraints of this work, we didn't design an algorithm for the automatic
adjustmcnt of the optimal weights, rather we adjust them manually. Since therc arc at
least seven different parameters to adjust, the parameter combination we ohtain by manual
adjustments is possihly suboptimal.
The \vay our rcsults are presented in the following reflects t.he att.empts to find an optimal
parameter combination. First we present results for a haseline system, where only the weight
of the language model score is varied. Then we show the effect of varying other parameters
and finally present this parameter comhination which led to the best results.

6.2.1 Setup
As alf(~ady hrielly explained in section 4.1.3, we divided the 127 dialogs which are available
from the English VERBMOBIL eorpus in 10 disjoint test setl1. Each tl..-'Stset consists of 10%
of the whole number of sentences in the dialogs. The remaining 90% are used for training.
Thus we have 10 different partitions of our corpus which were created by choosing randomly
10 different permutations of the 16583 scntences and splitting them into a t.est and a training
set. Our approach for disllucncy correction considers sentence hy :-;entence. No information
about the turn or the dialog in which the sentence occurs is necessary. Hence we even broke
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up turnsl so that different selltellces of one turn may occur in different test scts.
Each experimcnt was run on nllW test sets and thc rcsults which are reported below represcllt
averages from the results of all 10 test sets. The rea.'i()Ilto do this is to avoid biases in the
results which may arise because of certain characteristics of a test set, even if it is chosen
randomly. When appropriate the range of these results is reported.
The average number of disfluencies which occur in the 10 test sets is 1102.7 which is equal
to the t.otal numher of disflllencif'$ in the eorpus divided by 10. This number is the same for
all experiments with the VERBMOBIL corpus and it serves as orientation when we report the
average number of hits, false positives etc. 'Vhen we report total numbers of disfluencies of
a certain type or with deletion regions of a certain length, the average number is again equal
to th(~ total number of these cvcnts in the corpus divided by 10.

6.2.2 Baseline System

In the following we present the baselinc system where only the weight of the language model
score is varied. In order to introduce a weight factor for the language model score we modify
our search criterion from equation 5.2 a.<;follows:

(; = arg min (-log P(NIC) - A'm . logP(C))c (6.1)

This ba.'leline system USPS all models introduced in section 3.3 except the binary context
model1. We varied AIm in steps of 0.1 from 0.0 to 1.0. The results arc illustrated in figure 6.2.
The light gray bars show the numher of false positives and the dark grey bars the number of
hits for different language model weights.
One can scc that the number of hits increa.'ies up to A/m = 0.4 and decrea.<;esslowly for higher
language Ulodel weights. The number of false positivcs increa.-;es rapidly with increa.<;ing
language model weight. Good results are charact(~rized by a high !lumber of hits and a
low llIuuher of false positives. Here this is the case for AIm = 0.2 where we have 837 hits
(compared to a maximum of 853.0 for Aim= 0.4) and 140.7 false positives (compared to a
minimum of 67.2 for Aim = 0.0). That eorresponds to a r<.-"Callof 75.7% and a precision of
85.6%. These figures will serve as ba.'leline results which arc compared to the results of t.he
experiments we present in the following.
A rea.'lon for the number of false positives inerea.'ling rapidly with incrca.<;inglanguage model
weight may be that the language model favors the deletiolJ of events which were not or only
rarely t'ccn during t.raining. This effect becomes visible for higher language model \•...eights,
a.<;the language model then dominates the other scores.
The figures for deletion regions which are deleted pa.rtly and which are overlapped by deletions
of the correction system are prt~~nted in figure 6.3. QIlC can observe that the numbpr of
partly delpted deletion regions decreases slowly with increasing language Illodel weight. The
number of deletion regions which are overlapped hy deletions of the system increases with
illcrea..<;inglanguage model weight. The latter ohservation may be due to the same rea.<;olla..•
the inerea.'lillg number of false positives for high language model weights.
Since the language model it' trained all Oneut speech. disfluellcies are events which have
not been seen during traillillg of the language Illodel. Therefore the number of successfully
deleted deletion regions (hits) increases up to A/m = 0.4. However oue would expect a further
increase of t.he number of hits for higher language model weights. One possible explanation

IThe binary context model was not. originally part of O1lr syst.f'm. \Ve implemented it lat.er as an attempt
to improve the system {It"rformance.



6.2 Results for the English Verbmobil Corpus 72

.L f- f- -

-~- JI -- - -

- I-~I'~- ~ I-

- -

fI
I-

., .,

1600

1400

1200
••.g 1000•0;
u

" 800-Z
600E,

z
400

200

0
o 0.1 0.2 0.3 0,4 0.5 0.6 0.7

Language model weight
0.8 0.9

Figure 6.2: Re~ults for different language model weights; The error hars indicate the deviation
among the different test sds

that this expectation is not true can be the inlTea."ieof deletion regions which are mrerlapped
hy correction system deletions. Deletion regions which are deleted completely for lower
language model weights are no\v overlapped at one or hoth hOllndarie:; by correction system
(le1etions.
\\Thell we report recall and precision so far we only considered (~omplete deldions of deletion
regions as hits and deletions of word sequences which to not belong to a deletion region false
positives. However one could argue that deletion regions which are not deleted corredly (i.e.
they are deleted partly or overlapped by dealler deletions) degrade the quality of the text.
lienee one would count them as false positives. On the other hand one muld say that they
help at least to detect disHucllcies and count them a."ihits. Table 6.1 shows how recall and
predsioll change in these two (~aSl-'Sfor AIm = 0.2.

~ Rerall I Predsion I
ddp and dod not considered at all 75.7% 85.6%
ddp and dod as false positives 75.7% 81.0%
ddp and dod as hit~ 80.9% 86.4%

Table 6.1: Recall and precision when deletion region:; which are deletcd partly (ddp) or which
are overlapped by corrt~tion system deletions (dod) are counted to hits or false positives
respectively (Aim = 0.2)

In absolute numhers we haw as.3 deletion regions which are deleted partly and 16.8 deletion
regions which are overlapped by deletions of the correction system. Although tll(~e figure:;
seem low compared to the number of hits, they change f('!eall and predsion, when they are
scen as hits or false positives rcspectively.
\Ve dedded howevcr to count those disHuclldes whieh are not correded completely hy the
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Figure 6.3; Deletion f(~gionsdeleted partly (gray bars) and deletions overlapped by deletions
of the correction system (white bars); The error hars show the deviation among the different
to.it sets

correction system neither to the hits nor to the false positives. We rather report these figures
explicitely in the following if they differ much from those which are shown in figure 6.3.
Table 6.2 shows the correction results for the different types of disflllellcies for A/m = 0.2. In
the last line the percentage of hits of the total number of disfluencies of a particular type (i.e.
the recall for this type) is shown.

~ REP I FS ET I DM un IN
Total disfluencies 230.3 120.9 15.5 124.8 577.G 33.6
Hits 90.4 28.3 1:1.5 111.5 559.7 33.6
Percentage of total disfluencies 39.:1% 23.4% 87.1% 89.3% 96.9% 100.0%

Table 6.2: Correction rcsults for differcnt types of disflucncies (Aim = 0.2)

The figures in table 6.2 show that the complex disllucncy types repetition/correction and false
start arc lIluch more difficult to correct for our system than the other types. Taking editing
terms, filler words (discourse markers/filled pauses) and interjections together, we note that
95.6% of the total disflucncies of these types arc among the hits. The poor performance for
the complex disfilwncy types could possibly he increased by taking woni correspoudences
betwccn reparandmn and repair into account.
Table 6.3 shows the length of deletion regions for the hits cnmpared to the length of deletion
regions of disfiuencies which really occurred.
One can S(''C fcom the figures in table 6.3 that the ba.'jeline system only produces hits for
&"iflllelldes with deletion regions having a maximal length of four words. Taking ollly these
disfluellcies into account, the system deletes successfully 77.6% of them. Since disfiucncies
with deletion regions longer than four words make only 2.2% of all occurrences, we decided
to focus rather on other issues than improving the system for longer deletioll regions.
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I Length of deletion region ~
Total disfluencies 840.2 174.7 44.3 19.3 ILl 7.3 2.6 1.9 0.9 0.3 0.1
Hits 748.6 84.1 3.9 0.4

Table 6.3: Lengths of deletion regions for hits compan.-'flto all deletion regions (Aim= 0.2)

For thc ba.'ielinc system and for all other experiments we eondllcted on the VERBMOBIL
corpus, we concludc that a language model wcight of Aim = 0.2 seems to he thc best choice
in order to keep falsc positives low and hits high at the same time. Hencc all wsults in the
following are reported for this language model weight.

6.2.3 Effect of the language model

The language model we use for a particular test set is build using the training corpus which
helongs to this test set. Construction of the language model requires the division of the
training corpus into a language model training corpus and a language model cross validation
corpus which is "sed to detcrmine the discounting factors for the models of different order.
Each language model training corpus comprises approximately 82000 words. \Ve obtained
perplexities of approximately 32 on the cross validation corpora.
One attempt to improve thc performancc of our system was to increase the size of thc language
model corpus. This was done in two differcnt ways.
First we uscd somc data from the VERDMOBIL 1 project which also consists of spontanoomily
spoken dialogs. DisfluCllcic,'iwcrc rcmoved from these dialogs using the annotations which
wcrc obtained in the same waya.'l we obtained the annotations the other VERB MOBIL dialogs.
Theil we cnlargcd the existing cross validation and training corpora by adding disHucncy frcc
text from the VERB~fOBiL 1 dialogs. The new languagc model training corpora comprise
approximately 160000 words. The perplexities on the new cross validation corpora remain at
about 32.
Experiments with the new language models show, that AIm = 0.2 is still thc best weight
fador for the language model score. The numbers of hits and false positives almost don't
chan/-!;e.That indicates that evcn increasing the size of the language model corpus docs not
improve the ability of the language model to predict rather fluent than disfluent sentenccs.
Another attempt to improve thc performance of the language model nnnpollcnt wa.'lto take a
very large language model corpus based 011 a formal English text. \Ve took 38 million words
of thc \Vall Street .Journal corpus and built a language model with a perplexity of 153.11
on the cross validation corpus. Using the lan~uage model we found the rccall and precision
dt~crca.'iesignificantly. Howcvcr a fcw disfluellcics with deletion regions IOllger than 4 words
could be corrected <:ompletely now.

6.2.4 Effect of models for position of a disfluency in a sentence, length of
deletion regions and number of deletions per sentence

In the following we analyze the effect of the followin~ for models for our system:

1. Position of a disthlcncy in a sentencc

2. Length of thc deletion region of a disfluency
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3. Number of deletions per sentence
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~,lodcls 1 and 2 are are modeled by the probabilities Pi and P2 which are part of the ovcrall
translation probability (~ection :3.3.2). The number of deletions per sentence (model 3) is
IlIodek>d by the probability P(rnIJ, C) (section 3.3.1).
Remember that the ba.<;elinesystcm uses the three models we analyze here. Thus we present
in table 6.4 how results change, when one or all models are not used.

~ Hits I False Positives I Recall I Precision I
Daseline (includes models 1,2,:l) 837 140.7 75.7% 85.6%
Gnly models 1 and 3 844.9 146.6 76.4% 85.2%
Only models 1 and 2 856.3 165.5 77.4% 83.8%
Only models 2 and 3 826.9 119.5 74.8% 87.3%
None of the models 1, 2 and :l 83:1.1 160.1 75.3% 83.8%

Table 6.4: Results for different combinations of the models 1, 2 and 3 compared to the
ba.<;elillesystem (which uses modcls 1, 2 and :l); Aim is set to 0.2

Comparison of the first and the Ia.<;tline of table 6.4 shows that the ba.'leline system performs
hetter than a system where none of the models 1, 2 and 3 is us(~d.
However one can sec that by omitting the lIlodels for the length of deletion regions of disHu-
encies and for the number of disHuencies in a selltence (second and third row of table 6.4), it
is possible to improve the rc(:all compared to the ba.'leline system. However an improvement
of re(:al1means in both ca.'les a more or less strong decrea.'iCof precision. A converse trend
can be observed when omitting the model for the position of disfiuendes (fourth row of tahle
6.4): In this ca.<;erecall decreascs but precision increases.
The number of disftuencies where deletion regions are only partly dcleted is lower for the
system where none of the llIodcls 1, 2 ami 3 nre used. It decreases from 38.3 to 26.6.
The number of disftuencies where deletion regions are overlapped by the correctiOIl system
increases however a lot from 16.8 for the ha.-;eline system to 66.8 for the system which does
not use the models 1, 2 and 3. Especially an inCfca.<;eof the latter events is undesirable.
\Vhen deletions of the correction system overlap deletion regions of a disHllency it is possible
that important content words of the sent.cnce are deleted.
One can conclude from the results above that all three models together SCCIllto he helpful
for disfluency correction. However either recall or precision can be improved when certain
models are not used.
\Vhen the lIlodel for the number of deletions per scntence is not considered recall increa.'lCS
from 75.7% for the ha.-;eline system to 77.4% (1.7% difference). However the percentage of
complex disfluencip$ (repetitions/corrections and false starts) which are corrected completely
(Le. the n~aIl for these disHllellcics) inCfca.<;esfrom :13.8% to 36.8% which is a.<;difference
of 2.8%. In table 4.5 we showed that complex disfluencies tend to occur more often per
sentence than other disHuellcies. This might explain the stronger increa.'leof nx:all for mmplex
disflllencics when 110 model is used which predicts the number of deletions per sentence. As
in most disflllellt scntences only one deletion occurs (table 4.5) this model keeps the number
of deletions per sentence low which is not appropriate for complex disfluellcies.
Another interesting finding can be made when the model for the position of a disflllency in
a sentence is not cOllsidered. In this case the ~ystem makes very long deletions and it can
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correct sOllie disflllencies involving deletion regiolls which arc longer than 4 words. This is
surprising as one would expect that the system would make longer deletions if no model
restricting the length of a deletion region was IIsed. This is however not the case. A rea-<;Oll
for this behavior might he that the influence of other models (e.g. the language model) which
favor long deletions becomes stronger when initial sentence positions arc not favored anymore
a.."lpotential deletion sites.
Although improvements for eomplex disflllellcies or dislluencies involving longer deletion re-
gions can be achieved, when the models for the number or the position of disfluellcies in a
sentence are not used, we deeided to lIse both models in the following analysis. The reason
for this is the overall improvemeut in recall and precision which could be achieved by using
these models (table 6.4).

6.2.5 Effect of fragments

In order to examine the effect of the model for deletion regions containing a fragment at
the end, we modify the probability which combines the models contributing to the overall
translation lllodel (equation 3.3::i) by introdueing a fador At

(6.2)

vVe nse here the same notation as in sl."Ction3.3. Paliynment denotes the overall alignment
probability for an arbitrary word. For simplicity we skip the argument (0 or i) here. The
probability P.l is added or suhtracted according to the alignmcnt (deletion or no deletion)
which is made. The factor A/ scales the fragmcnt probability. We conducted experiments
with A/ = 0, AI = 2 and AI = 5. For the ba-<;clinesystem we have A/ = 1. Tahle 6.5 shows
the results for the differcnt values of AI.

~ Hits I Fabe Positives I Recall I Precision I
A, '- 1 (Baseline system) 837 140.7 75.7% 85.6%
AI ~ 0 834.4 131.9 75.5% 86.3%
Al ~ 2 827.2 162.4 74.8% 8:1.6%
,\, ,-::i 808.::i 168.8 73.2% 82.7%

Table 6.5: Results for differcut values of AI (Aim= 0.2)

Comparison of the bascline system (A/ = 1) with the system where no fragmcnts arc used
(A/ = 0) reveals that the fragmcut model does not contribute to much to thc correction of
disfhll~ncies. There is a slight incf(~a.••e of recall when the fragment Illodel is tlscd, however
precision decreases. The decrea."le of precision when the fragment model is \IHOO can be
explained whcn considering those fragments which do not occur at the end of a deletion
region. The fragment model favors deldions in front of those fragments what incrca.."lesthe
number of false positives our systcm produces.
For A/ > 1 precision and recall hecome worse. For A/ = 5 we note however that some
disfluencies involving deletion regions longcr than fall l' words could be correctcd successfully.
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6.2.6 Effect of binary context model
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In order to examine the effect of the binary coutext model on the results of our system, we
conducted experiments with and without binary context Illodel for language model weights
hetwccn 0.0 and 1.0. The system without the binary context model mrresponds to the
baseline system.
Figure 6.4 shows recall and precision for the two systems. The recall of the system using
the binary context model is above the recall of the haseline system up to AIm= 0.3 and falls
below the baseliue system for higher language Illodd weights. The precision of the system
using the binary context model is always below the precision of the baseline system. For
rea.'mnably good values of recall (above 70%), one can find no language model weight where
the gain of recall compared to the ba.'lelille s)'stem can compensate the strong strong loss in
precision.
A reason that the binary context model does not improve the results may be that the infor-
mation about the two previous deletions and the current word is to marse in order to predict
the deletion of the current word.
Table 6.6 compares the correction results for repetitions/corrections and false starts between
the baseline system and the system which uses the binary context model. Despite the im-
provement in performance for complex disfluencies which can be seen from the table, we
don't consider the binary context model in the following analysis, as our goal is to improve
the overall performance of our system in terms of recall and precision.

REP FS
Total DFs 230.3 120.9
Da.<;elineSystem 90.4 (39.3%) 28.3 (23.4%)
System with binary context model 103.2 (44.8%) 32.2 (26.6%)

Table 6.6: Correction results for complex disfluencies of the haseline system and the system
using the binary context model; AIm is set to 0.2; In parentheses the recall for the particular
types is shown
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The effect of the context model on the results of our system is examined by modifying again
the probability from equation (:}.35). A weight factor for the context model probability Ps is
introduced:

Pt + P2 + P4 + ..\COl'ltext . Ps ::l:..\f P3
Palignment = __ '-_-0.-_-'-_-'-==_=_-'--'-_ (6.:3)

a(Pd + o(P2) + o(P4) + Acontext. o(Po)
The factor ..\f is set to one during the experiments with the context model.
In our experiments we varied A(.on/ext between zero and 15 in steps of one. A first finding is
that the context model improves the results of our system significantly. Table 6.7 compares
the results for the baseline system (..\(.on/ext = 1) with a system using no context model
(..\context = 0).

~ Hits I False Positives I Recall I Precision I
Baseline system (..\context 1) 837 140.7 75.5% 85.6%
System lL'"ing110 context model 699.4 437 63.3% 61.5%

Table 6.7: Results for a system using uo context model compared to the baseline system
(..\nmtext = 1); Aim is set to 0.2

The strong effect of the context model can be explained when considering filler words and
short repetitions/corrections. Filler words can he usually identified by the word itself or by
the local context. Consider for example the sentencp_<;<;This is well done." and "Alright, wdl,
this is 11 good idea." Because of the right context "done" in the first sentence the context
model predicts that a delction of "well" is ""cryunlikely. In the second sentence the prediction
of a deletion of "well" is 1II0rclikely because of the left f.Ontext "alright". For repetitions like
"the thc.' or corrections like "I we" predictiOlL<;of the context model are helpful as well.
\Ve can observe a strong increa.<;efor the number of hits alllong repetitions/corrections and
filler words for the system which uses the context model compared to the system using no
contcxt IIlodel. An interesting finding is however t.hat the system using no context model
corf(~ets 40.5 false starts while the ba.<;elinesystem can only correct 28.3 false starts. That may
indicate that false starts cannot be predicted by taking only the local context into account.
Finally we note that the numlJt~rof disflueudcs where deletion regions are partly deleted or
overlapped by deletions of the corredion syst.em is higher for the system using no eontext
model than for the baseline system. Thus one can conclude that the context model is very
helpful for disfluency correctioll.
III sectioll 4.2 we mentioned already our attempt to make the predictions of the context model
more reliahle by using wordclasses. The wordclassc:; for the context model are used as follows:
Let ek he the word equivalence class for the word nk. Theil the word class ba.<;edcontext
wodel predicts the deletion of the word Ttj which helongs to the cla.<;sCj given the cla.<;ses
Cj_l and Cj+l of the words surrounding the word Ttj_ \Ve made experiments with 500 and
50 wonlclasses which were constructed using ouly the training corpora. The results however
hecame worse eompared to the system using no word da.<;ses.A reason for this might he that
the corpora on which thc classes were constructed arc too small to obtain equivalence cla.<;ses
which are useful for predictions.
For context model weights greater than one we note that the number of hits only improws
slightly. However for the number of false positives we observe a strong decrease for increasing
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Figure 6.5: Fal1'e positives for increasing context model weight for Aim= 0.2 (white bars)
awl '>'Im= 0.3 (grey bars); The error hars show the deviation among the different test sets.

eontext model weight. Figure 6.5 shows the 111lluherof fabe positives for Aim = 0.2 and
'>'Im= 0.3. For the higher language 1Il0dei weight, the dcnea.'ie of false positives is even
stronger. The best results for the language model weight Aim = 0.2 are obtained for a
context Illodel weight Aeon/ext = 10.

6.2.8 Best system

From the different experiment1' presented above, we conclude that especially the change of
two parameters improves recall and precision of our system compared to the haseline system:
A large value of the context lIIodel weight results in a higher precision. A low value for the
fragment model weight makes precision and recall go up even a hit more. Hence the parameter
settings which lea,d to the the best system are A/m= 0.2, AI = 0, AcQlItext = 10. Furthermore
the hinary context Illodel is not used, the models for pm;itioll of a disl1uencies, number of
disfluencies per sentences and length of the deletion region of a disfluency are used. Note
that these settings might still be suboptimal, a.'i this parameter combination is determined
manually and we did not conduct experiments with each possihle parameter comhination.
Table 6.8 illustrates for Aim = 0.2 the different improvements (AI = 0 and AC(mt~xl = 10)
which lead to the best system.

~ Hits I False Positivcs I Recall I Precision I 6. Recall I 6. Pf('cisioll I
lla.'ieline system 837 140.7 75.7% 85.6% - -
System without 834.4 131.9 75.5% 86.3% -0.3% 0.8%
fragments (A, = 0)
Best system (AI - 85:t3 92.4 77.2% 90.2% 2.3% 4.5%
0, Acontext = 10)

Tahle 6.8: Different improvements of the ba."elinc system which lead to the best system; 6. Re-
call and 6. PfL'Cisiollarc relative improvements of precision and recall, each time compared
to the system in the line above; Aimis set to 0.2
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6.2.9 Examples
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Finally we illustrate the performance of our system with some examples. First we present
a number of sentences for which our system produccs output sentences in which disflucncies
are correctoo as desired. Then we show some other ca."ieswhere the output of our system
contains false positives. Sometimes th(.'Sedeletions are tolerable because they do not change
the meaning of the sentence. In other ca.'iCSthe meaning of the scntence is changed when flucnt
words are delcted. In these cases the output of the system becomes mostly ungrammatical and
even less well formoo than the input. Words with "=" at the end represent word fragments.

"Good" Sentenc(.'S:

Original:

System Output:

Original:

System output:

Original:
System Output:

Original:
System Output:

"Dad" sentences:
Original sentence:
System output:

Original sentence
System output:

Original sentence:
Syr-tem output

boy I sure wish our schedule w= we need to to plan ahead for
thesc things so we can have our schedules a couple of weeks ahead
of time clear
we need to plan ahead for these things so we can have our schedules
a couple of weeks ahead of time dear

I I the the the travel agcnt might be able to help you out with
that too
the travel agcnt might be ahle to help you out with that too

so we could we want to try for a an arrival Friday morning I think
we want to try for an arrival Friday morning I think

you know so we have to find a space that there is three days :yeah
r-owe have to find a space that there is three days

yeah it doesn't really matter much to mc
it doesn't rcally matter to me

nincteenth of this month
of this month

nothing really got my attention
got my attcntion

6.3 Results for the Mandarin Chinese CallHome Corpus

In this scction we descrihe the results from the experiments we conducted on the 1.fandarill
Chinese Call Home corpus. In order to find the best parameter settings we used the expericnce
gaincd during the experiments with the English VERB~10BIL corpus and varictl the language
moclel weight and the context model weight and examined the cfftlct of omitting the 1II0del.s
the position of a disflucncy in a sentence, the length of deletion rcgions and the number of
deletions per sentence.
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6.3.1 Baseline system
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Figure 6.6 shows the results of the expcrimcnts with a haselinc system on the Mandarin
CallHome corpus. This system works with the same parameter settings as the ba.<;elincsystem
we IIsed for the English VERB MOBIL corpus. Only the model for the length of deletion regions
with fragments at the end is not included a.<;no information about fragments is provided in
our transeriptions.
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Figure 6.6: Hits (grey bars) and false positives (white hars) for disHueucy eorrection with the
baseline syst.em on the Mandarin CaliHome corpus

The total number of disHuencies in the 11andarin te:;t set is 300!:!. The maximum number
of disfiuencics our system is able to corree! is 1340 (for Aim = 0.2). This corresponds to
a recall of 44.5% which is much worse than the rl,'Callachieved for the English VERDMOBIL

corpus with equivalent parameter settings. The best laugllage model weight for the ~'talldarin
CaliHollle corpus is however Aim= 0.1, since the number of hits is not too much lower here
than for Aim= 0.2 and the llumber of false positives is still low. Table 6.9 shows the results
for the hest language model weight for the baseline system compared to the language model
weights where the most hits (Aim = 0.2) and the lea."t false positives (Aim= 0.0) occurred.
III the last two columns the re:mlts for English VERBMOBIL (~orpus with the same parameter
settings arc displayed for comparison. Remember the we (letennined AIm = 0.2 to he the
best language model weight for the English VERD"toDlL corpus, thus for both corpora the
optimal language Illodel weight is in a similar region.
The ligures for deletion regions \•...hich arc deleted partly or which are o•...erlapped by deletions
of the correetion system arc compared to the corret-iponding figures for the English VERBMO-

BILcorpus in table 6.10. \Ve note that the mllnbcr of dh.;fluellcieswith partly deleted deletion
regions is high compa.red to the English VERBMOBIL corpus. The number of deletion regions
which are overlapped by correction system deletions is in the same region for both corpora.
Table 6.11 compares which types of distluencies are corn~ted completely for the two corpora.
For the English VERBMOBIL corpus we display the figures for discourse markers/filled paUfiCS

in the eolUUlIl"FP". The figures for editing terms and interjections which are only considered
in the English VERBMODIL corpus are not shown in this table. We note from the table that
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Mandarin Call Home English VERBMOBIL
Hits False Positives Reeall Precision Recall Precision

~Im 0.1 1145 302 38.1% 79.1% 69.6% 66.7%
AIm 0.0 549 135 18.3% 80.2% 55.7% UO.2%
AIm - 0.2 1340 803 44.5% 62.5% 75.7% 86.5%
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Table 6.9: Results for different language model weights for the 1.1andarin CallIlome eorplL,)
compared to the English VERB?WDILcorpus

c=J )"Iandarin Call1Jome
[8i>] 247
~ 19---------

English VERBMOBIL I
38.3 I
16.8

Tahle 6.10: Deletion regions deleted partly (ddp) or overlapped by corredion system deletions
(dod) for the Mandarin CallHome corpus (AIm= O.I) compared to the English VERB~fOBiL
corpus (Aim= 0.2)

the correction of complex disfluencies (repetitions/corrections and false starts) seems to be
the hardest task for both corpora.

~ REP I FS
~-~~~-M~C~C I EVM MCC I EVM

FP
~~-IC=C=I-E=V=~-1

Total 1326 230.3 13 120.9 1669 702.4
Hits 246 90.4 I 28.3 898 67\.2
Recall 18.6% 39.3% 7.7% 24.3% 53.8% 95.6%

Table 6.11: Hits b'TOuped by disfluency types for the ~Iandarill CallHome (~ICC) corpus
(Aim = 0.1) and the English VERBMOBIL(EV!\,.j)corpu.,>(Aim= 0.2)

6.3.2 Effect of the context model

The influence of the context model weight on the results for the Mandarin CallHome corpus
in shown in figure 6.7 for AIm = 0.1. \Ve varied the parameter Acontext from zero to tell in
:.;teps of one. Recall (dashed line) increa..'lcsstrongly up to AIm= 2. Then the increase of the
recall becomes weaker and finally there is no growth anymore. Precision (solid line) increa..qes
only up to Aim = I and decreases slowly for higher context Illodel weights. Therefore poosible
good settings for Aco••tert arc four, five or six, since recall is already high in this region and
precision is not yet too low.
Table 6.12 mmpares the rc:.;ults between the Mandarin Call Horne <:nrptls and the English
VERBMODILfor Acontext = 1 (baseline system), AC'Otltext = 5 (be:-t value for the 1'Iandarin
CalIliomc corpus) and Acontl'xt = 10 (best value for the English VERB~IODILcorpus).
\Ve note from table 6.12 that the recall rate shows the sarne trends for both <:nrpora. It
increases first (more or less strongly) alld stays then almost at an eqllallevel. For precision
we note that the maximum for the 1.faudarin CallHome corpus is already reached at Aim = 1,
compared to the English VEnm.IoBlL corpus where the maximum is at AIm = 10. Onc
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Figure 6.7: Recall (dashed line) and precision (solid line) for different context IIlodel weights
for the Mandarin CallHomc corpus. (Aim = 0.1)

1.landarin Calli fame Etl~lish VERDMOBIL

Hits False Positives Recall Precision Recall Precision

Aeuntezt - 1 1145 302 38.1% 79.1% 75.7% 86.5%
Aeon tat - 5 1451 483 48.2% 75.0% 77.2% 88.9%
Arontext 10 1463 528 48.6% 73.4% 77.1% 89.8%

Table 6.12: Results for different values for AcOfltat for the Mandarin CallHulllc corpus (Aim=
0.1) and the English VERBI\WOIL corpus (Aim = 0.2)

re,L'iOIlthat thc maximum for the Mandarin CallHume corpus is reached earlier than for the
English VERB~1OBIL corpm; might be that we use a lower language model weiv;ht for the
Mandarin CallHome corpus. Thus the influence of the language model is reduced too much
already for lower context model weights. Another rea.'lOIlmight be that the predictions of the
context model for the Mandarin CallHome corpus are more unreliahle than for the English
VERBMOBIL corpus (due to sparse data). Thus a negative influence of the context model for
the Mawlarin Call Home corpus can be seen already for lower eontext model weights.
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6.3.3 Best system

''lie found that the models for the length of the deletion region of a disfluency and for the
position of a disfluency in a scntence improve the results of our system. The model for
the lImuber of deletions per sentence however makes recall and precision go dowIl. Possibly
another choice of equivalence classes for sentelH.:e lengths and the number of deletions per
sentence could change that. However we concluded from the inspection of the English VERB-

MOBIL data and the Mandarin Call1lome data that the same choice of equivalence cla$ses for
both corpora is appropriate.
Hence the system which produces the best results for the Mandarin Callilomc corpus uses
no model for the number of deletions per sentellce. The language model weight is sct to
Aim = 0.1 and the context model weight to AcQ1ltext = 5 for this system. Table 6.13 compaf('.S
the results from this system with the results from the baseline system. The slight decre<L<;C
of precision for the best system is compensated by the big illcrea.<;eof n~eall.

~ Hits I False Positives I Recall I Precision
Ba..<;elillesystem 1145 :302 38.1% 79.1%
Best system 1486 448 49.4% 78.8%

Table 6.13: Overall best system for the ~lalldarill Chinesc CallHome corpus compared to the
ba.''lcline system. For the best system we S(~tAim = 0.1, ArontexL = 5 and no model for the
number of deletions per sentence is used

Generally one can observe that our :-ystem performs worse for the 1.fandarin CaliHome corpus
than for the English VERBMOBIL corpus. As suggested in section 4.1.2, the main reason for
this seems to be that the vocabulary of the 1-1andarin CallHome corpus is more than three
times bigger than the vocabulary of the English VERDMOBIL corpus, while the amount of
training data we have for the 1-fandarin CallHome data is not evell twice as big as the alllount
of training data for the English VERBMOBIL corpus.
The portation of our systelll from English to r..-IandarillChinese was very straight forward.
We used exactly the same statisticallllodels for both languages where only the parameters
had to be adapted for the different langl1ag('~"and different corpora. A deeper knowledge
of particular characteristics of Mandarin Chinese spontaneous speech would perhaps help to
improve the performance of our system on the Mandarin Calillome corpus even more, since
our models could be modified to meet special requirement:; of this language. Nevertheless it
is remarkable that it wa..<>possihle to lise our system on Mandarin Chinese without having
any knowledge ahout this language. The annotated training was sufficient to train aud to
II:-ethe system.

6.4 Comparison to Other Work

In this section we compare the results of our best systems with results of some other works
about disfluency processing we described in section 2.;$.2. Although recall and pr<.-'Cisionare
important measures for the evaluation of the performance of a dislluellcy processing system,
one can not compare the results of different works hy only considering these two figures. As
one can see frolll the experiments we conduded on different corpora it is always important
to take the corpus which is used into ~<':OUlltwhen results are compared.
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Table 6.14 compares our results with fivc other works about automatic correction and dctec-
tioll of flisllucncics. If availablc, wc givc results for disfillency eorrectiou and dctection. Note
that in our system disfillCIlCYcorrection and detection can not bc separatcd. Hellcc wc can
report only a correction result for our experiments.

I Authors I Corpus I C/O I Recall I Pm,;,ion I
Qur system English VERBMOBIL C 77.2% 00.2%
Our system Mandarin CallIIome C 49.4% 76.8%
[Ilear ct al., 1992J ATIS 0 76% 62%

C 44% 35%
[Nakatani and Hirschberg, 100.1J ATIS 0 86.1% 01.2%
[Hecman, 1997} Trains 0 76.8% 86.7%

C 65.9% 74.3%
[Zcdlller, 2001J English Call- C 51.9% 59.4%

HOIIle/CallFriend
[Spilker et aI., 2000J German VERI3MODIL 0 71% 85%

C 62% 83%

Table 6.14: Comparison of the results for different works about disflucncy processing. III the
<:olumn C/O it is marked whether the rcsults apply for disfluellC)' correction (C) or dctection
(0).

The ATlS eorpus (air travel planing) and the Trains corpus (railroad freight tram;porta-
tion) are comparable or evell ('..,'"\.Sierfor the ta.••k of disflucncy correction than the English
VERBMomL corpus. The variety of topic..<;and thc sizc of the vocabularit~s arc smaller than
in the English VERB MOBIL corpus. The Mandarin CallHome corpus and the English Call-
Home/CallFriend corpora with a comparatiwly large voeabulary size and a large variety of
topics which arc treated ill the dialogs are more difficult than the other corpora.
We note from table 6.14 that 0111"system for the English VERB MOBIL corpus outperforms
all other systems for disfluency corrcction. \Vhen we comparc our system for the Mandarin
CallHolllc corpus to the DIASm.H.I-System IZeeimcr, 2001J which is the only system working
all a "difficult" corpus, wc sec that we have a higher precision, but Zcdmcr's syst.em achieves
a higher recall.

1The r('l;uits fur thc syst('m form IZPl.:ILnt'r,2DDl) ar(' nut reported ill that work. \Ve evaluated Zechll('r's
system in our lab, using lht' data, which Z('(,hner lIst~da.'i wfOllfor cvaluation in his wotk.



Chapter 7

Conclusions and Further Work

In our work we presented a. system for disflucncy correction in spontaneous speech dialogs
using a noisy-r1ltumel approach. The system is trained using information extracted out of a
text in which disfluencics are annotated. After training it is able to perform the correction of
disfiucllcies for an arbitrary sentence. \Ve conducted experiments all the English VERDMODIL

corpus and the Mandarin Chinese CallHome corpus. The rc:;ults of our experiments indicate
that our approach is working well for disfluclicy correction. The results on the l\lalldarin
Call Home Corpus even Sll~cst, that the approach is applicable to different languages.
Neverlhelclili, there remains still sOlIle work to be done in order to improve the system.
In order to fully int%'Tate our disfluellcy correction system into a spontanoous speech pro-
cessing framework, it needs to function on speech recognizer output rather than on manually
transcribed speech.
Furthermore the influence of some more features for disfluellcy correction and det.ection should
be examined for our systeJIl. A simple Illodel which can correct repetitions and correction by
considering matching words or POS-tags in a senteucc might improve the performance for
thc correction of disflllencies of this type. The effect of acoustic features (e.g. duration of
panses and words, intonational boundaries) 011 the performance of our system also remains
to be examined.
\Vith a growing number of features the number of free parameters to be adjusted grows as
well. Thus it is important t.o develop an algorithm which finds automatically au optimal
parameter combination given an optimization criterion.
lIellce our current system can be seen as a first step forward huilding a disfluency correction
system using a noisy-channel approach. We believe that the extensions proposed above can
tral1."iformsystem to an even marc valuable component in a spontaneous :-pecch processing
framework.
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