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Abstract

In this work an improvelllPllt for particle Hitl'r bast'd spel'rh featuw l'UhallCt'llIcnt for
automatic sp('('(~hrl'cognit.ion iBproposeo. ThiB improvellU'nt. is aimp<i to spPf'(~henhance-
Ulr'llt in em.ironments with 11011stationary, voinod Hoist's such as mu:;k, For tid:; reason a
voin:-d-ll11\'oiC'('(lclassificatioll of distorted spPf'ch is l>f'rfoflllt'd on a fnunp-l'y-frame 1>H.'iis,
A part ide filt('r is serwd as noist' t rackiug franlt'work 10toslimal {'clt"'anspt'(-'chfentures with
comparison of voict'c1uessclass priors, Le.•. l{'ol1sticmodel of spr'l'(~hand <lut.o('ofreiHlioI1
ha.<;('odassificat.ioll. Furlher comparison 10 lIm.oiceo noisf' is perfornlr'o.
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1. Introduction

~oise f('dmtion plays a bip; roll' in automatic :-iIW{'{'h [('('ognition. lwcH.usel'Yl'1la wf'ak
noise If'atls of1£'11to significant rising of word error rat!'s.

But Iloi"e is an indeff'H.sihlepart of every fenmling made ill any [pal f'IlvirOIlUlPnt. For
recordings. which are madf' outside. Olll' eau think ahout natufl' souuds. like wind. water.
flU' birds or also traffic and industry noises. III dosed ellviroumcnts there arc a lot of
noises too. e.g. )watiug. vcntilatio!l. air couditiouing. offin' noises. stpps. crowd ('te.

r\oise rMlldion shows to he a very dilfkult allel dJallengillg problelll dIU' to cOlllpll'x lIoiSf'
patterns aud mixtlln's of different noises. Performallcf' of automatic spPf'ch rt-'(:ogllitioll
(ASH) is affectl'ti by noise types differt'utiy. Voicl'd noise such a."music aff"ds pefformance
(If ASR ~y~tt'tllSstrongpf. One fea."i<lIlfOf that. i~ the elJt~fgycouc(,lItfation of voiced noise
ill dt'dicated frequpucy band~. which leads to strong ~Ill'echsignal distortion in that hauds.

1.1 Related work
A sl)('('ch enhancement systt'1lI gcnerally {~onsistof two majof rompOIlClItS:Thc estim<ltion
of spp{'Chsignals. and thp ('stitllation of noise. The estimation of Hoisl' b{'Conl(,:,a difficult
prohlelll if lIoise is a...•."umf'd as IJ(JIJ;.;tationary i.e. changing ow'r tiull'.

P.Iall}"solutiou;.; wpre propoSPd to d('al with lion stationary lloisf'S. I\'IlIIlt'rous evoln'{i from
audio SOUf('I'spparatioll research. In lIlany cast'S noise can be Sf'f'1la."just allot her SOUf('P
siglla!. that i~ not of intpcf'St foc the giW~1lprohl(,lll. P.g. barkgrollluilllllsk oc even another
spCffh sigllal (cross talk). A f('view of mod('fll Sl)Un'eseparation tf'dllliqu{'s can he found
in [V.fA+05]. Two main approadll's can he distinguisiu'(l here. First a source separatioll
ha.'*'<1on spat ial diversity of soun'l'S e.g-. [VHUIOJ. which a.'iSllIIIPSpolyaural recordings. In
gf'necai tlll'fe should he so mally challllf'ls in t1}(' ff'cording fl."there afe ~ources. Sf-'{'ondsuch
a."SlIluptiOllSare not Ill'('tll'd. but a priori illfoflnation ahout SOlln'l'Sis exploited. This a
priori information is gellerally prpsent('(1as leaflled signal codl'hooks. Evaluation of ~',"eral
stratt'gips single Sf'nsor ~ource scparatioll on spf-'f'chaud lIIusk sources is pl'rfofnu'{l ill
[nRF08J. Those stmtt'gips can h" gt"ueraliz('<ifor application 011 other sources. In [BHF08J
the nOIl-stationarit.y of SOUf{'PSis not Illodeled explidtly. i.('. the motlt'l is parametrizf'(!
with tilile variahlps, and this paranlf'tec b; anot.her dinlf'usioll of til(' lIIodel. which is being
pstimat{'li in a !\Iaxillllllll Likelihood (~IL) s('nse with the other parametecs.

In JFW(6) W5lft'l and Faubel haw integrat('{1 the particle filter framework in au ASR
s.vstelll to track lIoise for sp('('ch ft'atUfe enhancemcllt.. Their part ide filkr make!'>use of two
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pa.•.." sl)('('ch n'('ognition !;ystt'ms. At thf' first pass thf' ASH syst('m produ{'(~shypoth,'!'(,:"
The particle filter modds the sp,'('ch signal with a static g(,llf'falGaussian r-.lixture r-.lodf'1
(Gl\U\I). The hypotheses are IIs('(1in tllP s('(~ondpa.'isto estimate a phollt'-spf'Cificspt,t'ch
G),ll\l. In [WoI08] the author::;have improwd their approach. They haw joinf'tl t III'particle
filter with a multi-stt'p liut'ar prt'diction framework to also tfl'at the r('verbt'fant distortions
of speech !;ignals.

The main drawback of pholl('-spf'Cifit:sp('('Chmodeling. usf'tl ill particle filter. is that the
hypotllf'Sl";-,;,producf'tl at the first. pass do not haw 1Jf'corrt'ct. Errors in tht' hypotht~'s
If'ad to choices of mismat.dll'd pholll:'-spt'c:ificlIJodf'1of !;pt'('('h, Usillg this mod,'1 makf's
euhallced sl)(,l'ch fcaturPs tyiug to tilt' wrong hypotht,st'S, This df,'{,t is dis("ussl'd in thc
HCxtchaptt'r,

An illlproW"lIH'utaddres..,edto this problf'1llis offerf'd by Heger ill [lleg07], Tllt'ir idea is to
\lse sp('('ch modpls based Oil phone da.o.;s<'S.The da.<;."ificatiollof tht-'!'('dassel' is exped('(1
to bc mort" robust to noisc, Th(' way of proceeding was the sam(' with phone spt'dfic
spt'f'(.h models: Voiced or 1Illvoic('(it1"c:isionsfor (,Behfralile werf' lll/lIle according to the
hypothC!:'t'l:ifrom the first ASH pa.<;s.and than usf'tl in the !;I','ondpass to model sllt'ech as
a seqm'nce of \"oin~1or U11••..oiced sllt'dfic G)'[Ms.

In tlIf' work he studied such phonc cla.'ls~ a..,:voi('l'd-llllvoin-',1.vowels-consonants and also
dat,H!rin'n dllstf'red da.'lses, Of thf' main illft'rest Wf'rt'vokt'd-III1\'oicf'dc1a.'iSl's,1)f'('alL<;C
of bi.e;diffprt'nc<'Sill Ihc naturf' of voict"dalld unvoiced signals. i.e, ellf'rg:r dbt.ribution o\.(-'f
ffl'{llll'lIci<'S.

TIH' wt'aklll'ss of this tcchnique is poor robust.lless of thf' ASH system m cll.'ieof 1l011-
st.atiOllary noist':'.

1.2 Goal

In this work we aim at enhaUcPlllellt of ~p''l'(:h fpatures rohust t.o hllrkgrouud music in
context of automatic spf't-'chrf'Coguitioll. TIl(' lion-stationarity of the !IoiSt'is f'xplidtly
modpl,'ti and tracked within a particle filtt'f fralllPwork. while for SIll't'chsil-,'lJalsnot IJf'ing
tra('kt'<.lsOllie extra information ahout sprech sip;nal is used. Lt'. a voin'd-unvoin,q cIao.;.
!;ification of distorted sp('('ch IwrforIlll'd on a frame-by-frame basis. The voiced-unvoiced
classification is an a priori information for the partidl' filter. Therefon' it is gpnl'rated to
IN 1Is"da'l input of the particle filter framework.

In this work all impro\"f'llH'ntto the IIcgl'f's system [Heg07]is sllggestt-',1.The idea b to 1I~t'
another tf'<:hlliqueto perform the yoi('pd-unyoin,q cIa'lsification. This t.t-dlllique is based
on improved autocorrelation algorithlll. proposf'tl hy propo.st-dDoersma in [Doe9:J]and
implt'llIt'nted ill Praat, a systf'1lIfor doing phollt'fics hy ('ompukr[Do{'()2]. The algorithm
will be described in one of the next sediolls.

Anotlu'r point of intf'rt'st in this work is to study the influellce of difft'H'lIt noise types 011
thf' performance of voin"d.llll\'oin'd dus!;ifi,'ation and its eff('(.ton the performance of the
particle filtt"r, Expt'rilllcnts with two types of liaise are perforllled: ullvoiced noise e.g.
wind, on'all. and voiced !loise. t'.g. musk.



2. Particle filter

2.1 Particle filters in ASR
In this section the particle filtf'r fnUlH'workand its application ill automatic slw('t"hrccog.
Ilition is illtrodllct-'II.Maiu steps ill the part ide filter proces....;inp; chain are H'viewed.

Particle filteTs. ill sfatistics also kuowu as sl'quclltial ~Iont(. Carlo 1\1('1hods afe USUl1l1yusoo
to pstimate Bayesian models ill which the lateut variables art' COlllil'('tcdill a I\larkov dmill
similar to 1111:\1...•bllt typically wilf'fe th(' state span' of thl' latent variablf's is continuous

ratllt'r than dislTf'tf' [\\'ik12]. It means that if WI-'track a state of sOllle dynamical systf'llI.

which moel"l is not IIt-'(:cssaryrestricted to Gallssiall distriiJlltions awl is too complex to
sO\V(' it analytically Wf' can providt-' an optimal estimate of the modd and trat:k the state
with Iwlp of tilt' part kit' filt(,L

One application of the particle fi1t('rill automatic spl't'('h recognition i:-;noise tracking. This
idea is fOllnded 011the knowledge. that sO!llenoh,l's can l)l!quite well estimated locally and
are of a p('riodk natm{' e.g. IIlllsic. stt'ps. stn'pt traffic f'tc.

Figmf' 2.1 dl'picts stl'l);;of till>partic1l' filter algorithm. y~.n'pn'sC'nts fpatures for tht' frame
1.:of th(' noise distorted sigllal. e.g, spectral mf'ttit-if'nts. rh is thall the l'Stimah't\ noise
slwctrum of the frame k. S part ides of the partide filtf'r arC'S po:-;:-;ihll'lioiS{'spectra
of frallll' k. Partides arf' denotf'd by di:~).which refers to estimated lloise spt-'(trUlIi for
fmult' k hy part ide s, where", = 0., .. ,S. TIlt' part ii'll'Sare ('valuat.ed with the evaluation
function B(d~~). ,W.) '"- p(Ykltll.~)) Le. the probability of Hoisy spedrum giYf'n a di..,tort.ioll
SPI't't rUIIl.

St{'PSin the partidf' filter <tlgoritlun:

1. Initializatioll: Suppose S particlps with sOllie initial ("()ufiguratioll, This particles
an' weighted samples of noise for a giwn fmme. These wdghts are initially sd.
accordingly to t.he uniform di..,tributioH.

2. Importance sampling: Pick S tillles one particle in resped to thp partidf' weights
i.e. partidf':' with hig weight an' picked more oftt'll.

3. Particle evolution: At this step particle-; W.otthdr new ('ollfiguratioll. An appropriate
model is used to calculate till' Hew possihll' noise sjll'ctra for each partidl:'. SOIHf'
rushing is also addt'!l in order t.o he ahll' to track ill (:!:I."ieof de"iation from the
lIlodel.
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Figun' 2.1: Main steps in the particle fi1tPf pwces,..:;ing ("hain.
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Figure 2.2: Gt-'Ileral flowchart of fralll{'"ba.',,(,dspf'f'ch ff'/ltun' f'uhann'lllf'nt for 1l011-
stationary additjw distortioll using; Ii. partidt-' fiht'r with importalll'f'
rt'saillpling.

4. Partide ('wl.]uation: :'\cw wt-'ights of the part ides an' eakulah'ti with the evaluation
functioli.

It is important to uotice. that the lllodf'l of df'H.1lspN'ch plays the primary role ill the ('va1\1-
al ion step. The ('vailla!ion function. 1ll0f(~exactly the prolm.IJilityI'(Yk.)di.s)) is prop()rt iOllal
to the probability of c1('HIlspp('ch f'stimatt-' by given distortion (':,timate tli.s) r('[('rable to
the particle .~:

when...•.\1 is a spt'("('h mudd and Ik (':4imati,d SPWdl fpaturl' for fralllP J..:.

2.2 Particle filter framework
Tht-' particle filter franlPwork. that we liSt' in this work is presl'llt.('dby Faubel and \Viilfel
in [\\'iiIORJ. TIll' authors presellt a gt'llI'ralized partidf' filter framework. which is cap»ble
of jointly tnlt.king !loist.'and reverber»tiOIl 011a frallle-by-framc ha."is.

In this section we hrit>ftyrest ate their approach. Scht>maticsof joint part ielt' filter is giwlI
in Figure 2.2. Tht' figun' is takt'!I frolll [F"'06J.

2.2.1 Reverberation Estimation

Tht-' fe\"{'!Jration estimation b ha."ed 0111I11llti.slt'Plim'ar prf'diction (l\ISLP). which in
coutra.."t to the linear predictioll (LP) aims 10 pm:lict a signal afkr a giwll delay D. the
so ral1t'd stt'J>-size. \Vith tht' prediction <'frof e[nJ ~ISLI' OHIhe formalizf'd as:

,\j

y[nJ = L CmY[lI - 111 - DJ + f'[nl.
m=!



wht'f(' C1, c2' , , , ,eM prt'l't'llt till' LP ('ol'ftkit'llts, yIn J the oh,;t'f\'('(!signal anel ,\I t 1)(' mood
ordf'r. To solvf' for the l\ISLP cocfficients c = [q, Cz, """,cMf the minimullI squaf(' t'rror
l'to;tiIIIat l' is uSNi.

All est illlatp of t.he rdlpct ion Sf'qUf'IlCf'r [nJ is obt aincd by fiitcrinp;the oiJ,.;{'fyatiollst'(IIICllce
y[nJ with the ~[SLPfilter

.II

1'[,,] = L cmy[n - m + Dj.
",:1

The reftf'<:tionS('(llwllcer[nJ is 1I0WcOll\'ertf'<!illto short-time power spt'etra rk.. This highly
IIflll-statiollary distortion t':.;tilllah~hoi treated just like all additiv<, distortion and n-'moYt-'d
from the distorlt'fl S('quence y[k] by sIwdral suhtraction. The distortf'd y[kJ b f('SIwctiwl;.'
('stimatt'(l for all franws. k = 0"", K, frolll y[n].

2,2.2 Distortion Estimation and Particles Initialization

The first step is partidt' initialization by drawillg ,;amplcs from the prior part.kh~ fknsity.
The prior d('llsity of additive distortion p(ao) is cstimatf'<! illdirediy via oycrall distortion
density p(du) and f'stima!t'f! rpwrberation distortio1l density p(ru):

l'(ao) = In(expp(do)) - expp(ro)),

wht'ft' p(du) derivl'd on sil('nt regiolls of tilt' input signal which ('ontains additive alld
conHlltllive distortions and ]I(ro) is pstimatt'fl o\"er all frames derh"f'<!on til(' reflection
scquent't' rk-.

2.2.3 Particle evolution

The evolution for cadi partidl' pi,s), I>= 0.... ,s - 1. is estimated by all autorcgressive
process with All-matrix Pk'-l for eadl frallle k:

The An-lIIatrix is giwlI by

where Ak is the additiw distortion matrix allO Sk is tilt"'matrix of scale tenlls for the
rcwrhcration distortion. Dimension of Sk is 1 for ,~ha1"HI,'imling factor' and 11for Indivillual
scaling fador for each fH'-quency bin, w)wrl' B b the number of frequcucy bins,

2.2,4 Distortion combination

Now, !lIP oistortioll sampl(',; diS) [b] are calculated for each particle pi....) and frequeucy bin
bas

where a[I)] repr('gents additive distortiolls, rIb] represt-'lI!s the spel'tral distortion oue to
reverberation allll,~[bJreprM'f'llt.sthe scale !(-'fIllSfor r[b],



2.2.5 Distortion evaluation

With tIl(' prior sp<'1'("hdensity ]JspeechO earh di~tortion ~ampl(' dt') is eva.luated a('(:ordinp;
to t hI' likplihood

( Icll')) (I (1 ""'-yo))]J Yk' k ,....,p',peuh Yk + n - e k .

awl its normalized wt'ight

(2.1 )

(s)
I('k = I ,,))

]J(Yk di
S (11m))Lm=! P Yk" dk

oJ(,)is cakulated. TherellV 1 - t: ~. -Yk is a dean speedl estimation. given signal Yk and
currently ('va1uatf'd di~~orti()ndis).

2.2.6 Distortion cOlllpellsation

The clt'an feature is e;limatC'd with the distortion samp1psdi:') and their corresponding im-
portant:e weights u{') over all partk1p samples S using the non-linear relationship betwt'1'n
Xk. dk and Yk as in

E {xkIY(H)} =t lL'is) (Yk + In(l _ Edi.J-Yk)
..

2.2.7 Importance Rcsampling: and Prediction l\lodel Estimation

This is tht' last. hut wry important step ill tl\l~ particle filter processing dmiu. Aftpr
eH'ry time step. the partide_-; an' resampled. ill order to avoid the cOllcentration of thf'
va.-;tmajority of prohability ma.';s ill wry f(.w part ides. Tht' prediction motif'1 is also new
tl."timated by the dynamic autoregres.sin' pron's,-;"



3. Voiced-unvoiced classification

Tht, tying of the pholle-slwdfic Sp('('('hmodd to thl' ASn hypothc~('s. whkh the modt,) is
hased 011. makes the application of the IHlOIle-Spf'eificparticle filter not f'fficicu! hy high
error rates. which is the casp ill w~rynoisy environments. This dfN:! can be explailll-'(l
as following: the partic1f's. which improw' the prohability of dt'an sp('('{'h estimat.e. are
weight,pl! higlll'r. (,VCll if the dt'an SIWt'ciJ is ('stimated wrongly (an ASH hypothesis is 1I0t

cOffed). The pholll:'-sp('(:ificpartidp tilt£'r Iwrforms f'xpectl'd good. if dean spi:'<'Ch[1'i1turcs
are estimated 011 th(' COll\"Pfsatiollrcff'H'lH"('.

To ill<Tca."1'perfOrlllaTl<.'Cof spl'l'ch [{'ature ('uhanCf'Illf'lltby t he particle tiltf'r the adv<l.lltagt'
of \'oi('{'fI-UllvoiC('t1c!a."sification of the distorted signal 011 a frame..by.frame oa.'iisis taken.
TIl(' Illotivation is more whust \'oi("('(I-llll\'oin-'dspced!.

For this da..'isificalionWt'Ust'two IIlt'thods aud cOlllpare thelll. The first i~all alltO(~orrelatioll-
hased method. propoS('<.lby Boersma ill [Oo('~n]and illlpleuwllted ill Praat. a systl'1ll for
doing phonetics by mIl1IlIlter [001'(2). We mmpare this method to the hypotP:-i(-'~bH..'i('(I
method. suggested by Heger ill [Heg07].

In order to ,'valuate the perfoflnance of tllf'se techniques n-ferenn,:, of dl'an spf'f'ch signal:-;
me being II.'it"1.III the following it is dl'noted as rt-'f(,rt'u<:t-'ba.'wddas,,,ificatioll.

Iu the next sl'dions WI'introtllln~ theS(' tedmiqups.

3.1 Hypotheses based method
Th(, hypothl':'t'S bast'<.iuU'thod is prest'll!t'd ill [Heg07J. The idea hi U:'e an automatic
sp,'('ch rt'cognitioll systt'lII to produce hypotilPses aud predefined phone da..-.;scsfor th,'
da..-;sification.

TIHN' pholU' dasSt':' are voiced awl unvoin'<.iclasses for our application. Th" \"oict'd das.'i
hi a set of pholu,:,. which are a priori kllown a...•\"oie('d. Tht. 11ll\"oin'(lda.'is i.sresIwdi\"e1y
a st-'tof phOllt':'. kllOWUas llll\"oiced.

The sl)('t'(~hrffognizer ('omputes a h.••.potheses trauscription of sp('('('h on distort('(1 signal.
This transcription is a S('qu(,llceof phones. All W(' Ilwd is to dll'ek out. which of tiH'1ll
bdong to \'oieed or IlIJ\"oi('('(Iphone da,.'isl's.

Olle disadvantagt~ of the hypotheses-im.l;l'<.imethod is that the \'oin'tl-UII\'oked specific:
lIlode! cannot he used in the first pass. \w('lmse no \'oi{'('(I-unvoieedda •..••"ificatioll is done
yet..
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Another disadyulltage of this method. as it wa..• IlH'ntiollt-,dbefort', is a big !lumber of
('rrors in hypoth{'l;('s in ca."l'of strong signal distortion. Thert'fort' a mort:' robust IHPthod
is suggested in the IlPxt s('Ctio!l,

3.2 References based method

The idl'a of this method is the same as for the hypotheses ba."it'(lmethod, Thp only
diff"'rt'nce is that here the fortHI (with rl'ft'rt'nc",) Viterili.aliglllnent on 1I~lr\.1is used to
prodwe a s('quen('c of phont'ii. Eyery phonp is than dll..",.•ified with the sallle predt'fined
classes of phOlles.

It is important to uotit-{'here, that the rl:'Su1t.of the voiced-unvoiced da ..•sification with this
lllt'thod diffl'rs by tiiffl'rent nois(' tyP{'iiand signal-ta-noise ratio. The rt'ason for it is that
the Vitl'rhi algorithm finels the i){'st alignlllent in according to the anHIstic information.

3.3 Autocorrelation based method

To makp a d('cision. if olle frame is voiced or ull\'oin,,<1a PTl'Sl:'Il("{~of sppak('r's pi!<"his USl,,<J,
as tht' voiel'd spe('ch is known as qUli."ii-periodk. ('onsisting of a fundalUt'lltal frequency
corresponding to the pitdl and its harmouks, It means if Wf'could ht'i1r or see that then'
is a fUlldalllf'ntal fn'queucy in the frallle speetrnm. than we d('('idl' for voin:'d spl"t'{'h. In
another ca.",ewe dt'(.ide for IInvoiel'tl spl'l'eh, which is stochastic iUllature and do lIot cousi~t
of a pt'Tiodif"part ill t.he sJX'etrum. It ean also he modplf'd as white nob;e, Therefore an
allto('orrelatioIl-ba.'.;{'dmethod for pitch detection i,; llst'd.

Sueh a method presented by UOt'rsma in [R(w!J:1jb straightforward and robust for period.
icity detection, It is working in autocorrc1atioll domain.

"Uy definition. the \wst candida.te for the acoustic pitch period of a sound cau he found
from t.llt' position of the ma.'i.imumof tht' alltocorrt'latioll function of the Stmnd. w1Jilt~the
degn-c of periodicity (the harmonies-to-Hoist' ratio) of the sOllud call he fouwl from the
H'lath't' iJ('ig1Jtof this maximum, Howt'ver. sampliu,!!;awl windowing caust' prohlems ill
a('emately determilling the position and hpight of tht' maximullJ. Tht-'St"prohlt-'Illshaw It,d
to iuacf"uratp time-domain and (,f'pstralll1f'thods for pitch t1etfftiol1... :'[Rot'!J:1]

The wiudowing problem is preseut almost in eVt'ry short.krm aualysis of periodk signals.
As it's name says. the applieatioll of a window function leafls to a signal distortion OIlthe
rim of thl' window, The rea,...;on is a wiudow shapf'. The problem is solypd in [Dof'!J:I].Tbt'
autll()rs Prol)(lSCto divide the autocorre1ntion ()ftil{'windowf'(lsignal\))' the 8utocorrelat ion
of the window.

Next prohleIll is the sampling problem. The n'(l,.';(JIlis that the autocorn'lation ('ompU1t'd
froUl the sampled sigual is also a sampled fuuction. It means. that the positioll of peaks
is determined with a pre<"isiouof sampling interval. whieh implies not wry aceuratc esti-
matiou of the pitch pl'riod. To 501n' this prohlem an interpolation of the autocorrt'!ation
fUllrtioli is propost'd [Dop!J;l].

A summary of thf' algorithm is giyc herl';

1. Preproet'i'lsing: Upsamplillg is performt,,<lto remove tht' sidelob of the Fourier trans---
form of tht' window for signal romponents near l\"yqllist frt'qul'Ile,\'.

2. COIllPUtt'the glohal ahsolute peak value of the signal.

:1. Short.tt'rm analysis

a) Pl'rform signal seglIlt-'lltation aud willtlowiug. The It'ngth of this segml'nt (the
wimlow Il'ugth) is dl'tenniupd hy a parallll'tPr.



h) P<-'rforma Fa~t Fourit'f Tran~form.

c) Square ~alIlples in the frt'iIIWIICYdomain.

d) Perform a Fa."t Fomier Trallsform. whkll giw'S a S<:'lmpINiv{'f..,ionof the auto-
correlation fUHctionof the wiJl(i()\wd signal.

e) Divide b.••.the auto('orr('lation of the window. This giYCsa sampled wfsion of
autocorrelation flllU'tioll estimate of the original signal.

f) Compute the (,(lIltinuous ver..,ionof autocorrelation fUlldion with hdp of inter-
polation.

g) Evaluate pitch calldidates. The strength of unvoked caIJ(iiciate is computpd
with voicing awl silence thr('~holds. These dppl'nd on the global ah .•olute peak
valut' of thp signal. If theH' arc no autocorrelation peHk.'iabove the voicing
threshold and It'S..,than silt'nce thrp~ho!d. a frallle hears a good chaw'p of being
analyZl'c1as voicelpss. The ma.ximum of the C1lltocorrplation fundion for the
current framp gives the actual pitch value.

4. Find the optimal path through tlu' pitch candidatl'~ with the aid of dynamic pro-
grammillg hy optimizing tlit-'{'Ostassociatt'<l with every possible path. This nIsI
i..,computed with Iwlp of two tran~iti()11('{)!ojtparanH'ters: VoicedUnvoiculCo,');t and
Oct ave.J ump C().~l.

One disadmntage of thi,.:;algorithm i~that it rather aims to accurat.t' pitch estimation than
to voin'ii-unvoicro da ..'i.'iilkat.ion. On the other sidp and in contrast to hypotheses-btl_<;('il
das."ification this algorithm call 1)('Ilpplied a.<;early H..'ilIl't.-ded.Iw(:auSt'the dassificatioll
happens prior to the s{)('{'cht'uhallcf'ment.

This nlgorithm aims to estimate the pitch ill the frequelH:y baud IwtW('{'llminimum pilch
and lmmmum pilch. The default vahit,s are: 7:Jllz for till' minimum pitch and fiOOHz fOf
tht' maximum pilch. Therefore if Iloises do not distort thhi frequeue)' band til{' algofithm
is rohust at high S~H.<;.Otherwise Iloi:'(' obscures the 111ldprlyingfundaUlt'uta! ff<-'q\l{'Il('Y.
Uuvoict,<luoise should not strongly affpet the voicing alld silence thrt-'Sholds. l)('(:all,..;ethey
dep{'ud 011the global absolute peak valUe of til<-'signal. The transition costs: Foict'-
dUllt'oic('(lCo,~t and Odal'eJ'II1npCo.~l di~{'rilllillat{'pitch paths with lIlany \'oicM-lllivoiced
tran."itiolls and f1l.'ihdlallges of pitch fH'quency. which helps to rpsist the aetiolJ of yoi("{'d
IlOise. These all pxplain the fn\)u.-;tnf'ssof til{' autoeorrelation-Inl.'i<-'dyoin'il-unvokcd c1a,"-
sifi('ation.



4. Experiments

In this section rf':omItsof the f'xperinlt'llts arf' prpst'llted. But first the Spt>t>dlf(,(up;llition
toolkit. datasets and acoustic modl'i..-of spPech 1Is<-,din the particle filtl'f are discussed.

4.1 Setup

4.1.1 Automatic speech recogllitioll toolkit.

The automat.it' sp('('('h r('(~ogtliti(llll'lIgilll'that we use in this work is .JRTk[~I+04].which is
dewiopl'(i and maintained by the Illtf'ractive Systems Laboratorit,s at. two siks: KarLsruhe
111stitut of Tr'dmology. G"fmaIlY and Carnegie !'.It,llon University. USA.

The sJlt-'p('h n'{'ognition system setup uS('(\ ill t his work pron'sses the i'iigual lItteralWf' by
uttl'rance i.e. preseglllf'utf'<1utterH.lI('csafC lwin,!!; pron'Ss('<i011eafter another.

The particle filter. that wa.-;us('(1in the following experiments. is disClls..'i('(1ill chapter 2.
It. is al,..;ointpgrah'd in .JRTk.

4.1.2 Particle filter and acoustic lIlodels

TIlt' pitrtidt, filter is configured for am t'xlwrimcllt,..;to 1I,..;e100 particles. It is the default
option in thb particle filter fmlllcwork. AnOllwr important option is the tnmscriptio1l
option, If tht-' traw;('ription is givcll, the partielt-' filtn trip,..;to u,..;esp('(jfic spetx'h models.
Using this option and predefitll'(i spf.'Cchmodt'ls makes it able to work with differt'llt class-
ba.-;(,dIllodels,

Two voict'd-lUl\'oi{'edspecific acoustic models w('re intt'gralt'd in the particle filter fralllP-
work within (-'quatiou 2.1. During particle processiug tht' particle filtN rt'(.eivcs a spt'('ial
tfallstTipt.ion. which dt'scrii)f's mdt fraUie. if it is voict'd or 1I11voicf."<.LIn rcslwd to this
dedsion a spN:ific SIM't'('hlIIodt'1is chosen. If tlU're is no dt'cbion for any frauw in the tran-
scription a gt'llcral spt'('(.h model b applietl. This model docs not account for differt'IlCf'S
bctwwn voiced and unvoiced SIWt'l-!t.hut helps to t'stilllate the spt't'ch signal. in caSt' whell
,.0iced-lIm.oin'(l c1a.,,,ificll.tionfails. In our f'xpl'riments awl for the h~t data llsed in the
f'xpcrilllents this ca.<;<>has HOt.occllrred.

To train voiced specific. Illlvoict'<lsp('{'ificamI geut'ral speech lllodels tht, sampling material
from [F\V06] wa<;used: ,.... train acoustic modt'l all the dose talking chanllel of mediug
corpora and Illerge it with tht' Translanguagt' English DatahiL.';e(TED) corpus summing



up to a t.otal {)f approximalply 100 hours of traJlIlIlp; matpria1. The :;pt'ceh data wa...;
:;uIllJllt'dat 16 kHz. Spft'(:h fralllc:; were ealculatt"ousillg a 10 111:-;Hamming window. For
pach frallle. 13 mel fn'qucney eppstral meffidt'uts or warpf't! !\IVDR ccpstral eOl'fficit'llt.-i
Wl'reohtaillt'd through a disnete cosiIle transform from Ilw Fourit'r t.ransformation or thl~
warped :'\IVDn :;pectral 1'1lH'lopt'. Ther('afteT. linear discriminant analysis \Va.'iUSf'd to
fl,(hH'ptht' ullt'ranee lm.'i('d("('pstralllll'an Ilormalizf'd featufl'S .....[F\V06].

Usillg the Ilwrge-alld-:;plit training pron't!ure Spt'l~chGl\I~b. ('ontaining G4Gaus..-ialls fOf
pach mode!. were trainf'ti.

The ..-ample; were split. into Iwo sets respeetivPiy 10 the two dasst'S of phont's:

C,'",,,,,I = {B,D,G,JlI, V,DlI,Z,ZlI,.If,N,NG,lI', R,1', L, ER, (4,1)
AY, OY, E1', IY, All', 011', Ell. Ill, AO, AE, ilA,
All, VII', V 1I,AX R, IX, AX,XL, XM,XX}

em",",eed {P,FTlI.T,S,SlI.lIl1,ClI.K} (4,2)

For the gt'lwral ;;pe('dl lIlodel phoIle sample:; of both dasSf'S han> ht'f'll PW(.t'sst>dat ann'.

To make the din'eI <:omparistm of yoiced-uuvoiet'd and general spff'ch partidt> filter pos--
sihl(,. tllP yoicl'd-Ililvoiet'timodpis wert' traiuf'tl on thf' samt' samplf's a..,the general :;peedl
modf'l. i.e, the number of samples used for ('a('h voiced ano unvoiced models was smaller
than for the g('llt'ral spt't'(:h 1Il0de!'

The re:;lllting models are reprt'sentf't! with mixture; of 64 Gaussian modf'1s. :..tixt.ures with
:l2 Gaussians for voiced-unvoiet"d specific modt-'Ishavt-'also lwt'n te;!t'd t.o take ill accouut
smaller nllmht-'r of samples ust'd to t"1itimal.t"voiCt'tiand unvoiced models.

Tht, noise lUodei of the particle filter is heing Ilpdnted on the fly. A spc't'ch activity detector
determines. if t.hl're an" enough Iloi~' fralllt's ill a curn"lIt utterance. In :;11<'11ca."pthe noise
model is heing updattu.

4.1.:l Dataset

For the evaluation u dose talking channd of lectllf(' spf'(-'chwith 16kHz lUid 40 minnt('s
duration \Va...;dlOsen. This data wa.'imixed with noise with 10 and 20dD signal-too-noist'
ratio (SNR). Two diffpft'nt noise I)lWSwere IIstU: o('("anwaves and wind as ullvoiced lIoi..-e
and mu."icwit.hout vocal a.'i voiced noisp.

On'an wavt" souud:; were t.akell from lp;m07]. "Ocpau wave; recorded from about 250 fecI.
up. nl't:oroed on a Zoom H4 \\ith the mic:; covt'nu in zeppelin fur at 9GkHz 21-hit awl
down:;ampit'd to 48kHz. Bt'callst' of the oistance. tht' stJUlldis as Ulllch ahout whitc IlUise
as wa\'e;." (graOT]Thi:; :;.uulld\Va;,;downsampled to 16kHz to mix with :;pl'l'dl data.

The 1U1lSicdataset was pwvidf't! by authors of [nLP+06]. This data""t collsist:; of GOO
pop, jazz and da..,sical compositions in kamokt-' and midi formats. \\'e die! not distinct
betwt't'll pop, jazz and cla.-;sicalmllsk, therefore compositions from all st"t.sWt-'ft'randomly
sl'lt"{,tl'<.1.Thp track:-;wpre mnwrtt'tl to PC~Iwaveform data with UiklIz sam}>l!'rate. In
order 10mix data in proper Sf'n the root mf'an square ( n:"ls ) amplitudp of all tra{'ks was
IIOfmalized to the n 1\ISamplitudt' of spt'l'Ch signal. The select ('(I t rack:-;were concateuated
and mixed with speech datu.

~lixtuft'S with ;~ signal-tn-noist' ratios were nealed for the experillH'llts: dean sjw("ch
(nomix). 211oil and 10 dO.



4.2 Systems
For the experiments ;'0 difft'rcllt system olllfigurations werc tested. These are systcills with
diffeft'llt voin.d-Ullvoir:f'd dassificatioll methods. systellJs with ouly general sp('('("h particle
filtf'f aud systt'lIls with 110 partirh. filter puahlHI: each of thelll with two llOisptypes and
with t hf£,(,SNRs: dean !'Jll't'ch. 20dB and lOdD.

As a front-end a warped minimum Variall('I' distortion!f'ss f('SpOIlSf' (.\IVDH) [\\'.\1051 eBye-

lope \Va.••USNl.Signal frames WHe calculated usin,!!; 16 illS Hamming wiudow. A filterhank
with 12!) hins was applied. In ardN to prevent the particle filter workiug ill high di-
llwusional space, the lop;aritlnuic spedral domain. after cppstra! to 20 dimcllsions in the
('epstral domain. is used.

Eyf'fY test COllsbts of thrce steps:

1. First pa.'iSrC(:(lgnitinw In this step the ASn systeIll computes hypot hcscs-transniptions
for the cOllwrsations in signal.

2. Speaker adaptation. Hypothf':'ies from tlu' first rffogllltioll are uSI'd for l\IaxiulIllIl
Likelihood Lillear negre:;sion (l\ILLn) and featm£' space )'ILLn. Vocal t.ract !l'ngth
normalization (VTLN) is abo appliPd.

:t Second pass. Tht' ASR SYS!('lIlr('("(Imputesne\v hypot hescs.

The voi('f-'ll-unvoicedda.",,,ificationoccurs bdorl' the first pass for systeills with the aUlocorn,latioll.
ba.<;,('<lda."-'iilil:'r.Thl'refor a praat [Bot{l2] >icriptis call('(1. It converts an estimated by praat
pitdl S('quellce into yoict'd-I1ll\'oirwi trallsl'fiption. that is understood by the particle filter
franll'work. For systems with hypotiu'S('s alld rdt'fl'Un':'i-ba.'it'<\c!a.'i>iificati()ll.tht~ voin'(!-
llllyoin'<i transniption is gf'nerat£'d just hefore au adaptation st{'p. lIypoth£,:,('s from the
first pass force the Viterhi alignlllf'nt. Spquence of phones is than conw'rted in the voiced-
Illl,'oin-'t!trallscription wit.h Iwlp of the pl"t'definf'dcla.'isf':'i:voicf'li 4.1 and llllvoin'd 4.2.

Here is all overyiew of tested systelH cla.":-,f'S:

• no-pC:S.••.stems with no particle filter {'lIabled,

• .Q,'i-pf: S.••.stems with the gt'llcral-sp('('('h part ide fillt'r. To model till' spt,<,<~hsignal.
only the FPllt-'ralSPt,t'('hmodel was IlSl:'dhNe, Thl' particle filter wa."applil:'d ill both
first and st'nmd pa."S(';;.so as by adaptation,

• ref-VHf': Systems with the YOice-IlHVoicf-'l\spt'cific partidt' filter. Vnicl,d-llllvoin.,d
da ...;""ificationiJases on referenet' from ASH, In the first pass the gelll'ral Sp('t.'{'hpar-
tide filtt'r wa." applied. In till' adaptation step aud ill t.he st-'cowl I'a."1'ithe voiced-
llllvoin't.1particle filter wa,o:;used. Thcrt'i)y for the voiced-llllVoit'ed da.ssifkatioll a
for('('d Viterbi alignmt'nt on the ASn rdcH'lIce wa."Iltiliz(-'(1.

• h.'lI/{}-t!UV: SystellL" with tIll' voin •...unvoiced spf'cific partide filter. Voi('('d-ullvniecd
da.'isifkation )Ja.'>f'SOilhypoth('SI:'sfrom ASH. As ill rl!f.l'utJ systems the gencra! spc{'('h
partide filter wa." applit'<1ill the first pa.";s:ill adaptation and S('("ont!pass a forced
Vitcrbi alignnwllt on the hypotheses from the first I',L"1'iwas performcd .

• QllfOC07'-lIUV: Syst£'ms with thf' voice-uuvoicf-'llspet'ific particle fi1tpr. Voin.d-llllvoin"(i
classification ba."eson auto('Orre1ation method implt'lIJcn!t:'din praat [Dot'021.Praat
wrsioll ;'.2.44 (23 St'ptclJli){'r 2(11) was USt'din tl'sts. The voiced-Ullvoin.'<1specific
particll' filter wa..o:;apI'Ii("(!in hoth first and Sf"('Olldpa.";""it'sand in adapt aHoll,

Furtllf'rmon' SOiIlt'extra systt'm configurations were testl-'t\. Thest' are alJtoc07'-t'uv-32.
aufo(:or-t"Iw ..sp and aufocOr-t~1h~p-32 systcllls. Qllfocor-l'1w-32 are autoenr-V1fV systelU
configurations. where tht' voicet!-Illlvoin'd sp{~h model wen' rcpn'st.'nti'd by;J2 Gaussians
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Figure 4.1: \VER for ll1u~i(' and ocean noiselS of systt'ms with no partic1f' filtf,r.
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Figure 4.2: Relative growth of \rEB in ca...;pof Illusic Iloi~ in comparison to ocean noise.

instl'ad of 64. In autfHvr-t'tw48P tlw Yuiced-ullyoicl'<.l SI)l'(.'ific particle filter was uS('{l only
ill adaptioll and St.'('olld pass. In the first pa...;sthe gt-'llcral s}}ped. particle filtf'f wa...;applil:'d.
auto,.or-mw-sp-32 systellls are equal to auto(:O"'-VllV-.~p Systf'lllS t'xcept voin,d-unvoiCt,d
sjJ('{'ch IUo(if'ls. which are n'pn>sl'utt'tl I'nch hy :12 Gaussians ill GT\rr-.b.

4.3 ASR and nOises

Hpsultl'i of the eXlwrinH.'llts fOf two lIoi~. types: lIIusic and ocean (mwoked) noiS(' show.
that the speech f(,Cop;llizcr performance is impacted differently by thl't'(' two Boil*' types,
The growth of word ,'rror rate (\VER) in ca.'i!, of lllusic noise on the ASR system without
part.ide filter is G points at 20dD S:-.JR and more than 22 points at. lOdB SKR as shown ill
figure 4.1. The \VEIls are fwm the ",;(,,(:olHipa.'iS recogllitioll. Voic('d noise (music) S{'Cms
to disturb the spC{'(:h signal much mon' as 1I11voic('(1(o('('an).

A relatiw growth of \\'ERs in ca.••e of voiced HoiS(' ill pen'l'llt of \\'ERs in ca.'il' of 1l1l\'oi("(-'(i
noise h,;,..;hawn in the figurp 4.2. \\'ith no partidl' filtl'r t'nablt,d tilt-' hackground musie l('ads
to ASR perfonnann>:> at about :m pen'pnt. worse <l.."i in ca.••!' of (w('an lIoise withill the same
SNR. All application of the partidl' tilter does lIot improw' this rdatioll.
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Figure 4.:3: Error rat~ of Il.lltocorrelation-ba."f'd dassifif'f on on'an and music noises.

,.%

25%

,,%
'''''
,%

20dS lOdS

.~
• music

Figure 4.4: Error mles of hypotlil,:,(';',;-ba."ed dassifif'f on IW('"Ui and music noises.

4.4 Voiced-unvoiced classifiers

In this s('d ion t he performances of aul ocorrt'1atioll- and hypothc~'s-ba .."Pd voiced-l1m'oiced
cia.<.;.';ifiefsare ("OmpaH'(1. r-.IOft' exactly da.<.;silkatioll error ralt's. Le. an average error pro
100 frames of Il.utocorn'!atioll- and hypotiH"S('s-iJased I1wthorls arc c()lllpared to each other.
As a n..(cn'llcc da.-;sificll.tioll results of H'fert'lice-has('(imethod for deall spcedl sigual wt're
lakl'll. As it was IlH'ntiollt-'(i ill section ;1.2. this is lint an optimal criterion. but the only
way wit.hin ollt setup to (:olllpare the cia.-.;sifkatioll performances data-driven.

As it shown ill the fignre 4.;~ the \.oin'd-U11Hlicro dl1S1;ifieatioll f'rror ratt':' of the aut ocorrelation-
ha.,;t'd algorithm at 20dD SNR for both Illusic aud ocean lloisf' are the same. At lOdD it
pt'rforms beUt'r in ease of IIllvokt'd noi:-;(-'.Tlw hypothf'sf's-biL"t'<.l. method ha.,; higlwr error
rat.t'S (figure 4.4) for voicf'd Iloist, at both 20 auel lOdU Sl':R.

The figurt':' 4.a alld4.6 state that the ilypothes(>:-;-ha.';t'd mt'thod givcs the antocorre!ation-
ha.';l'd lIIpthOll no ehaBet' if a deflll sp('('('h signal is to das.<;ify. At 20dD distort.ioll tilt'
error ratt'S are (mnparable. hut hypot heS('s-ha.<;ed method is still a bit bettN. At lOdD
the autocorrelation-hased da.<;sitier h('COlllf':'lmilch hetter. FllrtlJ('flllore the performance
of Hutocorre1ation.hased da.<;..,;itierb weak alfet:too by growing S:\'R. which spl-'ak.,; for ro-
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Figure -1.G:Voiero-um"oicf'O d"ssificatioll error ratio on 1I1lwlicro (ocelln) noise.

bust ness of tlip algorithm. Pf'rformau("{'S of VOkt"(j-UllvoiCl,(\c1a...•."ificfs by stronger noise is
1I0t t~t('d. h('(:allse of extrelIH'ly high. lIot 8c<:l'ptable word error rates of ASH hypotheH'S
ill this ca."l'.

4.5 Voiced-unvoiced specific particle filters

The table 4.1 shows the results of the experiml'uts 011ASH systellls with ,lif!f'rt'ut types of
particle filtl'fS.

Thl" results of the tests on H'f-I'IW systelHs an~ against I'xl)('(:tatioll not always til(' hl":,,t
aud ill st'\'{'r;l\ kKts {"ven worse as for hypo-vlll! systf'llls. It is tilt-' efl.•'*' by tllP c1t'an spt«:h
tl'St. without any }ulditivc distortion. The hypo-I~w sysh.m perfofms bettef a..-;the re/-vuv.
A fea.-":lIl for it may be a mismntdl lJetWff'll fefefeHCI'S and acoustic information in the
signal !!.g. speaker PfOllOlllWC!>~me words in a different mannef as in a dictionary. By
20dll SNR the both syslPms perform equal. lle<'8use till:' mismatch by n}-Pltv systeJil is
compellsated by hight'r error rate of h.•••pothes('5-i>ased \'oit.(,d-ullvoiet't1 da.-;sifjt'r. In ca.,*,
of IOdll backgroullIllllusk the 1T/-l'Ul! systt'1ll IWfforms hetter.



As for QutOCOT-lnW :-;y:-;tf'lHSthf'ir rl':-;ultswerl' as t'xpt'ctf'd. Al"cording 10 Ihe perform<lucf'
of allto('orr('latioll~ba.<;('dvoi('f'd-unyoic~dda...;sifier. Qutocor-l'UV systf'IIlSare I)('ttf'r ouly in
case of ..•trollg signal dbtortion. llamely lOdn bolh by \'oin'cl and ul1\'okf'd noises. Tllf'ir
gain in comparison to hypO-VllV systems is not high: aholll 2.8%.in ca."1:'of music lloist-,and
about 1.5% ill ca..,eof ()(.t'allnoise.

Comparison of til(' Iw:st \'OiCf'd-linyoic('dpartidf' filter s.••...•tf'IIlSwith gellf'ral spl'f'ch par-
tide filter systelll gives dear re~;ults: syskms with voked-unvoked spedfk particle filter
haY(~perforllled a hit hf'tter ill all tt~ts. The ma.ximal gain is about. 4% in ca."f'of lOdll
background lllusic,

The test. of extra configurations: allfoCOr-t'll't'-.92. aufocor-1'1w.t;p and (Illtocor.tl'lw.lip-32

does not improy(' on top of pn'vious experilllt'Hts.



!Iolllix lIJ11sic ocean
20dn lOdn 20<lB 10dU

uuadp adp \lundp mil' lllladp adp lluadp fl<lp nlladp ad Jl
110- pf 11.2 9.2 40.{) 22.0 7U fi4.5 29.7 I(J.O G{j.2 42.5
gs-pf 10.9 IHl :IHA 21.1 (JR.R (i1.1 2!).2 l:i.:l GLl 41.1
aut.!l(:(lr.vuv 11.1 9.1 :J7.fi 21.2 68.6 :iR.n 29.0 15.3 G2.G .HI.!)
hypo-vllv 10.9 H.7 :lH.4 20.:1 68.8 fiO.a 2!).2 15.2 (Jet.4 .11.:1
rpf-vuv 10.9 9.0 38.4 20.H li8.8 fiO.8 29.2 lr' ..1 64.4 40.(j

ilutocOr.VIIV-a2 11.7 R.n a7.9 20.9 (JH.7 5!J.3 29.5 W.O {j:U 42.1
alltocor-vllv-sp 10.9 9.1 :lSA 2I.G (iR.R GOA 2(J.2 1;1.:'1 6,1.4 40.G
aut(lCor-vUv-sl )-;12 1Ui 9.4 :IS,S 20.6 (JR.2 (J().:l 28.fi 15.1'1 (j;1.9 42,7

Tahle 4.1: ~Iaill results. Evalllaliolllllea."l1fl'l1Sl,d is \\'ER. The sysif'llIs are dpscribe<\ ill s('dioll 4.2



5. Conclusion

In this work the following goals wt'fe examim,d: first it was tt>steo how different typt's of
noise afffft the performance of partide filteT l)asN\ spf't.ch f('atllTC ('UhalJ('CIllt'1I1 alul SC{:OIIU
if "OiCM-llllvoked classification can improve till' performaul't_' of the standard particle filter
approach cspt'cially in casc of backgrouud music.

The experiments show. that the ASH perfofmflun-, uJ;ing particle filter !'ipft'ch feature
enhancelllent is more afft'('ted by voict-'{i Hois(' than by IIllvoicf'(1.This call lit' explained
hy difft'rellt lIoise J;ignal enf'rgy distribution on frequcucies. At SUIIlCsiguai-to-noise ratios.
the ('nergy of voice,l noise is ("oucf'utrall't\ ill (:olllpact wgiolls. which Ipads to stWllgN
distortion of sJ)('('ch siguaJ. III coutTa.'i! the ('Hl'r~v of Illlyoi('l"(1noi,;ed is distribukd owr
all fn"queueips.

Aceordillg to thp expprinU'lIts voinxl.u!lvokcd slwcific part ide filter slightly improves ASH
p('rformance in ca.,*,of yoked !loisI..'alld brings fa...;t110impnwemt'nt ill C<l.'ieof Ullvoi('pd
lIoiS<',The comparison of autocorreiation-IJa.<;NJ\"Oi(:t'(I-um'oict'dda ....;,;ificationshows I)('t.
ter rf'Su1ts thall hypothcses-ba.-;ed c1assificatioll at lOdll sip;na!-tG-uoiseratio. This is also
coufirmed by experinH'uts that show dassificatiou error ratios. Th~ results can hp ex-
plailJ('{i by greater robustness of autocorrelation-ba.'iPd algorithm. The results aftt-'r tlJt-'
first Ilfl,.'i.";of ASH IIPlp to intt'rprd the imprownU'uts by aut.ocorrelatiClIl-ha~ methods.
Aft,l:'rtllf' first pa.'i.'iautomrrclatioll-ba.'it-'tl nH'thods havl:'bet!l:'r hypotill'ses ..which leads to
jwtter sip;nal adaptation; tht, improv('lUcnt propagatt~ to the St'cond pass.

Illtcn~ting n~ults were obtained with reft'rellcf'-ba.'-;('(lmdhod. Tllf'Y are not much bct!pr
and o"(lllll'tilll('S,'n"1lworse as the results with hypothesl's.b,I,.'-;('dml:'thoti. Ollt~guess is that
the Vitt'rhi aligUlllI'lit forced by n,fen'lH't'S is fool(-'(Iby strong background llOiSt,marl:' thall
if it. fornu by hypoth''SL'S, \wcausc hypotheses aTe t~tilllated on the dislortt'(i signal. Of
("oursI'errors ill tht' ('xp('rilllcut Sf'tllP wt're alo"()possihh'.

The eXIWrillll'lltsshow that the particle filtt'r with gClleral spe('ch acoustic modt'iuSf'd for
spl'(-'("hf"atme cuhann"mellt illlllro,','s the perf(lrmallCe (If the ASH notkeahly. Ilowewr
using da.'i.'i-basl'd modeLs for spf'f'ch. such a.<.;voict'tI-IUlvoicet\or phOll('-SP('('ifichrings no
sigllificallt improvelnent.. A hettl'r performancc of voin'ti-ullvoiced dassifier would ev,'I1-
tllally 1I0t iIllTCIL'ietlw performH.llceof tllP particlc filter..
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