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Abstract

In this work an improvement for particle filter based speech feature enhancement for
automatic speech recognition is proposed. This improvement is aimed to speech enhance-
ment in environments with non stationary. voiced noises such as music. For this reason a
voiced-unvoiced classification of distorted speech is performed on a frame-by-frame basis.
A particle filter is served as noise tracking framework to estimate clean speech features with
comparison of voicedness class priors. i.e. acoustic model of speech and autocorrelation
based classification. Further comparison to unvoiced noise is performed.
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1. Introduction

Noise reduction plays a big role in automatic speech recognition. because even a weak
noise leads often to significant rising of word error rates.

But noise is an indefeasible part of every recording made in any real environment. For
recordings, which are made outside, one can think about nature sounds. like wind. water.
the birds or also traffic and industry noises. In closed environments there are a lot of
noises too. e.g. heating. ventilation. air conditioning. office noises. steps. crowd etc.

Noise reduction shows to be a very difficult and challenging problem due to complex noise
patterns and mixtures of different noises. Performance of automatic speech recognition
(ASR) is affected by noise types differently. Voiced noise such as music affects performance
of ASR systems stronger. One reason for that is the energy concentration of voiced noise
in dedicated frequency bands. which leads to strong speech signal distortion in that bands.

1.1 Related work

A speech enhancement system generally consist of two major components: The estimation
of speech signals. and the estimation of noise. The estimation of noise becomes a difficult
problem if noise is assumed as non stationary i.e. changing over time.

Many solutions were proposed to deal with non stationary noises. Numerous evolved from
audio source separation research. In many cases noise can be seen as just another source
signal. that is not of interest for the given problem. e.g. background music or even another
speech signal (cross talk). A review of modern source separation techniques can be found
in [VJAT05]. Two main approaches can be distinguished here. First a source separation
based on spatial diversity of sources e.g. [VHU10]. which assumes polyaural recordings. In
general there should be so many channels in the recording as there are sources. Second such
assumptions are not needed. but a priori information about sources is exploited. This a
priori information is generally presented as learned signal codebooks. Evaluation of several
strategies single sensor source separation on speech and music sources is performed in
[BRF08]. Those strategies can be generalized for application on other sources. In [BRF0S|
the non-stationarity of sources is not modeled explicitly, i.e. the model is parametrized
with time variables, and this parameter is another dimension of the model, which is being
estimated in a Maximum Likelihood (ML) sense with the other parameters.

In [FW06] Wilfel and Faubel have integrated the particle filter framework in an ASR
system to track noise for speech feature enhancement. Their particle filter makes use of two



pass speech recognition systems. At the first pass the ASR system produces hypotheses.
The particle filter models the speech signal with a static general Gaussian Mixture Model
(GMM). The hypotheses are used in the second pass to estimate a phone-specific speech
GMNM. In [W6108] the authors have improved their approach. They have joined the particle
filter with a multi-step linear prediction framework to also treat the reverberant distortions
of speech signals.

The main drawback of phone-specific speech modeling. used in particle filter, is that the
hypotheses. produced at the first pass do not have be correct. Errors in the hypotheses
lead to choices of mismatched phone-specific model of speech. Using this model makes
enhanced speech features tying to the wrong hypotheses. This effect is discussed in the
next chapter.

An improvement addressed to this problem is offered by Heger in [Heg07]. Their idea is to
use speech models based on phone classes. The classification of these classes is expected
to be more robust to noise. The way of proceeding was the same with phone specific
speech models: Voiced or unvoiced decisions for each frame were made according to the
hypotheses from the first ASR pass, and than used in the second pass to model speech as
a sequence of voiced or unvoiced specific GMMs.

In the work he studied such phone classes as: voiced-unvoiced. vowels-consonants and also
data-driven clustered classes. Of the main interest were voiced-unvoiced classes. because
of big differences in the nature of voiced and unvoiced signals, i.e. energy distribution over
frequencies,

The weakness of this technique is poor robustness of the ASR syvstem in case of non-
stationary noises.

1.2 Goal

In this work we aim at enhancement of speech features robust to background music in
context of automatic speech recognition. The non-stationarity of the noise is explicitly
modeled and tracked within a particle filter framework, while for speech signals not being
tracked some extra information about speech signal is used. i.e. a voiced-unvoiced clas-
sification of distorted speech performed on a frame-by-frame basis. The voiced-unvoiced
classification is an a priori information for the particle filter. Therefore it is generated to
be used as input of the particle filter framework.

In this work an improvement to the Heger’s system [Heg07] is suggested. The idea is to use
another technique to perform the voiced-unvoiced classification. This technique is based
on improved autocorrelation algorithm. proposed by proposed Boersma in [Boe93] and
implemented in Praat, a system for doing phonetics by computer[Boe02]. The algorithm
will be described in one of the next sections.

Another point of interest in this work is to study the influence of different noise types on
the performance of voiced-unvoiced classification and its effect on the performance of the
particle filter. Experiments with two types of noise are performed: unvoiced noise e.g.
wind. ocean. and voiced noise. e.g. music.



2. Particle filter

2.1 Particle filters in ASR

In this section the particle filter framework and its application in automatic speech recog-
nition is introduced. Main steps in the particle filter processing chain are reviewed.

Particle filters. in statistics also known as sequential Monte Carlo Methods are usually used
to estimate Bayesian models in which the latent variables are connected in a Markov chain

similar to HMMs but typically where the state space of the latent variables is continuous
rather than discrete [Wik12]. It means that if we track a state of some dynamical system.
which model is not necessary restricted to Gaussian distributions and is too complex to
solve it analytically we can provide an optimal estimate of the model and track the state
with help of the particle filter.

One application of the particle filter in automatic speech recognition is noise tracking. This
idea is founded on the knowledge. that some noises can be quite well estimated locally and
are of a periodic nature e.g. music, steps. street traffic etc.

Figure 2.1 depicts steps of the particle filter algorithm. y; represents features for the frame
k of the noise distorted signal. e.g. spectral coeflicients. dj is than the estimated noise
spectrum of the frame k. S particles of the particle filter are S possible noise spectra
of frame k. Particles are denoted by dr}. which refers to estimated noise spectrum for
frame k by particle s, where s =0, .., S. The particles are evaluated with the evaluation
function 3 (di,s". ye) ~ pl y;,‘]dif']) i.e. the probability of noisy spectrum given a distortion
spectruim.

Steps in the particle filter algorithm:

L. Initialization: Suppose S particles with some initial configuration. This particles
are weighted samples of noise for a given frame. These weights are initially set
accordingly to the uniform distribution.

2. Importance sampling: Pick S times one particle in respect to the particle weights
i.e. particles with big weight are picked more often.

3. Particle evolution: At this step particles get their new configuration. An appropriate
model is used to calculate the new possible noise spectra for each particle. Some
rushing is also added in order to be able to track in case of deviation from the
model.
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Figure 2.1: Main steps in the particle filter processing chain.
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Figure 2.2: General flowchart of frame based speech feature enhancement for non-
stationary additive distortion using a particle filter with importance
resampling.

4. Particle evalunation: New weights of the particles are calculated with the evaluation
function.

It is important to notice. that the model of clean speech plays the primary role in the evalu-

ation step. The evalnation function, more exactly the probability p{y;‘.|dr}) is proportional

to the probability of clean speech estimate by given distortion estimate rfi:‘i referable to
the particle s:

s) s
p(yg.|di, N~ P.M(J'kldL :]).

where M is a speech model and z;. estimated speech feature for frame k.

2.2 Particle filter framework

The particle filter framework, that we use in this work is presented by Faubel and Wolfel
in [W6l08]. The authors present a generalized particle filter framework, which is capable
of jointly tracking noise and reverberation on a frame-by-frame basis.

In this section we briefly restate their approach. Schematics of joint particle filter is given
in Figure 2.2. The figure is taken from [FWO06].

2.2.1 Reverberation Estimation

The revebration estimation is based on multi-step linear prediction (MSLP), which in
contrast to the linear prediction (LP) aims to predict a signal after a given delay D. the
so called step-size. With the prediction error eln] MSLP can be formalized as:

M
yln] = 3" emy[n —m — D] + e[n],

m=1



where ¢1.c9..... cpr present the LP coefficients. y[n] the observed signal and M the model
order. To solve for the MSLP coefficients ¢ = [¢y,¢9,. .., r‘,u]T the minimum square error
estimate is used.

An estimate of the reflection sequence r[n] is obtained by filtering the observation sequence

y[n] with the MSLP filter

M
T[”] = Z Cmy[n- —m+ D]

m=1

The reflection sequence r[n] is now converted into short-time power spectra ry.. This highly
non-stationary distortion estimate is treated just like an additive distortion and removed
from the distorted sequence y[k| by spectral subtraction. The distorted y[k] is respectively
estimated for all frames. k =0,.... K. from y[n].

2.2.2 Distortion Estimation and Particles Initialization

The first step is particle initialization by drawing samples from the prior particle density.
The prior density of additive distortion p(ag) is estimated indirectly via overall distortion
density p(dp) and estimated reverberation distortion density p(rg):

p(ag) = In(exp p(dy)) — exp p(rq)),

where p(dg) derived on silent regions of the input signal which contains additive and
convolutive distortions and p(ry) is estimated over all frames derived on the reflection
sequence Tg.

2.2.3 Particle evolution
The evolution for each particle pis). s =0,...,5 — 1. is estimated by an autoregressive

process with AR-matrix Pj_; for each frame k:

pr’ — Pk_lpf_}l = ELS); FE:J ~ N(0, crf)

The AR-matrix is given by

where A, is the additive distortion matrix and Sy is the matrix of scale terms for the
reverberation distortion. Dimension of S is 1 for shared scaling factor and B for individual
scaling factor for each frequency bin. where B is the number of frequency bins.

2.2.4 Distortion combination

Now, the distortion samples di_s }[b] are calculated for each particle pfl and frequency bin
b as

d[b] = In {expaf ] + s bl exprifb]}

where a[b] represents additive distortions. r[b] represents the spectral distortion due to
reverberation and s[b] represents the scale terms for r[b].




2.2.5 Distortion evaluation

With the prior speech density pseecn(-) each distortion sample diﬁq] is evaluated according
to the likelihood

lu'.l_ i
p(yild}”) ~ pepecen Yk + In(1 — ek %)) (2.1)

and its normalized weight

(s)
o — _ Pkldy”)
R T =8 (m)
Zm:] P(Yﬂdg )
(E3] o % . .
is calculated. Thereby 1 — edx ~¥* is a clean speech estimation. given signal y; and

i P )
currently evaluated distortion df'.

2.2.6 Distortion compensation

The clean feature is estimated with the distortion samples dif*" and their corresponding im-

)

portance weights 'w:\_"" over all particle samples S using the non-linear relationship between

X, dy and yy. as in

= 5] {4)
E {Kfc.l}’n:m} =) w” (y;r + In(1 — % _-‘“—)
5

2.2.7 Importance Resampling and Prediction Model Estimation

This is the last, but very important step in the particle filter processing chain. After
every time step, the particles are resampled. in order to avoid the concentration of the
vast majority of probability mass in very few particles. The prediction model is also new
estimated by the dynamic autoregressive process.



3. Voiced-unvoiced classification

The tying of the phone-specific speech model to the ASR hypotheses. which the model is
based on. makes the application of the pnone-specific particle filter not efficient by high
error rates, which is the case in very noisy environments. This effect can be explained
as following: the particles. which improve the probability of clean speech estimate. are
weighted higher. even if the clean speech is estimated wrongly (an ASR hypothesis is not
correct). The phone-specific particle filter performs expected good. if clean speech features
are estimated on the conversation reference.

To increase performance of speech feature enhancement by the particle filter the advantage
of voiced-unvoiced classification of the distorted signal on a frame-by-frame basis is taken.
The motivation is more robust voiced-unvoiced speech.

For this classification we use two methods and compare them. The first is an autocorrelation
based method, proposed by Boersma in [Boe93| and implemented in Praat, a system for
doing phonetics by computer [Boe(2]. We compare this method to the hypoteses based
method. suggested by Heger in [Heg0T].

In order to evaluate the performance of these techniques references of clean speech signals
are being used. In the following it is denoted as reference based classification.

In the next sections we introduce these techniques.

3.1 Hypotheses based method

The hypotheses based method is presented in [Heg07]. The idea is use an antomatic
speech recognition system to produce hypotheses and predefined phone classes for the
classification.

These phone classes are voiced and unvoiced classes for our application. The voiced class
is a set of phones, which are a priori known as voiced. The unvoiced class is respectively
a set of phones. known as unvoiced.

The speech recognizer computes a hypotheses transcription of speech on distorted signal.
This transcription is a sequence of phones. All we need is to check out. which of them
belong to voiced or unvoiced phone classes.

One disadvantage of the hypotheses-based method is that the voiced-unvoiced specific
model cannot be used in the first pass. because no voiced-unvoiced classification is done
vet.



Another disadvantage of this method. as it was mentioned before, is a big number of
errors in hypotheses in case of strong signal distortion. Therefore a more robust method
is suggested in the next section.

3.2 References based method

The idea of this method is the same as for the hypotheses based method. The only
difference is that here the forced (with reference) Viterbi-alignment on HMM is used to
produce a sequence of phones. Every phone is than classified with the same predefined
classes of phones.

It is important to notice here. that the result of the voiced-unvoiced classification with this
method differs by different noise types and signal-to-noise ratio. The reason for it is that
the Viterbi algorithm finds the best alignment in according to the acoustic information.

3.3 Autocorrelation based method

To make a decision, if one frame is voiced or unvoiced a presence of speaker’s pitch is used.
as the voiced speech is known as quasi-periodic, consisting of a fundamental frequency
corresponding to the pitch and its harmonics. It means if we could hear or see that there
is a fundamental frequency in the frame spectrum. than we decide for voiced speech. In
another case we decide for unvoiced speech. which is stochastic in nature and do not consist
of a periodic part in the spectrum. It can also be modeled as white noise. Therefore an
autocorrelation-based method for pitch detection is used.

Such a method presented by Boersma in [Boe93] is straightforward and robust for period-
icity detection. It is working in antocorrelation domain.

"By definition, the best candidate for the acoustic pitch period of a sound can be found
from the position of the maximum of the autocorrelation function of the sound. while the
degree of periodicity (the harmonics-to-noise ratio) of the sound can be found from the
relative height of this maximum. However. sampling and windowing cause problems in
accurately determining the position and height of the maximum. These problems have led
to inaccurate time-domain and cepstral methods for pitch detection, ..."[Boe93]

The windowing problem is present almost in every short-term analysis of periodic signals.
As it’s name says, the application of a window function leads to a signal distortion on the
rim of the window. The reason is a window shape. The problem is solved in [Boe93]. The
authors propose to divide the autocorrelation of the windowed signal by the autocorrelation
of the window.

Next problem is the sampling problem. The reason is that the autocorrelation computed
from the sampled signal is also a sampled function. It means, that the position of peaks
is determined with a precision of sampling interval. which implies not very accurate esti-
mation of the pitch period. To solce this problem an interpolation of the autocorrelation
function is proposed [Boe93].

A summary of the algorithm is give here:

1. Preprocessing: Upsampling is performed to remove the sidelob of the Fourier trans-
form of the window for signal components near Nyquist frequency.

2. Compute the global absolute peak value of the signal.
3. Short-term analysis

a) Perform signal segmentation and windowing. The length of this segment (the
window length) is determined by a parameter.



b) Perform a Fast Fourier Transform.
¢) Square samples in the frequency domain.

d) Perform a Fast Fourier Transform. which gives a sampled version of the auto-
correlation function of the windowed signal.

e) Divide by the autocorrelation of the window. This gives a sampled version of
autocorrelation function estimate of the original signal.

f) Compute the continuous version of autocorrelation function with help of inter-
polation.

g) Evaluate pitch candidates. The strength of unvoiced candidate is computed
with voicing and silence thresholds. These depend on the global absolute peak
value of the signal. If there are no autocorrelation peaks above the voicing
threshold and less than silence threshold. a frame bears a good chance of being
analyzed as voiceless. The maximum of the autocorrelation function for the
current frame gives the actual pitch value.

4. Find the optimal path through the pitch candidates with the aid of dynamic pro-
gramming by optimizing the cost associated with every possible path. This cost
is computed with help of two transition cost parameters: Voiced UnvoicedCost and
OctaveJump Cost.

One disadvantage of this algorithm is that it rather aims to accurate pitch estimation than
to voiced-unvoiced classification. On the other side and in contrast to hypotheses-based
classification this algorithm can be applied as early as needed. because the classification
happens prior to the speech enhancement.

This algorithm aims to estimate the pitch in the frequency band between minimum pitch
and marimum pitch. The default values are: 75Hz for the minimum pitch and 600Hz for
the mazimum pitch. Therefore if noises do not distort this frequency band the algorithm
is robust at high SNRs. Otherwise noise obscures the underlying fundamental frequency.
Unvoiced noise should not strongly affect the voicing and silence thresholds. because they
depend on the global absolute peak value of the signal. The transition costs: Voice-
dUnvoicedCost and OctaveJumpCost discriminate pitch paths with many voiced-unvoiced
transitions and rash changes of pitch frequency, which helps to resist the action of voiced
noise. These all explain the robustness of the autocorrelation-based voiced-unvoiced clas-
sification.



4. Experiments

In this section results of the experiments are presented. But first the speech recognition
toolkit, datasets and acoustic models of speech used in the particle filter are discussed.

4.1 Setup

4.1.1 Automatic speech recognition toolkit

The automatic speech recognition engine that we use in this work is JRTk[M™04]. which is
developed and maintained by the Interactive Systems Laboratories at two sites: Karlsruhe
Institut of Technology. Germany and Carnegie Mellon University, USA.

The speech recognition system setup used in this work processes the signal utterance by
utterance i.e. presegmented utterances are being processed one after another.

The particle filter. that was used in the following experiments. is discussed in chapter 2.
It is also integrated in JRTk.

4.1.2 Particle filter and acoustic models

The particle filter is configured for our experiments to use 100 particles. It is the default
option in this particle filter framework. Another important option is the transcription
option. If the transcription is given. the particle filter tries to use specific speech models.
Using this option and predefined speech models makes it able to work with different class-
based models.

Two voiced-unvoiced specific acoustic models were integrated in the particle filter frame-
work within equation 2.1. During particle processing the particle filter receives a special
transcription. which describes each frame, if it is voiced or unvoiced. In respect to this
decision a specific speech model is chosen. If there is no decision for any frame in the tran-
scription a general speech model is applied. This model does not account for differences
between voiced and unvoiced speech, but helps to estimate the speech signal. in case when
voiced-unvoiced classification fails. In our experiments and for the test data used in the
experiments this case has not occurred.

To train voiced specific. unvoiced specific and general speech models the sampling material
from [FWO06] was used: ... train acoustic model on the close talking channel of meeting
corpora and merge it with the Translangnage English Database (TED) corpus summing



up to a total of approximately 100 hours of training material. The speech data was
sampled at 16 kHz. Speech frames were calculated using a 10 ms Hamming window. For
each frame. 13 mel frequency cepstral coefficients or warped MVDR cepstral coeflicients
were obtained through a discrete cosine transform from the Fourier transformation or the
warped MVDR spectral envelope. Thereafter. linear discriminant analysis was used to
reduce the utterance based cepstral mean normalized features..."[FW06].

Using the merge-and-split training procedure speech GMMs. containing 64 Gaussians for
each model, were trained.

The samples were split into two sets respectively to the two classes of phones:

Coviced = {B.D.G.JH,V.DH.Z,ZH.M.N.NG,W,R.Y.L.ER,  (4.1)
AY.OY.EY.IY, AW,OW, EH.[H, AO. AE. AA.
AH,UW,UH,AXR,IX,AX,XL, XM, XN}

Cunvoiced = {P.F.TH.T,S,SH,HH,CH,K} (4.2)

For the general speech model phone samples of both classes have been processed at once.

To make the direct comparison of voiced-unvoiced and general speech particle filter pos-
sible. the voiced-unvoiced models were trained on the same samples as the general speech
model, i.e. the number of samples used for each voiced and unvoiced models was smaller
than for the general speech model.

The resulting models are represented with mixtures of 64 Gaussian models. Mixtures with
32 Gaussians for voiced-unvoiced specific models have also been tested to take in account
smaller number of samples used to estimate voiced and unvoiced models.

The noise model of the particle filter is being updated on the fly. A speech activity detector
determines, if there are enough noise frames in a current utterance. In such case the noise
model is being updated.

4.1.3 Dataset

For the evaluation a close talking channel of lecture speech with 16kHz and 40 minutes
duration was chosen. This data was mixed with noise with 10 and 20dB signal-to-noise
ratio (SNR). Two different noise types were used: ocean waves and wind as unvoiced noise
and music without vocal as voiced noise.

Ocean wave sounds were taken from [gra07]. "Ocean waves recorded from about 250 feet
up. Recorded on a Zoom H4 with the mics covered in zeppelin fur at 96kHz 24-bit and
downsampled to 48kHz. Because of the distance. the sound is as much about white noise
as waves.” [gra07] This sound was downsampled to 16kHz to mix with speech data.

The music dataset was provided by authors of [RLP106]. This dataset consists of 600
pop. jazz and classical compositions in karaoke and midi formats. We did not distinct
between pop. jazz and classical music. therefore compositions from all sets were randomly
selected. The tracks were converted to PCM waveform data with 16kHz sample rate. In
order to mix data in proper SNR the root mean square ( RMS ) amplitude of all tracks was
normalized to the RMS amplitude of speech signal. The selected tracks were concatenated
and mixed with speech data.

Mixtures with 3 signal-to-noise ratios were created for the experiments: clean speech

(nomix), 20 dB and 10 dB.



4.2 Systems

For the experiments 50 different system configurations were tested. These are systems with
different voiced-unvoiced classification methods, systems with only general speech particle
filter and systems with no particle filter enabled: each of them with two noise types and
with three SNRs: clean speech. 20dB and 10dB.

As a front-end a warped minimum variance distortionless response (MVDR) [WMO05] enve-
lope was used. Signal frames were calculated using 16 ms Hamming window. A filterbank
with 129 bins was applied. In order to prevent the particle filter working in high di-
mensional space. the logarithmic spectral domain, after cepstral to 20 dimensions in the
cepstral domain, is used.

Every test consists of three steps:

1. First pass recognition: In this step the ASR system computes hypotheses-transcriptions
for the conversations in signal.

2. Speaker adaptation. Hypotheses from the first recognition are used for Maximum
Likelihood Linear Regression (MLLR) and feature space MLLR. Vocal tract length
normalization (VTLN) is also applied.

3. Second pass. The ASR system recomputes new hypotheses.

The voiced-unvoiced classification occurs before the first pass for systems with the autocorrelation-
based classifier. Therefor a praat [Boe02] script is called. It converts an estimated by praat

pitch sequence into voiced-unvoiced transcription. that is understood by the particle filter
framework. For systems with hypotheses and references-based classification. the voiced-
unvoiced transcription is generated just before an adaptation step. Hypotheses from the

first pass force the Viterbi alignment. Sequence of phones is than converted in the voiced-
unvoiced transcription with help of the predefined classes: voiced 4.1 and unvoiced 4.2.

Here is an overview of tested system classes:
e no-pf: Systems with no particle filter enabled.

e gs-pf: Systems with the general-speech particle filter. To model the speech signal.
only the general speech model was used here. The particle filter was applied in both
first and second passes. so as by adaptation.

o ref-vuv: Systems with the voice-unvoiced specific particle filter. Voiced-unvoiced
classification bases on reference from ASR. In the first pass the general speech par-
ticle filter was applied. In the adaptation step and in the second pass the voiced-
unvoiced particle filter was used. Thereby for the voiced-unvoiced classification a
forced Viterbi alignment on the ASR reference was utilized.

e hypo-vuv: Systems with the voice-unvoiced specific particle filter. Voiced-unvoiced
classification bases on hypotheses from ASR. As in ref-vuv systems the general speech
particle filter was applied in the first pass; in adaptation and second pass a forced
Viterbi alignment on the hypotheses from the first pass was performed.

e autocor-vuv: Systems with the voice-unvoiced specific particle filter. Voiced-unvoiced
classification bases on autocorrelation method implemented in praat [Boe02]. Praat
version 5.2.44 (23 September 2011) was used in tests. The voiced-unvoiced specific
particle filter was applied in both first and second passes and in adaptation.

Furthermore some extra system configurations were tested. These are autocor-vuv-32,
autocor-vuv-sp and autocor-vuv-sp-32 systems. autocor-vuv-32 are autocor-vuv system
configurations, where the voiced-unvoiced speech model were represented by 32 Gaussians
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Figure 4.1: WER for music and ocean noises of systems with no particle filter.
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Figure 4.2: Relative growth of WER in case of music noise in comparison to ocean noise.

instead of 64. In autocor-vuv-sp the voiced-unvoiced specific particle filter was used only
in adaption and second pass. In the first pass the general speech particle filter was applied.
autocor-vuv-sp-32 systems are equal to autocor-vuv-sp systems except voiced-unvoiced
speech models. which are represented each by 32 Gaussians in GMMs.

4.3 ASR and noises

Results of the experiments for two noise types: music and ocean (unvoiced) noise show,
that the speech recognizer performance is impacted differently by these two noise types.
The growth of word error rate (WER) in case of music noise on the ASR system without
particle filter is 6 points at 20dB SNR and more than 22 points at 10dB SNR as shown in
figure 4.1. The WERs are from the second pass recognition. Voiced noise (music) seems
to disturb the speech signal much more as unvoiced (ocean).

A relative growth of WERs in case of voiced noise in percent of WERs in case of unvoiced
noise is shown in the figure 4.2. With no particle filter enabled the background music leads
to ASR performances at about 30 percent worse as in case of ocean noise within the same
SNR. An application of the particle filter does not improve this relation.
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Figure 4.3: Error rates of autocorrelation-based classifier on ocean and music noises.
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Figure 4.4: Error rates of hypotheses-based classifier on ocean and music noises.

4.4 Voiced-unvoiced classifiers

In this section the performances of autocorrelation- and hypotheses-based voiced-unvoiced
classifiers are compared. More exactly classification error rates, i.e. an average error pro
100 frames of autocorrelation- and hypotheses-based methods are compared to each other.
As a reference classification results of reference-based method for clean speech signal were
taken. As it was mentioned in section 3.2. this is not an optimal criterion. but the only
way within out setup to compare the classification performances data-driven.

As it shown in the figure 4.3 the voiced-unvoiced classification error rates of the antocorrelation-
based algorithm at 20dB SNR for both music and ocean noise are the same. At 10dB it
performs better in case of unvoiced noise. The hypotheses-based method has higher error
rates (figure 4.4) for voiced noise at both 20 and 10dB SNR.

The figures 4.5 and 4.6 state that the hypotheses-based method gives the autocorrelation-
based method no chance if a clean speech signal is to classify. At 20dB distortion the
error rates are comparable, but hypotheses-based method is still a bit better. At 10dB
the autocorrelation-based classifier becomes much better. Furthermore the performance
of autocorrelation-based classifier is weak affected by growing SNR. which speaks for ro-
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Figure 4.5: Voiced-unvoiced classification error ratio on voiced (music) noise.
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Figure 4.6: Voiced-unvoiced classification error ratio on unvoiced (ocean) noise.

bustness of the algorithm. Performances of voiced-unvoiced classifiers by stronger noise is
not tested. because of extremely high. not acceptable word error rates of ASR hvpotheses
in this case.

4.5 Voiced-unvoiced specific particle filters

The table 4.1 shows the results of the experiments on ASR systems with different types of
particle filters.

The results of the tests on ref-vuv systems are against expectation not always the best
and in several tests even worse as for hypo-vuv systems. It is the case by the clean speech
test. without any additive distortion. The hypo-vuv system performs better as the ref-vuu.
A reason for it may be a mismatch between references and acoustic information in the
signal e.g. speaker pronounces some words in a different manner as in a dictionary. By
20dB SNR the both systems perform equal. Because the mismatch by ref-vun system is
compensated by higher error rate of hypotheses-based voiced-unvoiced classifier. In case
of 10dB background music the ref~vuv system performs better.



As for autocor-vuv systems their results were as expected. According to the performance
of autocorrelation-based voiced-unvoiced classifier. autocor-vuv systems are better only in
case of strong signal distortion. namely 10dB both by voiced and unvoiced noises. Their
gain in comparison to hypo-vuv systems is not high: about 2.8% in case of music noise and
about 1.5% in case of ocean noise.

Comparison of the best voiced-unvoiced particle filter systems with general speech par-
ticle filter system gives clear results: systems with voiced-unvoiced specific particle filter
have performed a bit better in all tests. The maximal gain is about 4% in case of 10dB
background music.

The test of extra configurations: autocor-vur-32. autocor-vuv-sp and autocor-vuv-sp-52
does not improve on top of previous experiments.



nomix music ocean
20dB 10dB 20dB 10dB

unadp | adp | unadp | adp | unadp | adp | unadp | adp | unadp | adp
no-pf 11.2 | 9.2 40.6 | 22.0 71.3 | 64.5 20.7 | 16.0 66.2 | 42.5
gs-pl 10,9 | 8.9 38.4 | 21.1 68.8 | 61.1 29.2 [ 15.3 64.4 | 41.1
autocor-vuv 114 | 9.1 37.6 | 21.2 68.6 | H8.6 29.0 | 15.3 62.6 | 40.9
hypo-vuv 10.9 | 8.7 38.4 | 20.3 68.8 | 60.3 29.2 | 15.2 6G4.4 | 41.5
ref-vuv 10.9 | 9.0 384 | 20.8 68.8 | 60.8 29.2 | 154 64.4 | 40.6
autocor-vuv-32 11.7] 89 379[209| 687593 295[160] 63.1]421
autocor-viuv-sp 10.9 | 9.1 38.4 | 21.6 68.8 | 60.4 29.2 | 15.3 64.4 | 40.6
antocor-vuv-sp-32 115 | 94 38.8 | 20.6 68.2 | 60.3 28.6 | 15.5 63.9 | 42.7

Table 4.1: Main results. Evaluation measure used is WER. The systems are described in section 4.2



5. Conclusion

In this work the following goals were examined: first it was tested how different types of
noise affect the performance of particle filter based speech feature enhancement and second
if voiced-unvoiced classification can improve the performance of the standard particle filter
approach especially in case of background music.

The experiments show. that the ASR performance using particle filter speech feature
enhancement is more affected by voiced noise than by unvoiced. This can be explained
by different noise signal energy distribution on frequencies. At same signal-to-noise ratios.
the energy of voiced noise is concentrated in compact regions. which leads to stronger
distortion of speech signal. In contrast the energy of unvoiced noised is distributed over
all frequencies.

According to the experiments voiced-unvoiced specific particle filter slightly improves ASR
performance in case of voiced noise and brings fast no improvement in case of unvoiced
noise. The comparison of autocarrelation-based voiced-unvoiced classification shows bet-
ter results than hypotheses-based classification at 10dB signal-to-noise ratio. This is also
confirmed by experiments that show classification error ratios. These results can be ex-
plained by greater robustness of autocorrelation-based algorithm. The results after the
first pass of ASR help to interpret the improvements by autocorrelation-based methods.
After the first pass autocorrelation-based methods have better hypotheses. which leads to
better signal adaptation; the improvement propagates to the second pass.

Interesting results were obtained with reference-based method. They are not much better
and sometimes even worse as the results with hypotheses-based method. One guess is that
the Viterbi alignment forced by references is fooled by strong background noise more than
if it forced by hypotheses. because hypotheses are estimated on the distorted signal. Of
course errors in the experiment setup were also possible.

The experiments show that the particle filter with general speech acoustic model nsed for
speech feature enhancement improves the performance of the ASR noticeably. However
using class-based models for speech. such as voiced-unvoiced or phone-specific brings no
significant improvement. A better performance of voiced-unvoiced classifier would even-
tually not increase the performance of the particle filter.
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