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angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen
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Abstract

The task of style transfer in the domain of text mandates changing the original style of the

sentence into a target style while preserving the remaining elements of the sentence. We propose

three different methods for achieving this and train them for the style positive/negative. We

do this without requiring aligned data, i.e. pairs of original and rewritten sentences, thus we

call our approaches unsupervised. The first approach is to use an adversarial style classifier to

eliminate the style from the hidden representation. The second one is to change the hidden

representation at test time guided by the gradient of a style classifier. The third one is to

delete style words from the original sentence and train a model to replace them. We use the

Transformer architecture for all models, a neural network architecture that can often handle

sequence data more efficiently and better than Recurrent Neural Networks. An evaluation is

performed with automated metrics.
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Chapter 1

Introduction

In general, the term style transfer refers to applying the style of one data sample to the content

of another data sample.

1.1 With Images

In the domain of images, there have been impressive results, most notably the transfer of the

style of a particular painter to a photo as in [Gatys et al., 2015] (see Figure 1.1) or depicting

a scene in various seasons or daytimes as in [Luan et al., 2017]. If the domain of style transfer

is interpreted more broadly, it can include various other tasks where the goal is to change

a particular attribute but preserve the rest. An example of this is [Liu et al., 2017], where

attributes such as glasses are added to a portrait of a person or the breed of an animal is

changed. Another example are the infamous Deep Fakes, where the face of person is replaced

by the face of another person.
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2 Chapter 1. Introduction

Figure 1.1: Image style transfer with content image on the left, style image in between and
transferred image on the right (from [Gatys et al., 2015])

1.2 With Text

The domain of text has also received a large amount of attention within the last two years.

The goal here is similar as in the image domain and possible styles include positive sentiment,

political slant or gender.

Unlike with images, it is feasible to compose at least small parallel datasets that contains

the source sentence and a desired result of the transfer. However, unsupervised approaches

have received a larger number of publications, because composing large parallel datasets is

very costly. Not having a parallel dataset also necessitates the development of unsupervised

evaluation metrics for the style transfer, since a reference-approach such as BLEU isn’t possible.

It’s important to note that the separability of content and style, which would be required in

order for style transfer to work perfectly, is never fully present in practical applications. For

example, the sentence The food was good. contains the word good which is very positive

although essential to the meaning, so replacing it will invariably change the meaning of the

sentence as well. So the problem should rather be phrased as changing the style while preserving

the topic, rather than the content.



Chapter 2

Background Theory

2.1 Transformer Neural Networks

Introduced in [Vaswani et al., 2017], Transformer Neural Network are a different approach to

sequence-to-sequence models, originally motivated by machine translation. Unlike Recurrent

Neural Networks (RNNs), there is no recurrence between time steps, allowing for better parallel

computation. They achieve better translation results with fewer computational steps.

Similar to RNNs, the Transformer consists of an encoder which converts the text to a latent

representation, and a decoder which converts it back to text (Figure 2.1). They both consist

of a fixed number of layers, which consist of several sub-layers themselves. Encoder layers

have two sublayers: self-attention, which attends on the previous layer, followed by a simple

feed-forward layer. A residual connection is added to each of these sublayers. Decoder layers

are similar, with the exception that between self-attention and feed-forward, an attention layer

that attends on the encoder output is added. Furthermore, the self-attention receives a mask

in the time dimension, such that it can’t attend on future timesteps. All of the attention in

the model is instantiated as multi-head attention (see subsection 2.1.1). The encoder receives

the source sequence as the input, while the decoder receives the encoder output and the target.

Note that information cannot flow from the target to previous timesteps in the decoder due to

masking. Since we don’t have recurrence anymore but the order of the input sequence matters,

3



4 Chapter 2. Background Theory

Figure 2.1: Transformer architecture (from [Vaswani et al., 2017])

it needs to receive a position-specific encoding. This is realized by sine and cosine functions

with different frequencies for different dimensions, that receive the relative position of a token

as the input. The result is added to the embeddings.

The output of each encoder- as well as decoder layer is of size dmodel × t, where t is the length

of the sequence. The size of the feed-forward sublayers is dinner.

2.1.1 Multi-head attention

Attention in general is a way of relating information from previous vectors to the current

hidden state. In the context of encoder-decoder models, these previous vectors are usually

hidden states of the encoder and the current hidden state is in the decoder. More specifically,

if hi is an encoder state and dj the current decoder state, our resulting context vector cj of the

attention becomes
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Figure 2.2: Multi-head attention with h different subspaces (from [Vaswani et al., 2017])

cj =
M∑
i=1

αi,jhi

and the attention weights αi,j are computed as

αi,j =
exp(score(dj−1,hi))∑M
l=1 exp(score(dj−1, hl))

where score, also called compatibility function, is often a simple dot-product. cj is then usually

added to dj, the result of which is being used to compute dj+1. Intuitively, this represents

a weighted sum of previous hidden states, the weights of which are determined by the score-

function. Frequently, the terms query, key and value are used, which are dj−1, hi and hi here,

respectively. Together with the softmax-function, this leads to a simpler equation:

cj = softmax(score(query, key)) · value (2.1)

The novelty in Transformer Networks is the so-called multi-head attention. It applies different

linear transformations to query, key and value in parallel in order to project them into subspaces

of dimension dk. The attention is then performed on each of these subspaces as in Equation 2.1,

where score(query, key) = query·keyT/
√
dk. The scaling by

√
dk is done to counteract vanishing

gradients when the result of the score-function becomes too large. For this reason, this kind

of attention in the subspaces is called scaled dot-product attention. After this is computed, the
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results from each subspace are concatenated, and followed by another linear transformation,

they result in the final context vector of the multi-head attention (see Figure 2.2).



Chapter 3

Related work

3.1 Style Transfer

The domain of style transfer has received much attention recently. As described earlier, the

goal here is to change the style of a sentence as much as possible while leaving the rest as

unchanged as possible.

3.1.1 Supervised

There are a few fully supervised approaches which require parallel data, more precisely a sen-

tences in one style and that sentence transferred into another style, representing our target.

[Rao and Tetreault, 2018] first create a parallel dataset by formally rewriting informal sen-

tences from Yahoo answers. The task then essentially becomes an application of Neural

Machine Translation (NMT) by translating from informal to formal. In addition to the

manually rewritten sentences, they obtain more parallel data by creating a rule-based

model from informal to formal (e.g. by changing words like awweeesoommme into awe-

some) and running it on the informal dataset. The work mainly focused on direction

7



8 Chapter 3. Related work

informal to formal, since the opposite direction is often very arbitrary (there are many

ways of making a formal sentence informal), thus making working with references difficult.

3.1.2 Unsupervised

Instead of relying on parallel data, many pieces of work focus on unsupervised approaches,

since large parallel data is hard to obtain. However, we still have style labels for each sentence

in the dataset.

[Fu et al., 2017] served as an inspiration for some of the models presented in this thesis.

They used an autoencoder which attempts to reconstruct the original sentence, while

removing the style from the latent representation. Unlike in this work, they achieve the

latter by adding the entropy of a classifier for the latent representation to the total loss. In

order to incorporate the target style into the representation, they train separate decoders

on each style. They train their models on a dataset of Amazon-reviews for the style

positive/negative and on a dataset of research paper titles and online news titles for the

style paper/news. They also introduce metrics to evaluate the adequacy of the style and

content of the generated sentence.

[Shen et al., 2017] enforces the decoder in an autoencoder-model to produce sentence of a

desired style by a process called cross-alignment. The goal of the encoder and decoder

is to produce hidden states, in which the original style is not detectable anymore. This

is somewhat similar to [Fu et al., 2017], however the model is already conditioned on the

target style and tries to generate a sentence with the target style, which is indistinguish-

able from a real sentences with the target style, as per a discriminator. The discriminator

receives the sampled output of the net, whose error is then backpropagated into the

decoder. One discriminator for each style is thus used. Note that the concepts of the

discriminator in this paper and the classifier in [Fu et al., 2017] are quite different: here,

the discriminator is conditioned on the target style and receives input that should already

have been transferred, while the classifier in [Fu et al., 2017] receives data before the tar-
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get style is incorporated. They composed and used a dataset consisting of restaurant

reviews from Yelp which we also use in this thesis.

[Prabhumoye et al., 2018] translate to an intermediate language, in order to implicitly

weaken the style, before translating back to the original language. The NMT-model per-

forming the backtranslation has a separate decoder for each style, similar to [Fu et al., 2017].

However, it is additionally guided by a classifier, which operates on the sampled output

of the decoder. The datasets used are the Yelp-dataset from [Shen et al., 2017] for the

style positive/negative, as well as other ones for the styles gender and political slant.

[Mueller et al., 2017] uses an approach where at test time, gradient ascent is performed on

the latent representation to cause it to be classified as the desired style. The modified

latent representation is then fed to a decoder. This step is performed at test time. They

apply this method to transfer negative to positive sentences and modern-style sentences

to sentences written by Shakespeare.

[Yang et al., 2018] uses a language model only trained on the target style to guide the gen-

erator, whose output it receives. The assumption is that in order to be given a high

probability by the language model, the sentence has to be in the same style as the train-

ing data for the language model, hence ensuring both grammatical and stylistic adequacy.

It is argued that language models can provide more precise feedback than classifier. The

latent representation is also fed to a decoder which aims to reproduce the input sentence,

ensuring preservation of the original content in the latent representation.

[Li et al., 2018] proposes removing words strongly associated with the original style from

the source sentence (not hidden representation) and then using a Sequence-to-Sequence

(seq2seq) model conditioned on the target style and the modified sentence to perform the

style transfer. The concept of removing the source style and then incorporating the target

style is shared with [Fu et al., 2017], however at a different level. A more elaborate model

tries to find a similar sentence to the source sentence after removing style-words. It then

uses a seq2seq-model conditioned on the style words of the similar sentence in addition to

the modified sentence. This gives the seq2seq further guidance on finding replacements
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for the deletions.

3.2 Paraphrasing

Closely related to Style Transfer is the domain of Paraphrasing. The difference is that Para-

phrasing only aims to differently express the content, while Style Transfer also aims to change

the style of the text, which can’t be entirely separated from changing the content.

[Gupta et al., 2017] employ an unsupervised approach where Variational Autoencoders (VAE)

are used to create a latent representation of the sentence and then paraphrases are gen-

erated in a non-deterministic manner.

[Mallinson et al., 2017] uses an NMT-model to translate to a pivot language, combining

multiple translations and back-translating.

3.3 Adversarial Training

[Ganin and Lempitsky, 2014] proposes a training method for eliminating a particular at-

tribute from the latent representation. They employ a classifier for that attribute that

receives the latent representation and train it in an adversarial manner. This is quite

similar to [Fu et al., 2017], however the focus in this work lies on images instead of text.



Chapter 4

Architectures

We experiment with three very different architectures for this task. We describe them assuming

there are only two possible styles such as positive/negative, although this is not a necessary

restriction.

4.1 Adversarial Autoencoder

The high-level model architecture we will use in this section is closely related to the one proposed

by [Fu et al., 2017]. It consists of:

• an encoder E(x; θE) receiving input sequence x and outputting a latent representation z

• a classifier C(z; θC) attempting to predict style lx from the latent representation

• a decoder Dt(z; θD) attempting to reconstruct x from the latent representation, specific

to target style label t

C is trained in an adversarial fashion against E and D for the purpose of removing as much

style information from z as possible. Ideally, z is a representation of the content of x with its

style removed. In order to apply the target style, we use a decoder trained only on decoding

11
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E

D1

z

D2

x̃txl

C l̃

Lrec

Lclass

Figure 4.1: Adversarial autoencoder architecture with input-sequence xl with style-label l. The
encoder E produces latent representation z which is decoded by Dt into x̃t (Lrec), where t is
our target-style. Additionally, our adversarial classifier C tries to predict l from z (Lclass).

source sentences of one particular style. Mathematically, our classification loss is the cross

entropy between style label lx and predicted style:

Lclass = − log p(lx|E(x); θC) (4.1)

The reconstruction loss becomes the cross entropy between the original sentence x and the

output of the decoder:

Lrec =
M∑
i=1

− log p(xi|Dlx(E(x; θE), θD) (4.2)

Our training objective for C is to find weights θC that minimize the classification loss:

min
θC

γclassLclass (4.3)

Intuitively, we seek to make the classifier good at classifying the latent representation. Our

training objective for E and D is to find weights θE, θD that minimize the reconstruction loss

and maximize the classification loss:
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min
θE ,θDlx

γrecLrec − γadvLclass (4.4)

Intuitively, we try to output a sentence close to x while making it hard for C to classify the

style given the latent representation.

Our approach slightly differs from the original approach proposed in [Fu et al., 2017], where a

second adversarial loss Ladv2, being the entropy of C’s predictions, was used to make E produce

a style-independent latent representation. We tried this approach but preliminary results were

poor, that is the accuracy of C reached 96%. This meant that Ladv2 was too weak of a signal

against Ladv, so z still contained all of the style, and as a result the decoder output was just x.

4.1.1 Low-level Architecture

Transformer Networks

As a second deviation from the approach in [Fu et al., 2017], we use Transformer Neural Net-

work (see section 2.1), which E and D are a part of. Again, dmodel denotes the model size,

meaning the corresponding dimension of the output of all Transformer layers have this size,

and dinner denotes the size of the fully-conntected sublayers inside each layer.

Bottleneck

The encoder of the original Transformer produces a context vector z which we use as our latent

representation to be classified by the classifier C. Since the original context vector is quite high-

dimensional and this could provide a challenge to the classifier, we experiment with different

modifications to reduce the dimensionality of z:

avg-bottleneck We average over the length-dimension of ZT , resulting in size dmodel × 1. To

make the decoder compatible again, we set its input length to 1.
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ff-bottleneck We change the output size of the feed-forward layer inside the last Transformer-

layer from dmodel to dbottleneck, resulting in a ZT of size dbottleneck × len(x). To make

the residual connection in the last encoder layer work again, we eliminate the excess

dimensionality by averaging. For the encoder-decoder attention work again, we simply

duplicate ZT to make it compatible with the decoder dimension again.

no-bottleneck No modification is done to the original Transformer architecture, where ZT is

of size dmodel × len(x)

Classifier

Since z has a variable-sized time dimension for most of our bottleneck options, we feed each

timestep of size dmodel to an RNN that has dC hidden units of the type Long Short-Term

Memory (LSTM) (see [Hochreiter and Schmidhuber, 1997]). This is followed by a feed-forward

layer and a softmax.

4.1.2 Training

There are multiple ways of implementing the adversarial training. In each case, every mini-

batch only contains samples of one style.

alternate-batch For each mini-batch, we optimize θC for C and then θE, θDl
for E and Dl.

alternate-epoch For each epoch, we optimize either θC for C or θE, θDl
for E and Dl. In the

first epochs we train them jointly, however.

grad-rev Following [Ganin and Lempitsky, 2014], we insert a gradient reversal layer just be-

fore the LSTM layer of C. We then jointly optimize θC , θE and θDl
to minimze γrecLrec +

γadvLclass.
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xl E z

C

z′ D xt

t

maxz′ P

∇zP

Figure 4.2: Classifier-guided revision model with one decoder during inference with input se-
quence xl and style-label l. The encoder E produces latent representation z. We perform
gradient ascent on z with the objective to be given higher probability for our target style t by
C, and get z′. The decoder D produces our transferred sequence xt.

4.2 Classifier-guided Revision

We experiment with an approach similar to [Mueller et al., 2017]. Our model architecture is

similar as in section 4.1, although for one of our models we only have one decoder:

• an encoder E(x; θE) receiving input sequence x and outputting a latent representation z

• a classifier C(z; θC) attempting to predict style lx from the latent representation

• a decoder D(z; θD) attempting to reconstruct x from the latent representation, not specific

to target style label t for one model. For the other model, Dt is specific to t as in section 4.1.

Like in section 4.1, we use a Transformer for E and D.

4.2.1 Training

Unlike in section 4.1, the training objective is to minimize the reconstruction loss and classifier

loss (see Equation 4.2 and 4.1) together:

min
θE ,θDlx

γrecLrec + γclassLclass (4.5)
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In practice, we train only reconstruction for 100 epochs and then only classifier for another 100

epochs, reaching a final validation classifier accuracy of 0.92.

We train the model with two decoders by using Decoder Dlx specific to the source label, as in

section 4.1.

4.2.2 Inference

The main idea behind this approach is executed during inference. We first compute our latent

representation as z = E(xl; θE), where l is the style label of our input sequence, and then

compute the log-probability that this is our target style label t as P (z) = log p(l = t|Z; θC).

Then we compute the gradient of P with respect to z:

∇zP =
∂P

∂z
(4.6)

and change z in the direction of the gradient in order to maximize P , also known also gradient

ascent:

z′ = z + η∇zP (4.7)

This is repeated for it iterations.

For the model with two decoders, decoder Dt specific to the target label is used.

4.3 Deleting Salient Words

In this section, we experiment with another model that is inspired by the work of [Li et al., 2018].

The idea is to remove style from the input sequence by directly deleting words associated with

that style instead of removing style from a latent representation. For example, if our positive
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input sentence was The food was really good., we would simply delete the word good. We then

pass this sentence to a seq2seq model additionally conditioned on the original style which aims

to reconstruct our original sentence without deletions. For inference, we then condition the

model on the opposite style.

4.3.1 Preprocessing

Our approach requires that style-specific words be deleted. We explore different ways of deter-

mining, which ones these words are. In every case, by deleting we mean replacing the token

with a unique delete-token.

Statistical approach

Let xl be the input sequence with l being the style label. Let l be the opposite style of l. As

in [Li et al., 2018], we define the saliency of an n-gram u, u ⊆ xl as

sal1(u, l) =
count(u,Dl) + λ

count(u,Dl) + λ
(4.8)

where count(u,Ds) is the number of occurrences of u in the subset of dataset D that has label

s, and λ is a smoothing-constant. Intuitively, the more often an n-gram occurs in one style

compared to the other style, the higher our sal1 will be.

We now delete n-grams that have a saliency greater than a fixed threshold γ. We iterate over

the n-gram size n from largest to smallest, otherwise often times larger n-grams wouldn’t be

found anymore because a smaller n-gram had already been deleted from it. Let xdell denote the

sentence with salient n-grams removed.

Gradient-based approach

We investigate a different approach, where instead of statistical methods, we delete words with

the aid of a neural network, similar to the work of [Li et al., 2015]. More specifically, if C is
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Figure 4.3: The sal2-score is shown for every word in three different sentences. The metric does
a good job in the first two leftmost sentences but fails to assign the word complained a high
score in the rightmost sentence.

our style-classifier from subsection 5.2.1, we redefine the saliency for 1-grams as

sal2(u, l) = |∇Emb[u] p(l|x; θC)| (4.9)

∇Emb[u] p(l|x; θC) is gradient of the classification of the whole input sequence with respect to

the embedding for the word Emb[u]. This will give words a high score whose embeddings will

change the contribution for class l (our target-style) much when changed, and we hope that this

coincides with a human-perceived relevance for the sentiment of the sentence. We only consider

1-grams in this approach. We use the model output before the softmax function. Furthermore,

we observe that the value of sal2 is almost the same whether we use p(l|x; θC) or p(l|x; θC), and

for this reason we always just use p(0|x; θC).

However, it is difficult to find an absolute threshold for sal2 because the absolute magnitude

appears to be fairly meaningless. We therefore decide to delete the k words with the highest

saliency, with k being determined by the following heuristic dependent on the sentence length

m:

k(m) =


1, if m ∈ [1, 4]

2, if m ∈ [5, 7]

3 otherwise

(4.10)

The longer the sentence, the more style-specific words tend to be present. However, often k

is too large or too small if chosen like this, i.e. more words are deleted than needed or more

style-specific words need to be deleted, respectively. Further work needs to explore this.
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(a) sal2 (b) sal3, positive target

Figure 4.4: The sentence The meat was good but the veggies were terrible. contains both
positive (good) and negative (terrible) words. If the target style is positive, we only want to
delete terrible but not good, which is also what we get with our second definition sal3. However,
our first definition sal2 isn’t dependent of the target-style so it will delete both words.

As state before, we found out that the saliency as defined above is largely independent of our

target-style, but ideally different words should be deleted for different styles (see Figure 4.4).

We therefore experiment with another definition of saliency which is affected more by the

target-label:

sal3(u, l) = |∇Emb[u] p(l|x; θC)| − |∇Emb[u] p(l|x; θC)| (4.11)

With this definition, a word is deemed more salient if the embedding contributes more to the

probability of the sentence being the target style than the original style. As we put this metric

to use, we find that it is in fact very dependent on our target style but gives very poor values

for deletion and for this reason, we don’t pursue it further.

4.3.2 Training

We simply train a seq2seq model on reconstructing the original sequence xl, conditioned on

the modified sequence xdell and the original style label l, using reconstruction loss Lrec from

Equation 4.2. We use the transformer architecture with two style-specific decoders, similar to

section 4.1 but without a classifier.
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E

D1

z

D2

x̃txdell

xl

delete

Lrec

Figure 4.5: Deleting salient words architecture during training. We delete style-words from the
original sentence xl using one of the discussed methods and obtain xdell . Encoder E produces a
latent representation z which is decoded by Dl into a sentence of the same style and as similar
to xl as possible (Lrec). During inference, the decoder of target style t is used instead.

4.3.3 Inference

During inference, we condition the decoder on the target style instead of the original style. In

our implementation, this means that we use the style-specific decoder for the target style (see

Figure 4.5).

4.3.4 Backtranslation

As suggested in [Li et al., 2018], this unsupervised style transfer can be used to generate a

parallel dataset. If Dl is our original dataset, we run our model to transfer these to the

opposite style, obtaining D̂l. We then train a simple seq2seq model with one encoder and one

decoder on back-translating to the original style D̂l from the generated input D̂l. We choose

the generated, presumably low-quality data as the input and the human-written, high-quality

data as the target because this way, the training signal comes from the target. Note that we

can only use a model for one direction, so we have one model for positive→ negative and one

for negative→ positive.
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Results

5.1 Datasets

Yelp Contains restaurant reviews from yelp divided into positive and negative, released by

[Shen et al., 2017]. The sentiment is very strong and can be accurately predicted by a

classifier (see subsection 5.2.1). It has 444101 sentences in the training set and 126670 in

the validation set, 60.2% of both have a negative label. However, for performance reasons

we report all metrics only on the first 1000 sentences of the validation set of each style.

5.1.1 Preprocessing

For tokenization, we use the tokenizer.perl from the Moses machine translation system 1.

We also experiment with byte pair encoding (BPE), which is a way to reduce the vocabulary

size of the model while still being able to differentiate between different rare tokens (as opposed

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

Style Train Dev Valid
Positive 267314 38205 76392
Negative 176787 25278 50278

Table 5.1: Splits for the Yelp-dataset (number of sentences)
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to replacing with an unknown token), as described in [Sennrich et al., 2015]. At train time, it

learns a set of merge operations as follows: in the beginning, there are only tokens of length 1

(characters) with their corresponding frequency in the corpus. Then iteratively, the two most

common symbols are combined into a new token, until some upper limit for vocabulary size or

lower limit for token frequency is reached. Then during test time (or on the validation split)

this procedure is repeated with the exception that the merge operations are applied as they

were learned during train time. We use an implementation from Github 2.

5.2 Metrics

5.2.1 Transfer strength

To evaluate how strong the output sentence has assumed the desired style, we use the metric

transfer strength, introduced in [Fu et al., 2017]. It is defined as the ratio of output sentences

x̃ classified as the target style t. More formally, we have a style classifier CEv(x̃; θCEv
). Then

we have transfer strength

tf(X̃) =
1

|X̃|

∑
x̃∈X̃

predict(x̃) (5.1)

where

predict(x̃) =


1, if p(t|x̃; θCEv

) ≥ 0.5

0, otherwise

(5.2)

As our CEv we train an RNN to classify the style of the input sentence. It has a 200-dimensional

input word embedding initialized with pretrained Glove vectors, followed by one bidirectional

hidden GRU-layer of size 73, followed by a softmax. 3. On the yelp dataset, it reaches a

near-perfect validation accuracy of 97.9% which is almost the same as what [Shen et al., 2017]

achieved with a CNN.

2https://github.com/rsennrich/subword-nmt/blob/master/subword nmt/learn joint bpe and vocab.py
3http://nlp.stanford.edu/data/glove.twitter.27B.zip
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5.2.2 Content preservation

Since we aim to generate a sentence similar to our input sentence, we need a metric to cap-

ture the similarity of two sentences. For this, we use content preservation, also introduced in

[Fu et al., 2017]. It computes the minimum, maximum and average word embedding in both

sentences and then takes the cosine similarity, that is a scaled dot-product, between the two. So

if wxi denotes the embedding of word xi, content preservation cp for sentences X, Y is calculated

as follows:

vXmin = min
x∈X

wx

vXmean = meanx∈X wx

vXmax = max
x∈X

wx

v = [vmin, vmean, vmax]

cp(X, Y ) =
(vX)TvY

‖vX‖ · ‖vY ‖

=
vXminv

Y
min + vXmaxv

Y
max + vXmeanv

Y
mean

‖vX‖ · ‖vY ‖

Note that the cp ∈ [−1, 1], with high values indicating high similarity. To get a random

baseline of this metric, we compute the average cp between 10000 random sentence pairs from

two subsets of our yelp validation set. We get the following values for different choices of

subsets: 0.866 for (valid-negative, valid-negative), 0.864 for (valid-positive, valid-positive) and

0.86 for (valid-positive, valid-negative). For more intuition, the sentence pair Hello, how are

you? and My dog got sick. has a cp of 0.851, indicating that very dissimilar sentences can still

receive a high cp.

5.2.3 Fluency

Content preservation doesn’t explicitly measure how fluent, i.e. in line with a sentence produced

by a native speaker, the sentence is. For this purpose, we train a language model LM on pre-
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dicting the next word given all previous words: p(xi|xi−1, ..., x1; θLM). It has a 300-dimensional

randomly initialized word embedding, followed by two LSTM layers with 300 dimensions each,

followed by a softmax. On our yelp dataset, it achieves a validation perplexity of 24.44. As our

fluency score, we add the log probabilities of the words in the sentence and divide them by the

length of the sentence:

fl(x) =
1

|X|
∑
xi∈x

log p(xi|xi−1, ..., x1; θLM) (5.3)

Higher fl-values indicate a higher fluency. For intuition purposes, we run fl on 1000 sentences

from the yelp validation set and get an average of -4.622 for negative sentences and -4.076 for

positive sentences.

5.3 Adversarial Autoencoder

The results of our models and two reference models are shown in Table 5.2. Our model config-

urations are as follows:

large-batch We use training option alternate-batch. We set dmodel = 512, dinner = 1024, 2

encoder and decoder layers each, dC = 50 and we use bottleneck option avg-bottleneck.

As weights we use γrec = 1 and γadv = 4. No BPE is used.

small-batch We use training option alternate-batch. We set dmodel = 128, dinner = 256, 2

encoder and decoder layers each, dC = 25 and we use bottleneck option avg-bottleneck.

As weights we use γrec = 1 and γadv = 4. BPE is used.

small-epoch We use training option alternate-epoch. We set dmodel = 128, dinner = 256, 1

encoder and decoder layers each, dC = 5 and we use bottleneck option no-bottleneck. As

weights we use γrec = 1 and γadv = 1. BPE is used.

small-rev We use the training option grad-rev. We set dmodel = 128, dinner = 256, 2 encoder

and decoder layers each, dC = 25 and we use bottleneck option no-bottleneck. As weights
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Model Transfer strength Fluency Content pres
Cross-align ([Shen et al., 2017]) 0.818 -4.22 0.93
MultiDecoder ([Fu et al., 2017]) 0.924 -4.77 0.9015

large-batch 0.398 -4.772 0.976
small-batch 0.76 -5.124 0.92
small-epoch 0.157 -4.692 0.972

small-rev 0.276 -4.436 0.971
baseline 0.24 -4.32 0.984

Table 5.2: Comparison of different adversarial autoencoder models we used
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Figure 5.1: These adversarial autoencoders with different parameters show a trade-off between
transfer strength and content preservation. Since avg-bottleneck often has a smaller size than
the other two bottleneck options, the classifier’s work becomes easier so the transfer strength
is higher.

we use γrec = 1 and γadv = 4. BPE is used.

baseline Same as large-batch except γadv = 0 which means that no adversarial training is

taking place.

5.4 Classifier-guided Revision

We set the number of layers in E and D to 2, dmodel = 512, dinner = 1024 and dC = 50 for

all models. We also experiment with bottleneck options no-bottleneck with η = 200 and avg-

bottleneck with η = 2.3 (see section 4.1.1). We use it = 40 for both options. BPE is applied to
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Figure 5.2: We can see that for adversarial autoencoders, fluency strongly correlates with con-
tent preservation, although some models with the same content preservation have significantly
better fluency.
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Figure 5.3: The smaller the bottleneck size in adversarial autoencoders (for all three bottleneck
options), the stronger transfer strength tends to be. A possible explanation for this is that
with a large bottleneck size, it is difficult for the classifier to achieve a high accuracy so the
adversarial training signal is too small, thus the latent representation still contains the original
style. At the same time, it is more difficult for the network to perfectly reconstruct the input
sentence.
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γrec γadv Transfer strength Fluency Content pres
4 1 0.398 -4.772 0.976

40 1 0.288 -4.731 0.98
4 0 0.24 -4.32 0.984

Table 5.3: Comparison of avg-bottleneck, no bpe models with different γ-parameters for adver-
sarial autoencoders. When γrec is very high, transfer strength decreases and content preserva-
tion increases. The same thing happens when γadv is set to 0, which means the model is only
trained on reconstruction.

(a) small-epoch (b) large-batch (c) small-rev

Figure 5.4: Training curves for three different adversarial autoencoders. On the left, we see
that the classifier accuracy gets lower and lower after each adversarial phase until it doesn’t
improve at all, whereas the reconstruction error barely rises. In the center, we see that the
validation accuracy of the classifier doesn’t improve at all. On the right, the train accuracy
goes up and then down due to the annealing, but the validation accuracy barely goes up.

the data as preprocessing. We experiment with two training schedules: we call alternate the

schedule where only Lrec is trained first and then only Lclass is trained, which is the default

unless specified otherwise; we call simultaneous the schedule where our loss is Lrec +Lclass first

and in the end only Lclass again. We report classifier accuracy on the validation set at the end

of training, in addition to the metrics from section 5.2.

1dec Uses bottleneck option avg-bottleneck and only one decoder. We use it = 40 and η = 2.3.

1dec-nobn Uses bottleneck option no-bottleneck and only one decoder. We use it = 40 and

η = 200.

2dec Uses avg-bottleneck and two decoders that are specific to the target label.

2dec-simult Unlike all the other models, we use training schedule simultaneous. Otherwise

the same as 2dec.
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Model Transfer strength Fluency Content pres Classif accuracy
1dec 0.649 -5.175 0.95 92.4%

1dec-nobn 0.3 -6.067 0.925 92.4%
2dec 0.844 -4.781 0.948 86.8%

2dec-simult 0.631 -4.856 0.931 94.4%
2dec-nograd 0.397 -4.546 0.966 86.8%
2dec-random 0.571 -5.596 0.923 86.8%

Table 5.4: Results for all classifier-guided revision models.

2dec-nograd No gradient ascent on z is performed, so the unmodified z is simply decoded by

style-specific decoder Dt. Uses option avg-bottleneck.

2dec-random Since we want to be sure that C provides a useful signal, we have a baseline

where a random perturbation is applied to ∇zP in each gradient ascent step. We imple-

ment this by multiplying each gradient dimension by a factor sampled from a uniform

distribution in the range [−2, 2]. Two decoders and option avg-bottleneck is used.

5.5 Deleting Salient Words

We set the number of layers in E and D to 2, dmodel = 512 and dinner = 1024. Neither bottleneck

nor byte pair encoding is used. We report multiple models in Table 5.5:

statistical We use the statistical deletion approach and follow the recommendation of [Li et al., 2018]

for a similar Yelp-review dataset of choosing λ = 1 and γ = 15. We also use γ = 7 for a

different model.

gradient For the gradient-based approach, we report our model with sal2 as our saliency

definition.

random As a baseline we train a model where for each sentence, k (according to our heuristic)

random words have been deleted.

bt Back-translation with parallel data generated from the specified model. Since each model

can only handle one direction, the numbers shown are the average of two models.
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Model Transfer strength Fluency Content pres del negative del positive
DeleteAndRetrieve 0.895 -4.377 0.934

DeleteOnly 0.869 -4.652 0.937
statistical-15 0.706 -5.114 0.94 29% 42%
statistical-7 0.82 -5.188 0.911 42% 55%

gradient 0.639 -5.079 0.928 27% 28%
random 0.294 -4.864 0.96 27% 28%

bt-statistical-15 0.718 -4.765 0.956 0 0
bt-gradient 0.692 -4.766 0.954 0 0

Table 5.5: Results for delete-salient-models. We specify the three metrics from section 5.2 as
well as how many percent of the words were deleted in each dataset. We notice that statistical-15
outperforms the gradient-model in both transfer strength and content preservation. However,
the gradient-model is still superior to random deletions by a large margin, indicating that the
gradient can give us a useful signal for saliency. Both back-translation models significantly
greatly improve fluency and content preservation and slightly improve transfer strength, com-
pared with the model that generated their data. We also show the results of the DeleteOnly
and DeleteAndRetrieve models from [Li et al., 2018], the former being related to statistical-15.

Model Transfer strength Fluency Content pres
MultiDecoder ([Fu et al., 2017]) 0.924 -4.77 0.9015

large-batch (section 4.1) 0.398 -4.772 0.976
2dec (section 4.2) 0.844 -4.781 0.948

DeleteOnly ([Li et al., 2018]) 0.869 -4.652 0.937
bt-statistical-15 (section 4.3) 0.718 -4.765 0.956

Table 5.6: Comparison of best models from each section with baselines from other papers.

All metric results are the average of both targets, negative and positive.

5.6 Comparison

As a summary, we compare the best models from each section in Table 5.6. The models from

section 4.2 and section 4.3 could be judged as much better than the ones from section 4.1 due

to a better tradeoff between transfer strength, fluency and content preservation.



Chapter 6

Discussion

6.1 Adversarial Autoencoder

Our results show that it is at least very difficult to achieve both a high transfer strength and

content preservation with this kind of model. This isn’t simply an issue of our implementation,

since the original implementation shows similar results.

It is problematic that our classifier tries to classify a latent representation, since the Encoder

can be trained to represent a function that makes this task very hard for the decoder, with

the decoder still being able to decode almost perfectly. This is shown by the training curve of

small-epoch in Figure 5.4, for example.

Other research on this topic, e.g. [Prabhumoye et al., 2018] and [Shen et al., 2017], mostly uses

a classifier that receives sampled words as input instead of a latent representation, which seems

to work better. This makes it more difficult for the classifier to be tricked since its input have

to be actual words.

30
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6.2 Classifier-guided revision

Since the model bn-1dec is already fairly successful at applying the target style, we can deduce

the the backprop method with the classifier alone is quite powerful. This is further shown by the

drastic gain of 2dec compared to 2dec-nograd in transfer strength. 1dec-nobn likely didn’t work

because of the high dimensionality of the hidden representation. Furthermore, we can show

that the gradient ascent is more than just a random perturbation of z because 2dec-random is

strictly dominated by 2dec.

Another observation is that the two-decoder model is superior to the one-decoder model in

both transfer strength and fluency. The former is obvious and an explanation for the latter

could be that z′ is closer to hidden representations that the style-specific decoder was trained

on, therefore it can be decoded better.

Why the model trained with alternate outperforms the one trained with simultaneous is unclear.

6.3 Deleting Salient Words

The statistical deletion approach outperforms the gradient approach in both transfer strength

and content preservation, which means that the definition sal1 is a better guidance than sal2 as

to which words contain style, at least with the hyperparameters that were used. One possible

explanation for this is that gradient descent on the input does not always align with human

judgement. For example, a particular word change might change the classifier output but not

human judgement. This has been studied with the goal of tricking the classifier, for example in

[Ebrahimi et al., 2017]. Furthermore, it may be that improving the k-metric is responsible for

the inferiority of the gradient approach. The k could be computed with a statistical approach

instead of a heuristic one, for example by just using the number of deleted words with the

statistical approach in that sentence. Alternatively, words could be deleted iteratively from

high to low saliency until the classifier gives the source label low enough probability. Lastly,

sal3 looks promising on paper and on a few examples and can hopefully be modified in some
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way to work well on most of the dataset. We leave these things for future work. Nevertheless,

the gradient approaches beat the random baseline by a huge margin in terms of style strength,

indicating that the gradient can give us a useful signal for saliency. The relatively high content

preservation of the random model can be attributed to the fact that easy-to-retrieve words such

as and, but, or, I, etc are deleted more often.

Back-translation greatly improves both fluency and content preservation and slightly improves

transfer strength. This can be explained by the fact that the back-translation model is trained

and evaluated in exactly the same way, namely producing the opposite style. By contrast, the

unsupervised model is trained generating the same style but evaluated (inference) on generating

sentences of one style given a sentence of the other style. The latter has style words removed but

this can never completely align the distributions for the two styles. An additional explanation

is that the unsupervised model doesn’t receives a less direct training signal, since some of the

input-words have been deleted.

One flaw with the current back-translation model is that the unsupervised model doesn’t pro-

duce very diverse del-replacements as training data for it, mostly with the negative target, where

it replaces with num very often. More diverse outputs of this model are desirable because it

allows the supervised model to learn more mappings from input to output words.

Compared with the baselines from [Li et al., 2018], our models score worse in transfer strength

and fluency but better in content preservation. The only difference between DeleteOnly and

our statistical-15 is that the latter uses Transformer networks, in addition to other possible

implementation differences.
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Conclusion and Future Work

7.1 Conclusion

In this work, we experimented with three different methods to perform unsupervised style

transfer. The adversarial autoencoder achieved only very moderate success, however classifier-

guided revision and deleting salient words were able to produce many grammatically sound

sentences that fulfilled the target style. This is interesting because we can control for a particular

style without having explicit examples of how to do this (parallel data) which makes data

collection much easier. We also showed how these can be used with the Transformer architecture

instead of with RNNs, leading to faster training times.

7.2 Future Work

An interesting direction of research would be to train these models not only on applying a

style in the narrow sense such as emotions but on controlling other aspects of the input such

as certain content or grammar attributes. This would be possible with no major modification

to our methods because our training objective is sufficiently general, since we are trying to

control for one attribute, which in this work is style, while leaving the sentence as unchanged

33
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as possible. As a toy example, one could train the model to conjugate all present tense verbs

into past tense, or to only use indefinite articles instead of definite ones.



Appendix A

Sample Output

We provide sample outputs for the models listed in Table 5.6. The original sentences are from

the validation split of the Yelp dataset.

35
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Original we had the shrimp with vegetables and shrimp fried rice - both lovely .
MultiDecoder we ordered the sauce and num people and chicken was our waste ?
large-batch we had the shrimp with vegetables and shrimp fried rice - both vegetables very lovely .
2dec we gave it the shrimp and shrimp with vegetables and shrimp said them was flat .
DeleteOnly we had the shrimp with vegetables and shrimp fried rice - both dry and cold .
bt-statistical-15 we had the shrimp with vegetables and shrimp fried rice - both tasteless .

Original high quality food at prices comparable to lower quality take out .
MultiDecoder poor food too flavor and room was a bad money .
large-batch high quality food prices , comparable to lower quality take out num back .
2dec low quality food at prices to lower quality to take num minutes out .
DeleteOnly food at prices were too high to comparable quality lower to take our order .
bt-statistical-15 below average food at prices comparable to lower quality take out .

Original i will be going back !
MultiDecoder i will be going back !
large-batch i will not be going back !
2dec i will not be going back !
DeleteOnly i do n’t think i will be going back !
bt-statistical-15 i will be going elsewhere .

Original my appetizer was also very good and unique .
MultiDecoder my food did n’t good was extremely disappointed .
large-batch my appetizer was also very good and very salty and cold flavor .
2dec my appetizer was was also very dry and tasteless .
DeleteOnly i gave up the only two stars if my my appetizer here was not good .
bt-statistical-15 my appetizer was mediocre at best and bland .

Original i was just one of those lucky enough to find this one !
MultiDecoder i was really num stars , this place had a num minutes .
large-batch i was just one of those lucky enough to find this one to this one !
2dec i was just one of those standing enough to tell this to find this one !
DeleteOnly i was just all the long number lucky to pretend one out this same !
bt-statistical-15 i was just one of those lucky enough to find this one !

Table A.1: positive → negative
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Original the $ num minimum charge to use a credit card is also annoying .
MultiDecoder the best chinese food my favorite food i went is recommended !
large-batch the $ minimum charge card to use a credit card is also so credit .
2dec the $ num to use a credit card is also very nice also .
DeleteOnly the $ num minimum charge to use a credit card is also great !
bt-statistical-15 the $ minimum minimum charge to use a credit card is also addictive .

Original my goodness it was so gross .
MultiDecoder my recommend it was always delicious .
large-batch my goodness it was so delicious .
2dec my goodness it was so tender and delicious food .
DeleteOnly i always love my goodness my delicious it goodness it was delicious .
bt-statistical-15 my goodness it was so delish !

Original if i could give them a zero star review i would !
MultiDecoder if you are a best best to anyone the salon ! you ever !
large-batch if i could give them a five star review i would recommend them !
2dec if i could give them a great star review and i ’ m !
DeleteOnly if i had a great experience that i review would !
bt-statistical-15 if i could give them a tremendous star review i would !

Original it was super dry and had a weird taste to the entire slice .
MultiDecoder it was super friendly and a very nice for a great here .
large-batch it was super dry and had a weird taste to the las vegas slice .
2dec it was super tasty and had a great taste to the entire slice of the entire .
DeleteOnly it was very filling and had a real taste at the slice .
bt-statistical-15 it was super juicy and had a delicious taste to the entire slice .

Original sorry but i do n’t get the rave reviews for this place .
MultiDecoder will always a friendly is the best nice here for a nice here .
large-batch sorry but i do get to the rave reviews for about this place .
2dec anyway , i ’ ll get the great reviews for this is the place .
DeleteOnly i love dr. rave reviews for this place .
bt-statistical-15 sorry but i do n ’ t get the rave reviews for this place .

Table A.2: negative → positive



Bibliography

[Ebrahimi et al., 2017] Ebrahimi, J., Rao, A., Lowd, D., and Dou, D. (2017). HotFlip: White-

Box Adversarial Examples for Text Classification. ArXiv e-prints, page arXiv:1712.06751.

[Fu et al., 2017] Fu, Z., Tan, X., Peng, N., Zhao, D., and Yan, R. (2017). Style Transfer in

Text: Exploration and Evaluation. ArXiv e-prints.

[Ganin and Lempitsky, 2014] Ganin, Y. and Lempitsky, V. (2014). Unsupervised Domain

Adaptation by Backpropagation. ArXiv e-prints.

[Gatys et al., 2015] Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A Neural Algorithm of

Artistic Style. ArXiv e-prints.

[Gupta et al., 2017] Gupta, A., Agarwal, A., Singh, P., and Rai, P. (2017). A Deep Generative

Framework for Paraphrase Generation. ArXiv e-prints.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-

term memory. Neural Comput., 9(8):1735–1780.

[Li et al., 2015] Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2015). Visualizing and Under-

standing Neural Models in NLP. ArXiv e-prints, page arXiv:1506.01066.

[Li et al., 2018] Li, J., Jia, R., He, H., and Liang, P. (2018). Delete, Retrieve, Generate: A

Simple Approach to Sentiment and Style Transfer. ArXiv e-prints.

[Liu et al., 2017] Liu, M.-Y., Breuel, T., and Kautz, J. (2017). Unsupervised Image-to-Image

Translation Networks. ArXiv e-prints.

38



BIBLIOGRAPHY 39

[Luan et al., 2017] Luan, F., Paris, S., Shechtman, E., and Bala, K. (2017). Deep Photo Style

Transfer. ArXiv e-prints.

[Mallinson et al., 2017] Mallinson, J., Sennrich, R., and Lapata, M. (2017). Paraphrasing re-

visited with neural machine translation. pages 881–893.

[Mueller et al., 2017] Mueller, J., Gifford, D., and Jaakkola, T. (2017). Sequence to better

sequence: Continuous revision of combinatorial structures. In Precup, D. and Teh, Y. W.,

editors, Proceedings of the 34th International Conference on Machine Learning, volume 70

of Proceedings of Machine Learning Research, pages 2536–2544, International Convention

Centre, Sydney, Australia. PMLR.

[Prabhumoye et al., 2018] Prabhumoye, S., Tsvetkov, Y., Salakhutdinov, R., and Black, A. W.

(2018). Style Transfer Through Back-Translation. ArXiv e-prints.

[Rao and Tetreault, 2018] Rao, S. and Tetreault, J. (2018). Dear Sir or Madam, May I intro-

duce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer.

ArXiv e-prints.

[Sennrich et al., 2015] Sennrich, R., Haddow, B., and Birch, A. (2015). Neural Machine Trans-

lation of Rare Words with Subword Units. ArXiv e-prints.

[Shen et al., 2017] Shen, T., Lei, T., Barzilay, R., and Jaakkola, T. (2017). Style Transfer from

Non-Parallel Text by Cross-Alignment. ArXiv e-prints.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, L., and Polosukhin, I. (2017). Attention Is All You Need. ArXiv e-prints, page

arXiv:1706.03762.

[Yang et al., 2018] Yang, Z., Hu, Z., Dyer, C., Xing, E. P., and Berg-Kirkpatrick, T. (2018).

Unsupervised Text Style Transfer using Language Models as Discriminators. ArXiv e-prints.


	Statement of Originality
	Acknowledgement
	Abstract
	Introduction
	With Images
	With Text

	Background Theory
	Transformer Neural Networks
	Multi-head attention


	Related work
	Style Transfer
	Supervised
	Unsupervised

	Paraphrasing
	Adversarial Training

	Architectures
	Adversarial Autoencoder
	Low-level Architecture
	Training

	Classifier-guided Revision
	Training
	Inference

	Deleting Salient Words
	Preprocessing
	Training
	Inference
	Backtranslation


	Results
	Datasets
	Preprocessing

	Metrics
	Transfer strength
	Content preservation
	Fluency

	Adversarial Autoencoder
	Classifier-guided Revision
	Deleting Salient Words
	Comparison

	Discussion
	Adversarial Autoencoder
	Classifier-guided revision
	Deleting Salient Words

	Conclusion and Future Work
	Conclusion
	Future Work

	Sample Output
	Bibliography


