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Kurzfassung

Das Ziel dieses Projektes ist die Realisierung eines Personen-Identifikations-Dialogs,
welcher explizite Konfidenzwerte verwendet. Als Dialogmanager wurde ein partiell
beobachtbarer Markow-Entscheidungsprozess (Partially Observable Markov Deci-
sion Process, POMDP) gewiihlt. POMDPs ermoglichen Unsicherheiten im Dialog
explizit zu modellieren und sind dadurch potenziell besser fiir natiirlich sprachli-
che Dialoge geeignet. Weiterhin wurde in vielen Arbeiten gezeigt, dass POMDPs
bessere Ergebnisse in Dialogen erzielen als handgeschriebene Dialogstrategien.
Tests im Rahmen dieser Arbeit haben ergeben, dass die vorhandenen POMDP-
Beschreibungstools nicht ausreichend sind fiir die Beschreibung eines POMDPs
mit expliziten Konfidenzwerten. Aus diesem Grund wurde in dieser Arbeit ein
grafisches Software Tool (POMDP-Builder) entwickelt, das die Erstellung eines
POMDPs mit expliziten Konfidenzen ermoglicht. Dieser POMDP-Builder bietet
die Moglichkeit den notwendigen Beschreibungsaufwand zu reduzieren und durch
Benutzerfiihrung Eingabefehler zu vermeiden. Dadurch wird insbesondere die Be-
schreibung komplexer POMDPs erleichtert. Die POMDPs, die mit dem POMDP-
Builder erstellt wurden, kénnen in einem gingigen POMDP Beschreibungsformat
gespeichert werden. Dies ermoglicht die Verwendung von vorhandenen POMDP
Solvern fiir das Losen des POMDPs. Im Zuge dieser Arbeit wurde der POMDP-
Builder erfolgreich fiir die Erstellung von zwei Personen-Identifikations-Dialogen
eingesetzt. Die Untersuchung dieser Dialoge hat gezeigt, dass der POMDP-Builder
deren Beschreibung deutlich vereinfacht. Weiterhin konnte anhand von Tests mit
diesen Dialogen belegt werden, dass die Verwendung von expliziten Konfidenz-
werten Vorteile in einem Personen-Identifikations-Dialog bietet.
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1 Introduction

1.1 Motivation

In the past years, it has become possible to create a system which can speak
with a human in real time. This has been made possible by improvements in
voice recognition and semantic analysis. But dialogs of these systems are often
unnatural for humans and need much time to reach their goal. The future goal
is to build a humanoid robot which is able to speak to a person like a human.
It is necessary to build a good dialog-manager with a good dialog strategy to
achieve this goal. The dialog strategy selects a decision which is most likely the
fastest way to achieve the current goal. Therefore, a good strategy is necessary
to complete a dialog fast and successfully. There are many different ways to
build a dialog-manager. For example hand-crafted deterministic rules can be
used or a Markov Decision Process (MDP) with reinforcement-learning. A new
approach is to use a Partially Observable Markov Decision Process (POMDP).
Since POMDPs provide a statistical framework which handles uncertainties, they
are potentially better for handling dialogs.

1.2 Scope of the Project

The scope of this project is to build a person identification dialog. A person iden-
tification dialog is a dialog in which the machine tries to identify the user, The
machine can handle new users and known users. The system also uses confidence
information from a multimodal user ID system. The confidence is used to improve
the recognition performance of known users. Previous work has shown that MDPs
and POMDPs can outperform hand-crafted deterministic rules and, in contrast
to MDPs, POMDPs are able to model uncertainties. This makes POMDPs po-
tentially better in handling an uncertain environment like a dialog with a human.
Thus, a POMDP has been chosen as dialog-manager of the person identification
dialog. Several tests have shown that current POMDP toolkits and description
methods are insufficient to describe the person identification dialog. Therefore,
this work introduces a new approach which can be used to describe a POMDP
for the person identification dialog. The description can be converted into a stan-
dard POMDP description format which can be used by standard POMDP solvers.
This approach has been implemented as the POMDP-Builder which is a graph-
ical software toolkit to define POMDP models which include explicit confidence



values. This work has been tested by building a person identification dialog.

1.3 Overview

Chapter 2 gives an overview of the fundamentals important to build a dialog sys-
tem.

Chapter 3 presents related work briefly.

Chapter 4 describes the POMDP-Builder and the person identification dialog
with explicit confidence values.

Chapter 5 describes the building and testing of two example dialogs.

Chapter 6 presents a conclusion.




2 Fundamentals

2.1 Dialog Systems

Speech
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User Dialog Manager
h
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Figure 2.1: Dialog System

The main components of a dialog system are outlined in fig. 2.1. It contains
three major components: speech understanding, speech generation and dialog-
manager. The speech understanding component maps the user's speech into an
abstract user action a,. This user action contains the semantic information of the
user’s utterance. The speech generation component does the opposite operation.
[t gets an abstract machine action a,, and creates the matching speech. The
dialog-manager is concerned with decision-making., It decides which machine
action a,, is the best in the current state given the current user action a,. There
are different ways to implement a dialog-manager. The following section will
introduce three ways to implement a dialog-manager.

2.2 Dialog-Manager

2.2.1 Hand-crafted Deterministic Rules

The conventional way to build a dialog-manager is to create hand-crafted deter-
ministic rules. These rules are used to update the machine-state s,, using the



current user action a,. A dialog policy is needed in addition to these rules. This
policy is used to select the next machine action a,, based on the current machine-
state. These steps repeat until the goal is satisfied or the dialog fails.

Building this kind of dialog-manager is very time-consuming and the designer
has to handle many difficulties. The two major difficulties are uncertainty of the
user action and delayed reward. The designer can never be sure that the given
user action is correct. Therefore, it is necessary to build a complex system which
lets the system recover from this kind of errors. But the main difficulty is the
delayed reward. Many decisions made by the dialog-manager do not have an
immediate effect but they may have a positive reward in the future. This makes
forward planning necessary. But this is very difficult to realize with deterministic
rules.

2.2.2 Markov Decision Process (MDP)

One way to solve many of the problems of hand-crafted deterministic rules is to
use a statistical approach. A common statistical approach used for dialog systems
is a Markov-Decision-Process (MDP).

An MDP is defined as a tuple {S, A,,, T, R} [Puterman, 1994] [Kaelbling et al., 1995]
where

e S is a set of states,
e A, is a set of machine actions,

o T defines the transition probabilityv P (s’ | s,an,). This is the probability
that the next state will be s’ € S provided that, in the previous state s € .S,
the action a,, € A,, was taken,

e R defines the immediate reward r (a,,, s) received for choosing action a,, in
state s.

When an MDP is used as a dialog-manager, the user action is part of the state.
With this framework forward planning is possible. The machine can calculate in
each state the most likely following state for each action. Then it can calculate
the same for these next states and so on. Of course the prediction gets more
uncertain with each iteration.

A good way for optimization of the policy is reinforcement-learning [Kaelbling et al., 1996].
Reinforcement-learning tries to maximize the reward over the time.
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2.2.3 Partially Observable Markov Decision Process (POMDP)

As described in the last section, MDPs provide a good statistical framework to
describe a dialog. But it is still assumed the entire state is observable and there-
fore it is assumed that the entire user is observable. But as mentioned before,
the user is not completely observable in most cases in a dialog. This uncertainty
is modeled in a Partially Observable Markov Decision Process (POMDP). The
current state s € S in a POMDP is always hidden. The machine only estimates
how likely the different states are. This estimation over all states is called belief-
state. The belief-state is often represented by a vector b = (by,...,b,) where b, is
the probability that the current state is s; for all s, € S. Information about the
current state gets the machine from observations.

A formal definition of a POMDP according to [Young, 2006] and [Kaelbling et al., 1995]
is a tuple {S,A,0,T, Z, R, by} where

e S is a set of hidden states,
e A, is a set of machine actions,
e (O is a set of observations,

e T defines the transition probability P (s"|s,a,,). This is the probability
that the next state will be ' € S provided that, in the previous state s € 5,
the action a,, € A,, was taken (transition model),

e Z defines the observation probability P (o' | s’,a). This is the probability
that o' € O is observed in state s’ € S after the machine took action a € A
(observation model),

R defines the immediate reward r (a,,, s) received for choosing action a,, in
state s (reward model),

e by is the initial belief-state.

The machine selects a machine action a,, € A,, based on the current belief-state
b. Then the machine receives an observation o’ € O. Now the machine calculates
the new belief-state b" as follows:

V(') = k-0 | & am)- ST (s | 5,am) b(s) (2.1)

s€85

1
where k = P (o’ ] a.m.f}) is the normalization factor [Kaelbling et al., 1995].
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3 Related Work

3.1 Factored Partially Observable Markov Decision
Process

Jason D. Williams, Pascal Poupart and Steve Young introduced a way to repre-
sent a dialog-manager as a factored Partially Observable Markov Decision Pro-
cess [Williams et al., 2005]. They took a standard POMDP and separated the
POMDP state s € S into three components: The user's goal s, € S,, the user’s
action a, € A, and the state of the dialog s; € S;. Thus, the POMDP state
is then represented by a tuple s = {s,,ay,54}. They also made the POMDP
observation o € A,. This allows a direct connection between the observed user
action o and the real user action a, in the POMDP state. Note that the state
§ = {8y, 0y, 84} is still hidden. They have shown that this factored architec-
ture allows a more detailed specification of a dialog system. But their dialog
model was significantly larger than other POMDPs. However, they could show
that their factored POMDP has a better performance than several hand-crafted
dialog-managers.

3.2 POMDP Toolkit

Trung H. Bui, Boris van Schooten and Dennis Hofs deal with a “Practical dialog-
manager development using POMDP" [Bui et al., 2007b]. They addressed sev-
eral problems of the practical development cycle. Theyv introduced a “POMDP
Toolkit” [Bui et al., 2007a]. This toolkit includes a dialog specification parser
and an interactive simulator. Thev created a dialog POMDP specification format
(fpomdp format) which is based on factored POMDPs [Williams et al., 2005]. The
fpomdp format can also contain regular expressions. The parser converts a file in
the fpomdp format into a pomdp-file in Tony Cassandra’s format [Cassandra, 1999).
Tony Cassandra’s format is usually much larger and less readable then the fpomdp
format. But Tony Cassandra’s format can be loaded by a POMDP solver. Bui
et al. used two POMDP solvers, Perseus [Spaan and Vlassis, 2005] and ZMDP
(Smith, 2007]. They noticed that ZMDP can handle complex problems much bet-
ter than Perseus. The interactive simulator provides an easy and fast way to test
the policy file created by the solver. It allows acting as the user and observing
the machine response.
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3.3 Learning and Verification of Names and the
Multimodal User ID

Hartwig Holzapfel and Alex Waibel presented a system in which a humanoid
robot works as a receptionist [Holzapfel and Waibel, 2008a]. The main focus was
on the identification of persons. The robot should be able to recognize known
persons and to learn to know new persons. The humanoid robot has a stereo
camera for visual perception and distant and close-talk microphones for acoustic
perception. These components provide face detection, face identification (face
ID), voice identification (voice ID) and speech recognition. The voice and face
identification were used to support the recognition of known persons. Further-
more the robot collects the face ID and voice ID from new persons to support the
recognition on their next visit. This system was tested with two different dialog-
managers: Hand-crafted rules and an MDP trained by reinforcement-learning.
The tests have shown that the MDP with reinforcement-learning produces results
which are comparable to the results of the hand-crafted system in a known en-
vironment. But the MDP with reinforcement-learning has the advantage that it
could be automatically retrained for new environments.

In another paper, Hartwig Holzapfel and Alex Waibel introduced an enhanced
multimodal user ID [Holzapfel and Waibel. 2008b]. The multimodal user ID com-
bines information which was collected during the dialog using Bayesian networks.
This information includes face ID, voice 1D and user input like spoken names,
spellings and confirmations. Thus, this system is able to combine all informa-
tion available in the dialog. The tests have shown that the multimodal user 1D
performs better than a model that relies on dialog information only.

14



4 Using POMDP for Person
Identification Dialogs

4.1 The ldea

The main idea of this work is to build a person identification dialog which in-
cludes explicit confidence values. One problem to solve is to choose an appropriate
dialog-manager. Many previous works with POMDPs have shown that they show
better performance then hand-crafted policies, for example [Williams et al., 2005]
and [Bui et al., 2007b]. POMDPs are also able to model uncertainties in the dia-
log [Young, 2006]. This makes POMDPs the best choice for the dialog-manager.
Another important task is the description of the POMDP. Many tests with cur-
rent tools, like the POMDP Toolkit [Bui et al., 2007a], have shown that they are
insufficient to describe a POMDP with explicit confidence values. Therefore, a
new approach for the description has been developed in this work. This new
approach has been implemented as a graphical software tool (POMDP-Builder)
which allows the description of a POMDP with explicit confidence values.

4.2 POMDP Builder

The POMDP-Builder is a program with a graphical user interface (GUI) to define
a POMDP with explicit confidence values. The most important design decisions
are described in the following. The POMDP-Builder uses a GUI because it allows
a flexible and interactive input of the data by the designer. The GUI presents
the data to the designer in a clear arrangement and the correctness of data dur-
ing the input process is verified. Both features of a GUI reduce input errors.
The POMDP-Builder takes the input data and creates a file in Tony Cassan-
dra’s POMDP format [Cassandra, 1999] which can be used as input for current
POMDP solvers.

The GUI of the POMDP-Builder consists of six tab-pages. Each of them deals
with a different part of the POMDP description. Thus, the designer is guided
through the different parts of the description process. Additionally, the input is
restricted to valid data only.
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In detail, the six parts of the description process are:

1. Definition of states. observations and machine actions.

b

Description of the transition model.

Description of the observation model.

L

Description of the reward model.
5. Selection of the initial state.
6. Creating the pomdp-file.

The POMDP-Builder uses a factored architecture where the state is separated
into dialog-state, user action and confidence, and the observation is separated into
user action and confidence. This factored architecture makes a direct connection
between the state and the observation possible. It also allows the designer to
use a coufidence value in the observation model and also in the transition model.
The designer only needs to enter the dialog-states, user actions, confidence-values
and machine actions into the first tab-page of the POMDP-Builder GUI (fig. 4.1).
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Figure 4.1: POMDP-Builder: Definition of states, observations and machine
actions.

In the next tab-page, the designer can describe the transition model. The transi-
tions are shown in a table on the interface of the POMDP Builder. The transitions
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in this table can be edited, deleted and rearranged. A new transition probability is
added with an interface with several drop-down-lists (fig. 4.3) for Machine-Action,
Dialog-State, User-Action, Confidence, next Dialog-State, next User-Action and
next Confidence. Each of these drop-down-lists contains the items added on the
first tab-page. The designer only needs to select the items. The probability itself
is added into a text field. This is the probability that the selected machine ac-
tion, dialog-state, user action and confidence will lead to next dialog-State, next
user-Action and next confidence. This interface is shown in figure 4.2.
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Figure 4.2: POMDP-Builder: Transition model
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Figure 4.3: POMDP-Builder: Transition model (add)

On the third tab-page, the designer can describe the observation model. There is
a table which shows the current observation model. The observation in this table
can be edited, deleted and rearranged like in the transition model. The process
to add items to the observation model is also very similar to the add-process in
the transition model. Again there are several drop-down-lists and a text field for
the probability (fig. 4.5). This interface is shown in figure 4.4.
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Figure 4.4: POMDP-Builder: Observation model
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Figure 4.5: POMDP-Builder: Observation model (add)



The reward model is shown in a table on the fourth tab-page (fig. 4.6). Again,
the items can be edited, deleted and rearranged. The add-process in the reward
model is also like the add-process in the transition model and the observation
model. It is shown in figure 4.7.
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Figure 4.7: POMDP-Builder: Reward model (add)

The initial belief-state can be selected on the fifth tab-page (fig. 4.8).

On the sixth tab-page, the designer can select an output file. Then POMDP-
Builder creates a pomdp-file in Tony Cassandra’s format according to the de-
scriptions the designer has made. The interface is shown in figure 4.9.

Wildcard

The description of a POMDP using the POMDP-Builder is still very long. There-
fore, an addition to the standard POMDP-Builder is the use of the wildcard **'.
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Figure 4.8: POMDP-Builder: Initial belief-state
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Figure 4.9: POMDP-Builder: Create pomdp-file

The designer can select this wildcard in each drop-down-list. One interpretation
of the wildcard ‘*’ is ‘any’. This wildcard allows describing parts of the transition
model, observation model or reward model independent of the other parts. For
example, it allows a connection between the machine action and the user action
in the transition model. Figure 4.10 shows an example where the ‘machine action
1" leads to ‘user action A’ with a probability of 0.7 and to ‘user action B" with a
probability of 0.3.

States bbctons  [1anwion Mods'  (bservation Mode!  Fleward Model  Headsr  Croate POMD?

Machinefchon Disog-Sists L gm dzhon Conldence ruenl Disdog State st L sseAicton newt Cordedence B
rachne-achion 1 ! = - uzes-action A . 1)
machme-acton | N - : : unas-action B : 03

Figure 4.10: POMDP-Builder: Wildcard Example 1

[t is also possible to specify parts of the transition model, observation model or
reward model more precisely. Then the wildeard ** stands for ‘any of the others”
For example, the example 1 can be extended that if the dialog-state is ‘dialog-
state 17, the ‘machine action 1’ leads to ‘user action A’ with a probability of 0.5
and to ‘user action B’ with a probability of 0.5 (fig. 4.11). If the dialog-state is
not ‘dialog-state 1’, the POMDP works exactly like the POMDP in example 1.

4.3 The Scenario

The idea is that the dialog takes place in a multimodal environment where a hu-
manoid robot is talking to the user like the humanoid robot used in [Holzapfel and Waibel, 20!
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Figure 4.11: POMDP-Builder: Wildcard Example 2

This humanoid robot has standard perceptual components. Video cameras collect
video data and microphones collect audio data. The video data can be used for
face detection and face identification (FacelD). The audio data can be used for
voice identification (VoicelD) and speech recognition. FacelD, VoicelD and dialog
information can be integrated to the multimodal user 1D [Holzapfel and Waibel, 2008b].
Automatic speech recognition extracts the semantic information from the audio
data. The semantic information is mapped on a user action. This user action
combined with the confidence of the multimodal user 1D is the observation. The
POMDP can now calculate its new belief-state and can select the best machine
action according to the policy. This machine action is transformed into text and
this text is transformed to speech for the user. This progress is shown in fig. 4.12.

POMDP

e . VoicellD . o
User é',md_ --_\—-: J_i. o \ Observaticn Belief

GO e Towr ToSpeech €e—————— | Machinehooion

Figure 4.12: The Scenario Process

4.4 Person ldentification Dialog

A person identification dialog is a dialog with the goal to identify the user. A
person is identified by a name in a dialog. Therefore, the main goal is to get the
correct name from the user. Thus, the machine has to be able to ask for the name
of the user. Then the user would normally reply by saying his/her name. It is
possible that the name the user said is not in the vocabulary (out of vocabulary,
OOV). The machine has to be able to ask for the spelling of the name in order to
learn even unknown names. When the machine has a name of the user but it is
not sure if the name is correct, it should be able to ask for a confirmation. The
user will then confirm or disconfirm the name. The machine can decide at the
end of the dialog to store the result or to drop it. The user should be able to end



the dialog at any time. The machine gets a confidence value, like the confidence
from the multimodal user ID [Holzapfel and Waibel, 2008b], at each turn of the
dialog. This confidence indicates the likelihood that the name the machine has is
correct.
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5 Name-Dialogs - Building, Solving
and Results

This chapter describes the implementation of two person identification dialogs.
The first dialog uses only one name (Single-Name-Dialog). This dialog is also the
foundation for the second dialog which deals with the first and last name of the
user ( Full-Name-Dialog). The POMDP-Builder is used for the description of the
POMDPs. ZMDP [Smith, 2006] is used for the solving because [Bui et al., 2007b]
has shown that ZMDP handles complex POMDPs better than Perseus. Then
the results are tested with the interactive simulator from the POMDP Toolkit
[Bui et al., 2007a].

5.1 Creating the POMDP Description

The first part of a POMDP description is the definition of the machine actions,
the user actions, the confidence values and the dialog-states. The second part is
the definition of the transition model. observation model and reward model.

5.1.1 Single-Name-Dialog

The aim of the Single-Name-Dialog is to create a simple person identification
dialog. This dialog deals only with one name for each user.

Machine-Actions

The machine can ask for the name of the user (askName). It can ask for a
confirmation of the name (askConfName). Furthermore, it can ask for the spelling
of the user’s name (askSpelling). The machine can also end the dialog in two ways.
It can end the dialog and store the result (endStore) or it can abort the dialog
(endAbort). The machine can also execute an action which starts the dialog
(machineStart). These machine actions are listed in table 5.1.

User-Actions

The user actions are listed in table 5.2.



machine action description

machineStart  The machine starts the dialog.

askName The machine asks the name of the user.

askConfName The machine asks for the confirmation of the name.

askSpelling The machine asks for the spelling of the user’s name.
endStore The machine ends the dialog successful.
endAbort The machine aborts the dialog.

Table 5.1: Single-Name-Dialog - Machine-Actions

user action description

userStart The user starts the dialog.

sayNameKnown The user says a known name.

sayNameOOV The user says a name which is out of vocabulary.
spell Name The user spells his/her name.

conf Name The user confirms the name.

discon f Name The user disconfirms the name.

user End The user ends the dialog.

Table 5.2: Single-Name-Dialog - User-Actions



Confidence Values

The confidence needs to be discretized. The more confidence values are used, the
more nuances can be differentiated. But more confidence values create a more
complex POMDP. Some tests have indicated that six confidence values (table 5.3)
are a good compromise. The lowest and the highest confidence cover 20 percent
and each of the four values in the middle cover 15 percent.

confidence values description

cl10 The confidence is between () and 20 percent.
30 The confidence is between 20 and 35 percent.
c40 The confidence is between 35 and 50 percent.
c60 The confidence is between 50 and 65 percent.
c70 The confidence is between 65 and 80 percent.
c90 The confidence is between 80 and 100 percent.

Table 5.3: Single-Name-Dialog - Confidence Values

Dialog-States

The dialog-state in the Single-Name-Dialog only deals with the name the machine
got from the user. Four different states are distinguished: noName, rightName,
wrongName and oovName. These dialog-states are explained in table 5.4.

dialog-state  description

noName The machine has no name of the user.
right Name  The machine has the name of the user.
wrongName The machine has a wrong name.

oovName The machine has a user’s name which is out of vocabulary.

Table 5.4: Dialog-States - Single-Name-Dialog

Transition Model

The description of the transition model is a difficult part. The use of the wildeard
“*' makes the description easier and shorter. But many attempts have shown that
it is still very complex and many errors are possible. One main difficulty is that



not only the expectation of the user’s behavior is modeled by the transition model
but also the user himself in the training of the POMDP. The more complex the
transition model becomes, the more sources of errors exist. Several tests have
shown unintentional results. The fine tuning of a complex transition model is
also very difficult.

To visualize the transition model of the single-name-dialog, it is divided into two
parts. Part one (fig. 5.1) describes which user action can lead to which dialog
state. Part two (fig. 5.2) describes which machine action can lead to which user
action. Notice that the transition model probabilities depend on the confidence.
Furthermore, some very unlikely transitions are left out to improve the clarity.

sayNameknown,

confName
d noName ) 55 1 W
'_____.-ﬁ‘

sayMNameQOV

sayNameknown

S
iIName
wrongName ey = \oovName
nEwn. = S sayNameOOV
disconfName

Figure 5.1: Simplified Transition Model - Part 1

askSpall
askSpell

askName

Figure 5.2: Simplified Transition Model - Part 2
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Observation Model

A simple observation model was chosen for this dialog. The factored architecture
allows a direct connection between the state and the observation. The main ques-
tion is whether the observations are correct.

The observed confidence directly implies the current confidence because the con-
fidence is directly transmitted to the machine. The user action sayNameKnown
indicates that the internal name slot has been filled and there is also no uncer-
tainty. When the user says a name which is out of vocabulary, the name slot has
not been filled. If the user spells his/her name, the name slot will be filled by the
name spelling unit. The start and the end of the person identification dialog are
also certain. Only the user actions con f Name and discon f Name are uncertain.
Since the other user actions are certain, confName can only be confName or
disconfName and disconfName can only be disconfName or confName. It
is most likely that the observation is correct (P = 0.9), The probability that the
observation was not correct is 0.1.

Reward Model

The reward model has a strong influence on the solving process and therefore on
the result. Most parts of a reward model depend on psychological values. Obvi-
ously, the main target is to create a dialog which is convenient for user and leads
to the right user’s name.

The following reward model has been chosen. The main goal of the dialog is
to get the right name from the user and then store the result. Therefore, the
machine action endStore with the dialog-state righi Name gives a reward of 20,
The machine action endStore in any other dialog-state has a reward of —20. The
use of the machine action endAbort has always a reward of —10. The idea is that
the machine avoids using endAbort, but it will use endAbort to end the dialog
when the dialog-state is not rightName. Since the question for confirmation of
a name cannot be formulated if the dialog-state is noName or oovName, it has
a reward of —10. The question for the spelling is unusual and inconvenient in
a normal dialog and the machine should avoid this question unless it is neces-
sary. Therefore, the machine action askSpelling has a reward of —5. Each other
machine action and state combination has a reward of —1 because the machine
should try to keep the dialog short.

Initial Belief-State

The initial belief-state is the dialog-state noName and the user action userStart
uniformly distributed over all confidence values.
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5.1.2 Full-Name-Dialog

The aim of the Full-Name-Dialog is to create a person identification dialog which
is more realistic than the Single-Name-Dialog. This dialog deals with one first
name and one last name for each user.

Machine-Actions

The machine actions are more specific in the Full-Name-Dialog. People are iden-
tified by their first and last name. Therefore, the machine has to be able to ask
for the first name and the last name separately. This leads to more machine
actions and therefore a much more complex system. The machine actions of the
Full-Name-Dialog are listed in table 5.5.

machine action description

machineStart The machine starts the dialog.

ask First The machine asks the first naine of the user.

askLast The machine asks the last name of the user.

askCon f First The machine asks for the confirmation of the first name.
askCon f Last The machine asks for the confirmation of the last name.

askSpellingFirst The machine asks for the spelling of the user’s first name.
askSpellingLast  The machine asks for the spelling of the user’s last name.
endStore The machine ends the dialog successful.

end Abort The machine aborts the dialog.

Table 5.5: Full-Name-Dialog - Machine-Actions

User-Actions

The user actions are listed in table 5.6.

Confidence Values

The confidence values used in the Full-Name-Dialog are the same values that were
used in the Single-Name-Dialog.

Dialog-States

Since the Full-Name-Dialog deals with two names, information about the state
of these two names is needed. The states of the first name and the last name
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user action

description

userStart

The user starts the dialog.

sayFirstKnown The user says a known first name.

sayLastKnown  The user says a known last name.

sayFirstOOV
sayLastOOV
spell First
spell Last

con f First

con f Last
discon f First
discon f Last

user End

The user says a first name which is out of vocabulary.
The user says a last name which is out of vocabulary.
The user spells his/her first name.

The user spells his/her last name.

The user confirms the first name.

The user confirms the last name.

The user disconfirms the first name.

The user disconfirms the last name.

The user ends the dialog.

Table 5.6: Full-Name-Dialog - User-Actions

confidence values description

c10
c30
c40
c60
c70
90

The confidence is between 0 and 20 percent.

The confidence is between 20 and 35 percent.
The confidence is between 35 and 50 percent.
The confidence is between 50 and 65 percent.
The confidence is between 65 and 80 percent.

The confidence is between 80 and 100 percent.

Table 5.7: Full-Name-Dialog - Confidence Values
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are cach like the state in the Single-Name-Dialog. Thus, the dialog-states in the
Full-Name-Dialog are the Cartesian product of the dialog-states of the first name
and the dialog-states of the last name. These dialog-states are listed in table 5.8
and table 5.9.

dialog-state description

nokFirst The machine has no first name of the user.
right Farst  The machine has the first name of the user.
wrongFirst The machine has a wrong first name.

oov First The machine has a user’s first name which is out of vocabulary.

Table 5.8: Full-Name-Dialog - Dialog-States (First Name)

dialog-state description

noLast The machine has no last name of the user.
right Last The machine has the last name of the user.
wrongLast The machine has a wrong last name.

oouv Last The machine has a user’s last name which is out of vocabulary.

Table 5.9: Full-Name-Dialog - Dialog-States (Last Name)

Transition Model, Observation Model, Reward Model

The transition model, observation model and reward model of the Full-Name-
Dialog are based on the models of the Single-Name-Dialog. It is like two Single-
Name-Dialogs in principle. But the description is much more complex because it
contains much more states and actions.

5.2 Solving the POMDP
5.2.1 Single-Name-Dialog

The pomdp-file for the Single-Name-Dialog has been created (fig. 5.3) successfully
after the description. Then, the ZMDP solver can read the pomdp-file to solve
the Single-Name-Dialog. The solver creates a policy file which can be used to
calculate the best machine action for each situation. The ZMDP solver needs
only about a minute to solve the Single-Name-Dialog.
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Figure 5.3: POMDP-Builder: Single-Name-Dialog - Creating POMDP-File

5.2.2 Full-Name-Dialog

The increased complexity of the POMDP is also shown by the creation of the
pomdp-file. It takes more time to build the pomdp-file of the Full-Name-Dialog
than it took in the Single-Name-Dialog. This is also shown by the size of the
created file. It has a size of more than 200 MBytes while the pomdp-file of the
Single-Name-Dialog has only a size of about 2 MBytes.

A question was: Can the ZMDP solver handle the Full-Name-Dialog? ZMDP
can read in the pomdp-file and it can start solving it. But it takes a long time
and the longer ZMDP runs the more main memory it consumes. In this test, the
ZMDP solver was terminated after three days due to memory restrictions. The
ZMDP solver could not create a fully trained policy file. The partially trained
policy file is discussed in 5.3.4. It might be possible to solve the Full-Name-Dialog
in a few years on a computer with more main memory. Until the solving of the
Full-Name-Dialog is possible, two Single-Name-Dialogs could be used to get the
first and last name from the user.

5.3 Evaluation and Results

5.3.1 Metric
Number of Entries

The function E(M, D) describes how many entries the transition model, observa-
tion model or reward model has in a specified POMDP description. The param-
eter M indicates the model (transition, observation, reward) and the parameter
D stand for the POMDP description. The function E(M, D) is used to compare
the extent of different descriptions for the same POMDP.

5.3.2 Evaluation: POMDP Description

In this section, the function E(-,:) (see 5.3.1) is used to compare POMDP de-
scriptions of the POMDP Builder with POMDP descriptions in the pomdp-file
format.
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Single-Name-Dialog

The transition model of the POMDP-Builder has 403 entries to describe the
Single-Name-Dialog. The pomdp-file has 18,648 entries in the transition model.
The difference is more obvious in the observation model and the reward model.
The POMDP-Builder has 15 entries in the observation model and the pomdp-
file has 1.296 eutries. In the reward model. the POMDDP-Builder has 11 entries
and the pomdp-file has 1,008 entries. These results are shown in table 5.10.
The POMDP description of the POMDP Builder is significantly smaller than the
POMDP description in the pomdp-file format.

E(-.-) POMDP-Builder pomdp-file factor
Transition Model 403 18,648 46.3
Observation Model 15 1.296 86.4
Reward Model 11 1,008 91.6

Table 5.10: Single-Name-Dialog - Comparison (Number of entries)

Full-Name-Dialog

The transition model of the POMDP-Builder has 5,409 entries while the pomdp-
file has 2.224,800 entries in the transition model. Also, the observation model
and the reward model are much smaller using the POMDP-Builder. The obser-
vation model needed 18 entries in the POMDP-Builder and 10,368 entries in the
pomdp-file. The reward model needed 22 entries in the POMDP-Builder and
10,368 entries in the pomdp-file. These results are also shown in table 5.11. The
advantage of the POMDP-Builder is much more significant in this complex ex-
ample than in the Single-Name-Dialog.

E(-,) POMDP-Builder pomdp-file factor
Transition Model 5,409 2,224,800 411.3
Observation Model 18 10,368 576.0
Reward Model 22 10,368 471.3

Table 5.11: Full-Name-Dialog - Comparison (Number of entries)
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5.3.3 Evaluation: Dialog
Single-Name-Dialog

Six typical test cases are selected. They have been chosen because they have been
observed in dialogs of this kind. These test cases have been used to compare the
Single-Name-Dialog with a dialog with no confidence information. The selected
test cases differ in whether the user is known and whether the first hypothesis
is right, wrong or indicate an OOV name. The confidence for the Single-Name-
Dialog depends on whether the user is known or unknown and the first hypothesis
is right or wrong. In cases 5 and 6, the correct name of the user is out of vocabulary
(OOV). In all cases, it is assumed that the second hypothesis the machine gets is
always right. The test cases are listed in table 5.12.

case # user first hypothesis  confidence  correct name QOV?
1 known right high no
2 known Wrong low no
3 unknown right low no
4 unknown wrong low no
5 unknown WIong low yes
6 unknown 010)% low yes

Table 5.12: Single-Name-Dialog - Test Cases

Test Case 1 In test case 1, the user is known to the machine and the first
hypothesis is right. Under these conditions, it is most likely that the confidence is
high. Test case 1 shows that the machine in the Single-Name-Dialog does not ask
for a confirmation when the confidence is verv high. Therefore, the Single-Name-
Dialog (tab. 5.13) needs only one turn whereas the dialog with no confidence
(tab. 5.14) needs two turns in test case 1.

Machine; askName Machine: askName

User: sayNameKnown-c90 User: sayNameKnown

Machine: endStore Machine: askConfName
User: confName

Machine: endStore

Table 5.13: Case 1 - Single-Name- Table 5.14: Case 1 - no confidence
Dialog
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Test Case 2 In test case 2, the user is known to the machine and rhe first
hypothesis is wrong. It is most likely that the confidence is low under these
conditions. Test case 2 shows the machine in the Single-Name-Dialog (tab. 5.15)
does not ask for a confirmation when it gets a name with a very low confidence.
Instead, it asks for the spelling of the user’s name to get a new hypothesis. The
machine in the dialog without confidence (tab. 5.16) asks two times for the name
and the confirmation. Therefore, the Single-Name-Dialog takes three turns while
the dialog without confidence needs four.

Machine: askName Machine: askName

User: sayNameKnown-c10 User: sayNameKnown

Machine: askSpelling Machine: askConfName

User: spellName-c10 User: disconfName

Machine: askConfName Machine: askName

User: confName-c10 User: sayNameKnown

Machine: endStore Machine: askConfName
User: confName

Machine: endStore

Table 5.15: Case 2 - Single-Name-  Table 5.16: Case 2 - no confidence
Dialog

Test Case 3 In test case 3, the user is unknown to the machine and the first
hypothesis is right. When the user is unknown, it is most likely that the confidence
is low. Test case 3 shows, the machine in the Single-Name-Dialog (tab. 5.17) does
not ask for a confirmation because the confidence is very low. Instead, it asks for
the spelling of the user's name. The machine in the dialog without confidence
(tab. 5.16) asks for the confirmation. Therefore, the Single-Name-Dialog takes
three turns while the dialog without confidence needs two.

Machine: askName Machine: askName

User: sayNameKnown-c10 User: sayNameKnown
Machine: askSpelling Machine: askConfName
User: spellName-c10 User: confName
Machine: askConfName Machine: endStore

User: confName-c10

Machine: endStore

Table 5.17: Case 3 - Single-Name- Table 5.18: Case 3 - no confidence
Dialog
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Test Case 4 In test case 4, the user is unknown to the machine and the first
hvpothesis is wrong. It is most likely that the confidence is low because the user
is unknown. In test case 4, the machine in the Single-Name-Dialog (tab. 5.19)
does not ask for a confirmation because the confidence is very low, but it asks
for the spelling of the user’s name. The machine in the dialog without confidence
(tab. 5.20) asks two times for the name and the confirmation. Therefore, the
Single-Name-Dialog takes three turns while the dialog without confidence needs
four.

Machine: askName Machine: askName

User: sayNameKnown-c10 User: sayNameKnown

Machine: askSpelling Machine: askConfName

User: spellName-c10 User: disconfName

Machine: askConfName Machine: askName

User: confName-c10 User: sayNameKnown

Machine: endStore Machine: askConfName
User: confName

Machine: endStore

Table 5.19: Case 4 - Single-Name-  Table 5.20: Case 4 - no confidence
Dialog

Test Case 5 In test case 3, the user is unknown to the machine, the first hy-
pothesis is wrong and the correct user name is out of vocabulary. It is most likely
that the confidence is low because the user is unknown. In test case 5, the ma-
chine in the Single-Name-Dialog (tab. 5.21) again does not ask for a confirmation
because the confidence is very low. Instead, it asks for the spelling of the user’s
name. The machine in the dialog without confidence (tab. 5.22) asks two times
for the name and the confirmation and one time for the spelling. Therefore, the
Single-Name-Dialog takes three turns while the dialog without confidence needs
five.

Test Case 6 In test case 6, the user is unknown to the machine, the first hy-
pothesis is out of vocabulary and the correct user is also out of vocabulary. It is
most likely that the confidence is low because the hypothesis is OOV, Test case 6
shows that the Single-Name-Dialog (tab. 5.23) and the dialog without confidence
(tab. 5.24) react in the same way. Both ask for the spelling and then for the
confirmation. Thus, both dialogs need three turns.

Test Case Summary The test cases have shown that the Single-Name-Dialog
needs less turns in most cases (tab. 5.25). The dialog without confidence is faster
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Machine:
User:
Machine:
User:
Machine:
User:
Machine:

askName
sayNameKnown-c10
askSpelling
spellName-c10
askConfName
confName-c10
endStore

Table 5.21: Case 5 - Single-Name-
Dialog
Machine: askName
User: sayNameOOV-c10
Machine: askSpelling
User: spellName-c10
Machine: askConfName
User: confName-c10
Machine: endStore
Table 5.23: Case 6 - Single-Name-
Dialog
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Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:

askName
sayNameKnown
askConfName
disconfName
askName
sayNameQOV
askSpelling
spellName
askConfName
confName
endStore

Table 5.22: Case 5 - no confidence

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

askName
sayNameOOV
askSpelling
spellName
askConfName
confName
endStore

Table 5.24: Case G - no confidence



only in test case 3 (user: unknown, first hypothesis: right). These test cases of
hasic dialogs show the advantage of the presented system with confidence values.

case # Turns (Single-Name-Dialog) Turns (Dialog without Confidence)

1 1 2
2 3 1
3 3 2
1 3 B
5 3 5
6 3 3

Table 5.25: Test Cases - Summary

5.3.4 Discussion
Single-Name-Dialog

The policy from the Single-Name-Dialog has been tested using the interactive
simulator of the POMDP Toolkit. The machine starts the dialog by asking the
name of the user. Then the machine reacts very well when it observes a known
name or an OOV name. This can be seen in the first two dialogs (table 5.26
and 5.27). Especially the handling of a high confidence is good since the machine
does not ask for a confirmation (dialog 3. tab. 5.28). This example shows that
the machine tries to keep the dialog short. But the dialog is not always short.
Multiple tests have shown that the machine never aborts the dialog by itself. It
would be desirable that the machine ends the dialog if it has no result after a
certain amount of turns. But the POMDP model of the Single-Name-Dialog does
not allow that. The dialog-state does not hold any information about the length
of the current dialog. But with such a count the training of the POMDP would
probably be much more difficult because this would lead to a different state in
each situation depending on the current length of the dialog. But it still would
be interesting to test a system with this possibility in future work. Dialog 4
(tab. 5.29) shows that the machine also asks for the spelling when the confidence
is very low. This seems to be a good choice in that situation. The confidence
is very low and it is most likely that the user will disconfirm the hypothesis of
the name recognition unit. The spelling unit will give new information and can
therefore lead to a better result in this situation. Dialog 5 (tab. 5.30) shows a
situation where the machine asks for the name and the spelling in turns. The
name recognition unit gets an OOV name, the spelling was disconfirmed and
then the name recognition unit tries again to get the right name. If the name
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which the user is trying to say is really out of vocabulary, this strategy is not
good because the name recognition unit can never get the correct name. But
this strategy makes sense since the name can wrongly be recognized as out of
vocabulary. Overall, the Single-Name-Dialog works and can be used as basis for
the Full-Name-Dialog.

Machine: askName

User: sayNameKnown-c60
Machine: askConfName
User: confName-c60

Machine: endStore

Table 5.26: Single-Name-Dialog - Dialog 1

Machine: askName

User: sayNameOOV-c60
Machine: askSpelling

User: spellName-c60
Machine: askConfName
User: confName-c60

Machine: endStore

Table 5.27: Single-Name-Dialog - Dialog 2

Machine: askName
User: sayNameKnown-c90
Machine: endStore

Table 5.28: Single-Name-Dialog - Dialog 3

Machine: askName

User: sayNameKnown-c10
Machine: askSpelling

User: spellName-c10
Machine: askConfName

User: confName-c10

Machine: endStore

Table 5.29: Single-Name-Dialog - Dialog 4
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Machine: askName

User: sayNameOQOV-c30
Machine: askSpelling

User: spellName-c30
Machine: askConfName
User: disconfName-c30
Machine: askName

User: sayNameOOV-¢30
Machine: askSpelling

User: spellName-c30
Machine: askConfName
User: confName-c30

Machine: endStore

Table 5.30: Single-Name-Dialog - Dialog 5

Full-Name-Dialog

The first tests have shown that the policy file of the Full-Name-Dialog only works
partly. The machine starts by asking the first name. If the user says a known
first name with a confidence ¢40 or higher, the dialog part for the first name
behaves exactly like the Single-Name-Dialog. The machine tries to achieve the
last name after the first name is confirmed. If the last observed confidence has
been ¢70 or higher the machine asks for the last name (dialog 1, tab. 5.31). When
the machine asks for the last name, it handles OOV names without any problem
(dialog 2, tab. 5.32). If the last observed confidence was c¢60 or lower the machine
asks for the spelling of the last name (dialog 3, tab. 5.33). This behavior is not
wanted since directly asking for the spelling is not natural and it is very likely
to get the wrong spelling. But the behavior of the machine is worse when the
user says a known name with a confidence of ¢30 or €10 and disconfirms the first
hypothesis. Then the machine asks for the spelling of the last name and tries
to confirm the last name. When the machine finally has a confirmed last name,
it asks for the confirmation of the first name, which was already disconfirmed.
The machine keeps asking for a confirmation of the first name even if the user
disconfirms the first name again (dialog 4, tab. 5.34). The problem is that the
machine selects the machine action askCon f First when the belief-state indicates
that the current dialog-state is wrongFirst-right Last, the current user action is
conf Last or disconf First and the current confidence is ¢10 or ¢30. The machine
asks for the first name again, only when the confidence changes to ¢40 or higher.
This is clearly unacceptable. But the problem might not exist when the solver
can run longer. The worst behavior shows the machine when it observes the user
action sayFirstOOV at the beginning. Then the machine chooses the machine
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action machineStart. When the user replies by userStart with a confidence of
c60 or higher, the machine asks again for the first name (dialog 5, tab. 5.35).
Also, this behavior might be explained by the insufficient training. Dialog 6 (tab.
5.36) shows that the machine can handle an OOV first name when it already has
a confirmed last name. All in all the results of the Full-Name-Dialog show that

this policy cannot be used in a real dialog.

Machine: askFirst

User: sayFirst Known-c60
Machine: askConfFirst

User: confFirst-c70
Machine: askLast

User: sayLastKnown-c90

Machine: endStore

Table 5.31: Full-Name-Dialog - Dialog 1

Machine: askFirst

User: sayFirstKnown-c70
Machine: askConfFirst

User: confFirst-c70
Machine: askLast

User: sayLastOOV-c70

Machine: askSpellingLast
User: spellLast-c70
Machine: askConfLast

User: disconfLast-c70
Machine: askLast

User: sayLastOOV-c70
Machine: askSpellingLast
User: spellLast-c70
Machine: askConfLast
User: confLast-c70

Machine: endStore

Table 5.32: Full-Name-Dialog - Dialog 2
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Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

askFirst
sayFirstKnown-c30
askConfFirst
confFirst-c30
askSpellingLast
spellLast-c30
askConfLast
disconfLast-c30
askSpellingLast
spellLast-c30
askConfLast
confLast-¢30
endStore

Table 5.33: Full-Name-Dialog - Dialog 3

Machine;

User:

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User;

Machine:

askFirst

say FirstKnown-c30
askConfFirst
disconfFirst-c¢30
askSpellingLast
spellLast-c30
askConfLast
confLast-c30
askConfFirst
disconfFirst-c30
askConfFirst
disconfFirst-c30
askConfFirst

Table 5.34: Full-Name-Dialog - Dialog 4
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Machine:

User:

Machine:

User:

Machine:

User:

Machine:

User:
Machine:

askFirst
sayFirstOOV-c60
machineStart
userStart-c60
askFirst
sayFirstOOV-c60
machineStart
userStart-c60
askFirst

Table 5.35: Full-Name-Dialog - Dialog 5

Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:
User:
Machine:

askFirst
sayFirstOOV-¢30
machineStart
userStart-c30
askSpellingLast
spellLast-c30
askConfLast
confLast-c30
askFirst
sayFirstOOV-¢30
askSpellingFirst
spellFirst-c30
askConfFirst
confFirst-¢30
endStore

Table 5.36: Full-Name-Dialog - Dialog 6
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6 Conclusion

In this work, a person identification dialog with explicit confidence values has been
built using a Partially Observable Markov Decision Process. For the description
of the POMDP, it was necessary to develop the POMDP-Builder because the
current description tools were insufficient. Two person identification dialogs with
explicit confidence values (Single-Name-Dialog and Full-Name-Dialog) have been
built using the POMDP-Builder. This has demonstrated that the description
of a POMDP with explicit confidence values using the POMDP-Builder is pos-
sible. It has also been shown that the description of the POMDP using the
POMDP-Builder is significantly smaller and therefore less complex than other
more common description methods. The Single-Name-Dialog, which deals with
one name of the user, was successfully solved by the ZMDP solver. The result
was tested in several test cases. These test cases pointed out the advantage of
the use of explicit confidence values. Especiallv in situations where the user is
known to the system (i.e. name exists in the vocabulary and models are trained),
the dialog requires less turns when using explicit confidence values. This shows
that explicit confidence values are especially useful in person identification dialogs
which often deal with the same persons. The Single-Name-Dialog delivers a very
good result and shows the advantage of POMDPs: Realistic description and very
good results. A larger dialog manager (Full-Name-Dialog) was also created us-
ing the POMDP-Builder. The Full-Name-Dialog deals with the first and the last
name of the user. Although, the Full-Name-Dialog uses only one name more than
the Single-Name-Dialog for each user, the description is significantly larger. As a
result, the Full-Name-Dialog could not be solved completely by the ZMDP solver
due to memory restrictions. This has shown the main problem of POMDPs: The
complexity raises very fast and the POMDP may not be solvable.
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