Modeling Polyphone Context with
Weighted Finite-State Transducefrs

Student Research Project/Studienarbeit

Carnegie Mellon University
Language Technologies Institute

Universitit Karlsruhe (TH)
Institut fiir Theoretische Informatik

submitted by
Emilian Stoimenov
in

January 2007

This work was supervised by

Dr. J. MecDonough Prof. T. Schultz
Universitiat Karlsruhe (TH) Carnegie Mellon University

Table of Contents

1 Introduction
1.1 Weighted Finite-State Transducers
1.2 Speech Recognition with WFSTs
1.3 Related Work o e

2 Direct Construction of the Composition
2.1 Parsingthe Decisioti T¥ee . . . v v v vrnnre v ne vmeea
2.2 Metastate Enumeration00 v e e e
2.3 Connecting the Metastates

3 Differences with Schuster and Hori
4 Efficient Construction of the Combined HC Transducer
4.1 Metastate Connection Speed Up
4.2 On-demand Expansion of HC
4.3 Directly Determinized Construction
4.4 Eliminating the Bit MatrixLists
5 Experimental Results
5.1 Comparison with HoC viivvvwe e ina
5.2 Recognition Experiments
5.3 HC Construction Statisties
6 Algorithm Proof
61 The H Transdufer . o . v v v v v v o m s i s o f == 5w o
6.2 The € Transducer Structure v v v v v v v
6.3 Proofof Correctness v v v v v oo i s n s s v s
7 Conclusions
8 Future Work

11

13
13
14
15
15

16
17
17
20

22
23
24
25

28

28

Summary 2

Summary

Weighted finite-state transducers and the associated algorithms have be-
come a popular means of constructing speech recognition decoding networks.
It has been shown that building and optimizing the network offline con-
tributes to a speech decoder’s accuracy and speed [1]. Another advantage
weighted finite-state transducers provide is a straightforward represnetation
of all information sources involved in compiling the search space.

However, constructing the final recognition transducer can prove to be
very memory demanding and time consuming. The explicit expansion of
the transducer mapping from context-dependent subword units to phones
contributes a lot to the inefficiency of the offline recognition network con-
struction. In this paper we describe an algorithm for directly constructing
a finite-state transducer mapping directly from sequences of gaussian mix-
ture models to context-independent phones. Based on the 5-step procedure
descirbed in [2], the method involves parsing a decision tree to derive an
efficient representation of its leaves. It then enumerates and stores all pos-
sible k-long cluster combinations that could form a valid Hidden Markov
Model according to the decision tree. An algorithm is then proposed, which
interconnects these sequences to form the final transducer.

An important advantage of the connection algorithm is that it is lo-
cal, allowing for a more efficient on-the-fly implementation and combination
with other local weighted finite-state algorithms. We used an on-demand
expansion and immediate determinization to construct a transducer using
a decision tree with 16,000 leaves, which would be impossible otherwise -
either using the standard techniques explained in [3] or the static expansion
in [4].

Finally a proof of the correctness of the connection algorithm is proposed,
which compares the edges set of the constructed transducer with the explicit
composition of a hidden Markov model transducer and a context-dependency
transducer. We show that both transducers describe the same string-to-
string mapping.

1. Introduction 3

1 Introduction

Using phone context in speech recognition has proven to be very beneficial
in the past [5]. This reflects the fact that each subword unit produced by our
articulatory mechanism has been affected by a combination of the previously
pronounced and the anticipated upcoming subword units. Therefore we can
hardly expect to see a pure realization of a phone in real speech.

A more accurate speech recognizer can be built, if an acoustic model for
every separate phone variant in each different context is trained. However,
the number of possible context-dependent phones is very large, even after
restraining oneself to the phones occuring in the dictionary and not crossing
word boundaries. Therefore, training each subword unit becomes a problem,
because the limited amount of training data is unable to cover the whole set
of context-dependent models with sufficient number of examples.

In order to compensate for the great variance introduced by context-
dependent, subword units, some form of clustering must be used. Young
and Woodland [6] suggest a data-driven iterative state clustering procedure,
where all available states are put into equivalence classes according to a
form of distance measure between the different classes. A furthest neighbour
hierarchical clustering algorithm is proposed, whereby initially each state is
assigned an individual cluster of its own, and then during the subsequent
iterations these clusters are merged together, making up for insignificant
differences between them as dictated by the employed distance function.

A more useful approach is to grow a phonetic decision tree [7], which
chooses the suitable clusters for each subword unit model. Using expert
linguistic knowledge, this solution has the benefit of providing clusters for
unseen in the training data context-dependent subword units. Decision-
tree state clustering also facilitates the introduction of higher span context
dependency, by simply extending the stretch of the questions attached to
the nodes in the tree. These and other advantages make the use of decision
trees very popular in contemporary speech recognition systems.

The use of N-gram language models, large dictionaries and tied-state
acoustic models can lead to a lot of redundancy in the recognition network,
expanded by the decoder during recognition. This increases the memory
requirements and the runtime of a recognizer. Weighted finite-state trans-
ducers and the associated composition, determinization and minimization
algorithms provide an efficient and elegant framework to compile the recog-
nition network offline and to eliminate the redundancy.

1.1 Weighted Finite-State Transducers

Weighted finite-state transducers (WFSTs) are an extension to finite-state
automata, in that, on addition to the input symbol, each arc can have a
weight and an output symbol. Each transition in a WFST consumes an input

1.2. Speech Recognition with WFSTs 4

symbol and outputs a symbol and a weight. A successful path in a WFST
accepts a word from its input alphabet, outputs a word from its output
alphabet, and assigns a weight to the occuring transduction. The weights
on the ares are members of a semiring (¥, &, ®,0, 1) and are combined using
the @ semiring operation. The @ and ¢ operations are used in conjunction
with other WFST algorithms [8], [3], [9].

Having an output alphabet enables WFSTs to combine, forming the
composition of the modeled transductions. The composition of the trans-
ducers A and B is denoted by A o B and is formed over the intersection
of all possible output strings of A and all possible input strings of B, thus
emulating the immediate application of B after A. Through composition
many information sources can be integrated into a single weighted finite-
state network, which can be searched to produce the 'best’ mapping from
the input alphabet of the last source, to the output alphabet of the first.
However, this network can become enormous, having millions of states and
transitions and exhibiting a lot of redundancy.

1.2 Speech Recognition with WFSTs

As described in [3],[8], weighted finite-state transducers can provide a very
natural environment for speech recognition.

We start with a language model WFST G, which assigns probabilities to
sequences of words. The language model is an acceptor, which is converted
to a transducer by duplicating the input alphabet on the output side. As
outlined in [8], a way to build a WFST from a set of N-gram counts is to
proceed as in a de Bruijn graph construction, where the nodes are labeled
by n-long word sequences. For each word sequence wuw' there is a transition
labeled w' leading to a state w'w”. where w'w” is a sequence with a nonzero
N-gram count. The weight on this arc is computed from the corresponding
probability of occurrence and is represented in a negative log form.

The construction of the dictionary transducer L is very straightforward,
since a word has a finite number of pronunciations, each of which can be
modeled by a simple string of arcs labeled with the phones in the transcrip-
tions. The word is assigned to one of these arcs as an output label, typically
the starting or the ending arc of a string. All these arcs share a begin node,
and each final node of a sequence connects back to it.

The language model transducer is composed with the dictionary trans-
ducer to produce a transducer L o G, each path in which maps from a
sequence of phones to a sequence of words with the right probability given
by the language model. The composition L o G is determinized to facilitate
subsequent compositions.

As described in the introduction, we want to profit from having cross-
word context-dependency phones. Therefore we need a transducer which
maps from sequences of context-dependent phones to sequences of context-

1.3. Related Work 5

independent phones. A contert-dependency transducer C' can be constructed
in the same way as the language model, and the needed probabilities esti-
mated from a training corpus.

Finally, each context-dependent phone has an associated tied-state acous-
tic model, consisting of a sequence of cluster symbols. A hidden Markov
model transducer H is needed to map from sequences of cluster symbols
to sequences of context-dependent phones. Similarly to a word, a context-
dependent phone has a finite number of cluster sequence expansions, so we
can construct H the same way we construct L.

As mentioned, the final composed transducer H o C odet(L o G) is ineffi-
cient in terms of size, since for example many context-dependent phones can
share common cluster subsequences, but the composition algorithm creates
multiple identical arc strings for them. Mohri showed (9] that a subsequent
determinization, followed by a minimization eliminates the ambiguity and
produces the minimal transducer.

The constructed recognition network describes a mapping from Gaussian
mixture models to words, and can be synchronously searched [3], [10] to find
the best possible sequence of observation symbols corresponding to an input
utterance. The transducer maps this sequence to a sequence of words, which
is in turn the best match output by the recognizer.

While very elegant and straightforward, this technique has certain limi-
tations. The intermediate transducers can become very large, even after the
aforementioned optimizations. For example, a fourgram language model
with 2,260,500 fourgrams, 3,559,905 trigrams, 4,714,631 bigrams and 48,282
words has 9,057,717 states and 18,917,331 arcs.

The context-dependency transducer alone can be tremendous in size for
large contexts, having @(n*~1) states and @(n*) arcs for a context length
n and a phone set of size k. Even when many of the context-dependent
phones are impossible, or would be filtered by the following composition
with a hidden Markov model transducer. the fact that the expansion must
be kept in memory, limits the size of the recognition networks. which can be
built by composing WFSTs.

1.3 Related Work

There are approaches to directly construct the composition H o C' and so
avoid the complete expansion of C. Chen [11], proposed a technique, where
each question in a decision tree is encoded as a finite-state transducer (FS'T).
A simple one-state transducer containing self loops for all phones in the
phone set is iteratively composed with these FSTs to produce a final three-
state cluster expansion of a phone. The one state transducer is first extended
with placeholders for the decision tree leaves. These placeholders are iter-
atively expanded by the compositions. as each following FST rewrites the
output of the previous one until a final leaf FST is reached. A degree of

2. Direct Construction of the Composition 6

nondeterminism in the resulting graphs can be expected, since the final ex-
pansion of a phone depends on the left and right phone contexts. This
is overcome by first applying the questions for the left-hand-side contexts.
determinizing and minimizing, then reversing the graph and applying the
right-hand-side questions.

The work of Chen has its roots in a paper by Sproat and Riley [12]. In it
they use the fact that the questions in a phonetic decision tree can be repre-
sented as regular expressions and a leaf is an intersection of all the regular
expressions traversed on the way to the leaf. Each leaf’s regular expression
can be compiled to a WFST and the intersection of all such WFSTs imple-
ments the mapping from the input alphabet of context-dependent phones,
to the output alphabet of allophonic classes (clusters), which the decision
tree represents.

Similarly to [11] and [12], Schuster and Hori [2] presented a simple 5-
step procedure for constructing a WFST directly from decision trees to
circumvent the static expansion of C. The procedure avoids expanding all
polyphones explicitly, by first parsing the decision tree, and forming all
Gaussian mixture combinations admitted by it. Thereafter it interconnects
these Gaussian mixture sequences appropriately to form a transducer which
maps from Gaussian mixture models to context-independent phones.

2 Direct Construction of the Composition

We describe an algorithm, which corrects a mistake in [2]. Our solution
is based on the 5-step-procedure, but we show that a modified version of
the fourth step generates the right in-between phone connections and the
constructed transducer provides the right mapping from cluster sequences
to phone sequences, as allowed by the decision trees. We also prove the
correctness of the algorithm and the fact that it indeed emulates the explicit
composition of H and C.

2.1 Parsing the Decision Tree

It is important to clarify how the cluster svibols in the HMM transducer H
are derived. Since the number of polyphones for a general large-vocabulary
speech recognition system is tremendous. it is the case that there is not
enough amount of training data to train each separate parameter of a given
HMM. Therefore, typically the states of all HMM are clustered, thereafter
computing only the Gaussian components of each cluster, having k clusters
per HMM. This follows the assumption that a specific output distribution
of an HMM will be common among different realizations of a phone as a
polyphone [5].

The state clustering procedure is realized by k decision trees, each of
which is a binary tree with a question attached to each node and two subtrees

2.1. Parsing the Decision Tree 7

corresponding to the 'yes’ and 'no’ answer of this question. When a cluster
is needed for the i-th state of an HMM, the i-th decision tree is parsed from
the root, thereby answering the questions for the HMM'’s context-dependent
phone. Each question refers to the phone at position one of the n left or
right contexts being in a predefined phone class. Thus, a leaf in the decision
tree is a set of phones for each context position, determined by the answers
to the questions along the path from the root to this leaf. The answers for
a specific context position ¢ must not contradict each other in the different
clusters assigned to a polyphone HMM.

Since each leaf in the decision tree is a set of & permutations of a finite
set of phones, it can be efficiently modeled by a matrix of bits. Each column
of the matrix represents a context position and each row is assigned to a
phone. When a specific phone is allowed at a particular context position of
a leaf in the decision tree, the corresponding bit in the matrix is set to 1,
otherwise it is set to 0. For example, in Figure 1 the phone "B’ is allowed
at context position +1 and the phone '{Z:WB}' at context position -2. The
phone 'Z’ is not allowed anywhere.

polyphone position

phone 01 2 3 4

AH 0 0 1 1 0

{AH:WB} ([0 0 1 0 0

B 0 0 0 1 0

{BWB} [0 1 0 0 1
z 00 0 0

{Z:WB} 1 0 0 0 0

Figure 1: A bit matrix corresponding to the cluster modelling the context
dependent phone "AH’

Depending on the decision tree, a bit matrix can be largely sparce, con-
taining many zeroes and few ones. Therefore it might be beneficial to com-
press this representation in the interest of saving memory. However, another
representation could compromise the runtime efficiency we gain from the use
of the very fast bitwise operations. Furthermore, an implementation packing
the bits into long integers consumes a relatively small amount of memory.
The results of an experiment replacing the bit matrices with hash values
(Section 4.4) indicates that memory saving efforts should be targeted else-
where.

Without loss of generality, let us assume that the left branch of a node
in the decision tree corresponds to a 'no’ answer and the right branch to a
‘yes” answer of this node’s question. The walk up the decision tree starts

2.2. Metastate Enumeration 8

at the root with a bit matrix, all of whose bits are set to 1. A modified
copy of the matrix is passed to the right branch of the root, marking with
zeros phones that do not belong to the question’s phone set and are in its
context scope'. Similarly, the bits that do belong to the question and are in
its scope are zeroed out and the modified copy is passed to the left branch.
The process continues until a leaf is reached.

A modification of this procedure must be made to accommodate a de-
cision tree with compound questions, i.e. questions, which refer to many
phone contexts at once. A ’yes’ answer to such question would only require
resetting the corresponding bits in the different columns of the bit matrix.
However, handling a 'no’ answer is not entirely as straightforward.

Consider a compound question (A A B), consisting of the simple ques-
tions A’ and 'B’. each of which is of the type "Is the phone at position
-1 diphthong?”. A 'no’ answer to this question can be given by a negative
answer of either one of the questions, i.e. —=(A A B) = =AV —B. Therefore,
when parsing the decision tree we have to propagate two versions of the
modified bit matrix — one for each negative answer. The leaf collects all the
bit matrices from all the paths to it in a set we call a bit matrix list.

2.2 Metastate Enumeration

Our goal is to build a transducer, which maps from sequences of Gaussian
mixture models to sequences of corresponding phones. This involves enu-
merating and storing all possible k-long cluster combinations that could form
a valid HMM according to the decision tree. Each cluster is a description of
all context-dependent phones, in whose expansion it can participate. There-
fore, a Gaussian mixture cluster sequence is valid, if every context position
of the intersection of the included clusters is non-empty.

A bitwise & operation of two equally sized bit matrices is defined as
the bit matrix obtained by a bitwise & of the individual bits at the same
positions in the initial bit matrices.

Let L' = {B; |t = 1...l} and L" = {B{ |i = 1...p} denote two bit
matrix lists. We redefine the bitwise & operation for bit matrix lists:

L'&L” = {Bi&Bjli=1...1.j=1...p}.

k clusters ¢3,¢2,...,¢ can form a valid Gaussian mixture sequence if the
bitwise & product of their bit matrix lists

L = Le,&Lc,&... &Le,

contains at least one bit matrix, each of whose columns contain at least one
set bit. This prerequisite reflects the before mentioned requirement on the

! Assuming that the question refers to a single context position, the affected bits will
occupy a single column.

2.3. Connecting the Metastates 9

cluster intersection. A bit matrix, which fulfills this requirement is called
valid,

Since the number of Gaussian mixture permutations is very large even
for only three-state sequences, we can calculate them in multiple passes, first
forming the possible two-long cluster sequences, then the possible three-long
cluster sequences, and so on until all possible k-long cluster sequences are
enumerated,

We store the cluster permutations in a metastate structure

M = (p,¢c;...., ¢ L), where
e p signifies a context independent subword unit (phone),

e ¢; are the cluster symbols 2 | and

e L is a valid bit matrix list, obtained from the bitwise & product of the
clusters’ bit matrix lists.

The phone symbol p is stored for convenience, but is not needed since it
can be inferred from the center column of all bit matrices in L. During
the construction of the decision tree, a separate decision tree is grown for
each phone; hence the phone identity is known implicitly for each leaf in
the decision tree. Checking the center columns of the bit matrices is a good
sanity check during the bit matrix and cluster enumeration phases.

By forming all possible leaf permutations and examining the correspond-
ing bit matrix lists we make sure that each context-dependent phone will
be covered by one Gaussian mixture model in the final combined HC' trans-
ducer. What needs to be done next is to set the connections between the
enumerated cluster sequences.

2.3 Connecting the Metastates

After computing all metastates, we need to interconnect them so that the
combined HC' transducer maps successive cluster sequences to successive
context-independent phones. We determine the metastates able to connect
to each other, by doing the bitwise & operation on their bit matrix lists,
but shifting the bit matrices in the starting metastate’s bit matrix list by
one column to the left beforehand. This is necessary, because any phones at
context position i in the starting metastate will be seen at context position
i — 1 from the target metastate, as each following metastate moves us by
one phone ahead on the output side of the transducer.

During the metastate connection step, we maintain a list Q, which con-
tains all metastates, which have to be further expanded. A queue T holds all

?During this step. we create an individual node for each cluster symbal ¢,. In the
pseudocode below, we refer to the states by the names of their corresponding clusters.

2.3. Connecting the Metastates 10

previously visited metastates and is searched whenever new metastates are
created, so to prevent adding redundancy to the transducer and to ensure
that the algorithm will eventually finish.

Assuming that all metastates from the previous enumeration step are
stored in a set S, the algorithm in Listing 1 interconnects the metastates in
the HC transducer. Since our speech recognition system only allows utter-

Listing 1 Metastate connection.

00 def connectMetastates(SIL, S):
01 push SIL on Q

02 add SIL to T

03 connect INITIAL to SIL

04 while |Q| > 0:

05 pop q from Q

06 if qp == SIL:

07 connect q to FINAL

08 foreach s ¢ 8:

09 L « (qL ») & sL

10 if |L|| > O:

11 t «— (s.p. .81, 8.82, 8.3, L)
12 ift ¢ T:

13 add t to T

14 push t on Q

15 e — (q.s1, t.s;, t.s;, t.p)
16 add e to E

17 return (T, E)

ances starting and ending with silence, we begin by pushing the metastate
for "SIL’ (silence) on Q. Later we only allow 'SIL’ metastates to connect to
the end node of the transducer (Lines 06-07). This can of course be modified
to allow any or all phones to start or end an utterance. The loop at line 04
pops metastates from the list Q and tries to connect them with metastates
from the enumeration step in list 8 (Line 09). If a new metastate t can be
created (Line 10), we check if a metastate with the same cluster syvmbols,
output phone and bit matrix list has been created before(Line 12), and if
not. we create new transducer states for its cluster sequence and add it to the
Q list for further expansion. We also push it on T, so that if later another
metastate with the same cluster sequence and bit matrix list is created. its
cluster symbols will correspond to t's nodes. If t is found in T, it is not
pushed on Q and instead the existing metastate is used as t. Finally, an
edge is added in Lines 15-16 from the end node of q to the begin node of t,
using the cluster symbol t.s; as an input symbol and the metastate’s phone
t.p as an output symbol.

3. Differences with Schuster and Hori 11

3 Differences with Schuster and Hori

We base our development on the work of Schuster and Hori [2|. However,
the metastate connection algorithm desecribed here addresses a mistake in
the fourth step "Generate between-phone connections” of their procedure.
After a thorough examination, it may become apparent that this step leaves
connections between three-state sequences, which should not in fact exist.
It’s important to mention that Schuster and Hori's implementation is correct
for context lengths of three. The discrepancy appears when using larger span
contexts.

A one-pass multiplication of the binary shifted bitmaps with all non-
shifted phone bitmaps might allow invalid connections in the resulting HC'
transducer. The reason for this lies in the fact that the context history
reduces the number of future connections a metastate can have, but is not
considered when using a one-pass multiplication. Instead of the newly cre-
ated bit matrix list L (line 9), the old bit matrix list s.L is assigned to
the new metastate, thus discarding the information that the q metastate
has been connected to the s metastate. Therefore the effect, which this
connection has on the future connections of t is neglected.

This property does not present itself in the case of triphones, where a
one-pass multiplication is enough. Triphonic bitmap lists restrict only the
immediate connections of their metastates. On the contrary, pentaphone
and larger span context metastates can restrict the prospective connections
of the metastates they connect with, i.e. the n'™™ context of one metastate
affects the n — 15 context of next one, which in turn restricts its n — 2°¢
context and so on. The same is valid for the negative (left) context positions.

As an example of this, consider the metastates corresponding to the
phones A, B,and C and their bit matrices in Figure 2. After a one-pass

A B C
01 2 3 4 01 2 3 4 0 1 2 3 4
At 11 1 1[|fA|f0O 1 0 1 1]JA|1 0 0 1 1
Bji1 1 0 1 0(B|1 0 1 0 0fBf1 1 0 01
Clffo 1 0o 0 0offCjjo0 0 0 1 1||[C|0 0 1 0 1

Figure 2: Pentaphone metastate bit matrices

multiplication the connection pairs A — B and B — C can be formed, as
the bit matrices in Fig. 3 show. This means that the transition A - B — C
will appear in the combined HC transducer and will be incorrect, since
the influence the metastate A has on the connection B — C has been
disregarded 3. Figure 4 shows the invalid bit matrix produced with the

INamely, A doesn't allow C to stay at +2 position

3. Differences with Schuster and Hori 12

correct metastate connection algorithm.

(A >)&B (B >)&C
0 1 2 3 4 0 1 2 3 4
A0 101 1||A1T 0 0 1 1
Bl1 010 o0fBlo1o0o01
cloooo 1/lcfoo1 01

Figure 3: The connection pairs can be formed.

(A >)&B) >)&C
0 1 2 3 4
AT 00 1 1
Blo 10 0 1
cllo o o001

Figure 4: The invalid bit matrix for the transition A —+ B — C.

On the other hand, if we consider the same metastates, but for triphones,
we see that the one-pass multiplication and the correct algorithm produce
equal valid bit matrices, i.e. (B >)&C = (((A >)&B) >)&C (Figure 6).

A B C
0 1 2 0 1 2 01 2
A1l 1 1|]A||1 0 1([A|O0 0 1
B|1 0 1|{|Bjjo 1 0f[Bj1 0 0
Clf1 o o|lCc|o o 1//Cj0 1 0

Figure 5: Triphone metastates for the phones A, B, and C.

(B >)&C |[(((A >)&B) >)&C

0 1 2 0 1 2
Ao 0 1 |[A] 0 0 1
Bl1 0o ollB|] 1 0 0
clfo1 oflc| o1 0

Figure 6: Valid bit matrices produced with the one-pass multiplication and
the correct algorithm.

4. Bfficient Construction of the Combined HC Transducer 13

4 Efficient Construction of the Combined H(Trans-
ducer

The algorithm in Listing 1 for connecting the metastates is correct, but
slow and memory demanding for any distribution tree of a realistic size.
The reason for this is the high number of metastates and the transducer
size itself during construction. We address these problems in the following
sections.

4.1 Metastate Connection Speed Up

A major acceleration of the metastate connection algorithm can be achieved
if the search in line 08 is restricted to only a subset C(M) C S, which
contains all metastates that can be linked to the given metastate M. We
can determine C(M) by looking at the right column next to the center
column of each bit matrix in the metastate’s bit matrix list. This column
represents the possible phones that the decision tree places at the +1 context
position, i.e. the immediate neighbouring phones, and so the search can be
restricted to only these phones’ metastates.

During this precalculation step, we can also simultaneously compute
a bit mask B for each metastate M. The purpose of the bit mask is to
accumulate the context information of all metastates, which can be paired
with the current one:

js.Lj
Bpy= VOV BiBesL?
aEC(M} =1

A bitwise & operation of a right shifted version of bit mask and M.L
represents an intersection of the context information of M with the cumu-
lative contextual information of all metastates in C(M). This intersection
happens anyway during regular metastate connection, i.e. for any three bit
matrices A, B.C

A&(BV C) = (ALB) vV (A&C).

The effect of applying this operation in advance is a reduction of the metas-
tate’s bit matrix list size by disregarding invalid bit matrices. It also prevents
the forming of new metastates in the list T, which differ only in insignifi-
cant set bits in their bit matrix lists. Such metastates will be unified in the
subsequent determinization and minimization applied to the combined HC
transducer.

*\/ is to be understood as a bitwise "or” operation of the bit matrices

4.2. On-demand Expansion of HC 14

4.2 On-demand Expansion of HC'

Once the metastates are enumerated, the connection algorithm can be ap-
plied locally for a given node. The information to connect a given metastate
in the transducer is contained in its bit matrix list, and therefore we can
dispense with storing the contents of the entire transducer in main mem-
ory, while only keeping the identity of the already expanded metastates and
the S list. An additional advantage this method gives is that another local
finite-state transducer algorithin, such as weighted composition or weighted
determinization, can be applied to the transducer simultaneously on-the-fly.

During an expansion of the transducer, an access frequency count is
assigned to each node and a cleanup memory function is regularly called to
free memory occupied by less frequently used nodes's adjacency lists. Should
a node’s edges list be needed again, it can be calculated using the bitmatrix
list of the metastate, to which this node belongs.

The adjacency list expansion algorithm in Listing 2 implements an incre-
mental transducer construction. The function edges(q) is called whenever
the adgacency list of the end node of a metastate q is needed by a graph
traversal technique, such as breadth first or depth first search.

Listing 2 Adjacency list expansion.
00 def edges(q):
01 if qE # O:

02 return q.E

03 if qp == SIL:

04 connect q to FINAL

05 foreach s € (C(8):

06 L « (gL ») & sL & Bg
o7 if L] > o:

08 t < (s.p. s.51, 8.82, s.s3, L)
09 if & ¢ T

10 add t to T

i e «— (q.s3, t.s;, t.s;.g, t.p)
12 add e to q.E

13 return q.E

The adjacency list of a node does not have to be regenerated, if it already
exists (Line 01), otherwise a modified version of the metastate connection
algorithm is used to regenerate it (Line 05 - 15). There is no need to keep
the Q list anymore, becaunse it is indirectly replaced by the internal structure
of the graph expansion algorithm keeping the yvet to be expanded nodes.

4.4. Eliminating the Bit Matrix Lists 15

4.3 Directly Determinized Construction

An application of the local property will become apparent after examining
Table 3. The size of the determinized combined HC' transducer is signifi-
cantly smaller than the initial statically expanded transducer. This is due
to the fact that many metastates share cluster subsequences, but unique
states and arcs are created for each one. Therefore we may want to try to
construct the determinized transducer directly, instead of first expanding
the large redundant version of it, storing it to disk, and then determinizing
it.

Indeed. as the determinization algorithm is a local one [9], we can im-
mediately determinize the transducer while incrementally building it. This
gives a significant superiority over the static expansion in terms of memory
usage, as seen from Table 6. The memory footprint decreases drastically, as
opposed to a mild construction runtime increase.

4.4 Eliminating the Bit Matrix Lists

The metastate connection algorithm does not need the explicit contents of
the bit matrices of the metastates in the T list, since it only compares if two
different lists are the same. This justifies a replacement of the bit matrix list
with a unique hash code as follows, especially as the T list gets extremely
large during construction (see Table 5).

We calculate a sequence of run lengths {ry}. each represeting the num-
ber of zeroes between two consequtive ones in a bit matrix. The following
checksum can be used to replace a bit matrix list:

h(k) =" k"rn,

where k is a prime number. Replacing the bit matrices this way introduces a
possibility of collisions, i.e. a single checksum corresponding to two different
bit matrix lists. However, we can make the probability of this event very
small if we store and compare different hash keys, each one corresponding
to a different prime number.

A modified version of Listing 2 can be defined when using checksums to
replace the bit matrix lists:

5. Experimental Results 16

Listing 3 Adjacency list expansion with removal of the bit matrix lists.
00 def edges(q):
01 if @E # 0:

02 return q.E

03 if qp == BSIL:

04 connect q to FINAL

05 foreach s £ S:

06 L — (qL >») & sL & Bs

o7 if |L|| > O0:

08 t «— (s.p, s.81, 8.82, s.s3, L)
09 if t ¢ T:

10 add t to T

11 elif tL == () and qE == 0:
12 tL = L

13 e «— (q.s3. t.s;. t.s;.g. t.p)
14 add e to q.E

15 q.h + hash(q.L)
17 qL «— 0
18 return q.E

As we are now deleting the bit matrix lists, we must be careful when
expanding a node that it either contains an expanded adjacency list, or the
bit matrix list of its parent metastate is not deleted. Lines 11 and 12 make
sure that whenever a metastate is found in the T list, a bit matrix list for it
is preserved for later expansion of this metastate's nodes. At lines 15 and 16
we replace the bit matrix list with the calculated hash code and delete the
bit matrix list, This does not geopardize the further expansion of q’s nodes,
because q can later be only accessed through the T list and thus undergoes
the described bit matrix restoration mechanism.

5 Experimental Results

In this section we present results concerning the application of the combined
H(transducer in speech recognition tasks, HC construction statistics and
empirical verification of the metastate connection algorithm.

The HC constructions and recognition network compilations were done
with the Enigma finite-state transducer library, maintained by the the first
advisor and the author at the University of Karlsruhe, Karlsruhe, Germany.
The speech recognition experiments were conducted with the Millenium
speech recognition system, work of the first advisor and his scientific as-
sistants.

5.1. Comparison with H o C 17

5.1 Comparison with HoC

We performed experiments regarding the correctness of the HC' construc-
tion on our whole training set consisting of 791 speakers and totaling 176,355
utterances. A word string corresponding to a single utterance transcription
is converted to a transducer W then composed with the dictionary trans-
ducer. The result is determinized and then composed with a combined HC
transducer, which is in turn determinized and minimized to obtain a final
transducer min(det(HCo det(L o W))). Independently, det(L o W) is ex-
panded by composition with a context-dependency and a hidden Markov
model transducer, and then determinized and minimized. We found no
differences comparing the input sides of min(det(HCodet(L o W))) and
min(det(H ¢ Codet(L o W))), which means that both the conventional com-
position and our algorithm provided the same Gaussian mixture model ex-
pansion for each utterance in the training set.

5.2 Recognition Experiments

We used a fully-continuous acoustic model with 3.500 clusters for the recog-
nition experiments to test both Schuster and Hori’s and the correct HC
transducer.” The signal processing front-end of the speech recognizer ex-
tracts 13 cepstral features and then concatenates 15 consecutive frames to-
gether. It then reduces the dimensionality of the final observations to 42
by means of Linear Discriminative Analysis [14]. The observations were
furthered processed by a global STC transform [15] and global mean sub-
straction.

The training data totalled 100 hours, comprising of ICSI, NIST and
CMU meeting corpora, as well as the Transenglish Database corpus. The
training used both vocal tract length normalization (VILN) [16] and con-
strained mazimum likelihood linear regression (CMLLR) [17]. Maximum
Likelihood speaker-adapted training (MMI-SAT) was conducted using the
approximations described in [18| to conserve disk space.

For the purpose of MMI-SATraining, we decoded each utterance in the
training set. A word-trace decoder [19] was used and its output projected on
the output side to discard any information other than the word sequences
as suggested by [20]. The correct transcription was then inserted into the
lattice and the result was epsilon-removed, determinized and minimized.
Through a following composition with a lexicon, determinization and com-
position with the minimized correct HC transducer, we obtained a lattice
mapping sequences of cluster symbols to the words in the recognized ut-
terance as in [21]. This transducer was determinized, its weights pushed
towards the initial state as discussed in [22] and minimized. The generation

9All acoustic models used in the experiments, described in this work, were trained by
the first advisor.

5.2. Recognition Experiments 18

was relatively efficient, with all steps completed in approximately 5x real
time on a 3GHz Intel workstation.

To create the denominator lattices explained in [23], we converted each
utterance to a simple word-string FST, composed it with a unigrom lan-
guage model, then with a lexicon and finally with the correct HC. This
network was eventually optimized through determinization, weight-pushing
and minimization. A state-trace decoder was now used to produce the ex-
act time aligments between the feature vectors and the individual HMM
states. Based on these Viterbi alignments, a new lattice was generated,
with the time boundaries and log-likelihood scores for each HMM state.
This information was then used to derive the posterior probabilities needed
for discriminative training. As each lattice transducer was optimized by
determinization, weight pushing and minimization, the final constrained de-
coding and MMI statistics accumulation for each iteration ran in approx-
imately real time. In addition to estimating new means, covariances and
mixture weights, we also performed marimum mutual information semi-tied
covariance(MMI-STC) estimation [24].

The test set used for the experiments in Table 1 was the lecture meeting
portion of the NIST RT-05s evaluation set. It consists of 22,258 words, a
total of 3,5 hours of data. The lecture speakers spoke English, but often
with German or other accents, The vocabulary contains largely technical
terms, mostly about topics related to automatic speech recognition. This
data was collected as part of the European Union integrated project CHIL,
Computers in the Human Interaction Loop at the University of Karlsruhe,
Karlsruhe, Germany.

Table 1 shows the word error rates from a set of speech recognition
experiments. We built two recognition networks with both Schuster and
Hori’s and the correet HC, using a pentaphone decision tree with 3,500
clusters. The transducer sizes can be seen Table 3 in the next section.

We composed a bigram language model containing 113,705 bigrams with
a dictionary of 50,886 words and variants. We then determinized and min-
imized the composition and then composed the resulting transducer with
both HC transducers to produce two recognition networks, which we then
determinized, weight-pushed and minimized as advised by [3]. The decod-
ing passes in Table 1 were run with the same beam-widths, which were so
chosen, that the recognition would be performed in approzimately real time.

The recognition passes with Schuster and Hori's HC transducer para-
doxically yields consistently lower word error rates than the one built with
the correct HC' transducer. An explanation for this behaviour was found
when examining the recognition statistics. When decoding with Schuster
and Hori's network, significantly more active hypotheses were retained for
each time step as compared to decoding with the correct recognition net-
work. To further investigate, we conducted recognition experiments with
the adapted model from the final MMI-SAT-STC pass and plotted word

5.2. Recognition Experiments 19

% Word Error Rate
S&H Correct
Unadapted Pass 46.6 48.4
VTLN, MLLR, FSA || 39.9 39.7
ML-SAT 36.9 36.7
MMI-SAT 35.1 35.3
MMI-SAT-STC 34.2 34.7

Table 1: WER from a set of experiments with HC transducers, generated
with both Schuster and Hori's algorithm and the correct one

error rates obtained with both networks.

Better recognition rates can be obtained, when using a semi-continuous
acoustic model (SCAM) [25]. In contrast to a fully-continuous acoustic
model (FCAM). we can train a set of Gaussians, or codebooks, which can
be shared between several models. Thus. only the mixture weights for a
single output distribution need to be estimated. making a better usage of
the available observations per state.

We undertook a final set of experiments to compare the performance of
a SCAM to that of a FCAM under identical training condition and testing
conditions. For these experiments, we began with a pentaphone FCAM with
4,000 codebooks. We first performed conventional Viterbi training, then
ML-SAT, and finally MMI-SAT as described above. The SCAM systems
were obtained by performing additional divisive clustering [5] beginning from
the decision tree used for the FCAM systems to produce a final decision tree
with 16,000 Gaussian mixture models sharing the same 4,000 codebooks
contained in the FCAM system.

% Word Error Rate
FCAM | SCAM
Unadapted Conventional 45.2
Adapted Conventional 37.0
Adapted ML-SAT 34.1 32.9
Adapted ML-SAT, 4-gram LM 31.9

Table 2: WER obtained with FCAM and SCAM systems

Table 2 shows the word error rates obtained on the same NIST-RT05
test as used for the comparison between the two recognition netwarks above.
For each decoding pass, speaker adaptation parameters were estimated using
word lattices from the previous pass. As we were unable to compile a full
recognition network with the 16.000 codebook HC transducer. we performed

5.3. HC Construction Statistics 20

rescoring experiments over the adapted FCAM ML-SAT system.

In each pass, we constructed constrained recognition spaces by projecting
the lattices output by the word-trace decoder on the output side, compos-
ing with the appropriate language mode! (bigram for the initial experiments,
fourgram for the final pass), then with the lexicon and finally with either
the 4,000 codebook or 16,000 codebook HC transducer. We applied the
optimization techniques inbetween the compositions and performed a final
determinization, weight-pushing and minimization. The constructed con-
strained recognition networks were used for both speech recognition and
MLLR parameter estimations [26]. Table 2 shows a significant reduction
of WER, which the SCAM systern brings over the FCAM system. Rescor-
ing the word lattices with the SCAM system brought down the WER from
34.1% to 32.9%, which was further decreased to 31.9% by the application of
the fourgram language model.

The construction statistics for the HC transdcers are given in the fol-
lowing section.

5.3 HC Construction Statistics

We constructed a combined HC transducer with Schuster and Hori's and
with the correct connection algorithm. Table 3 shows the sizes of the ex-
panded HC transducer and it’s size after determinization and minimization.
We used a pentaphone decision tree with 3,500 leaves.

Correct Schuster & Hori
Nodes Edges | Nodes Edges
HC 975,838 | 63.178.405 | 188.961 | 10,459,979
det(HC) 406,173 | 8.199.840 | 91,842 | 1,621,785
min(det(HC)) | 81,499 | 968,078 | 43,263 | 451,254

Table 3: Pentaphone combined HC' transducer sizes

As is evident from the table, the correct HC is twice as large as Schus-
ter and Hori's after determinization and minimization. This reiterates the
conclusion that many metastates and the connections between them are left
out by the one-pass multiplication algorithm.

For the recognition experiments we constructed two HC transducers,
one with a pentaphone decision tree containing 4,000 leaves, and the other
containing 16.000 leaves as described in the previous section. Table 4 sum-
marizes the sizes of the intermediate det(HC) and min(det(HC)) transduc-
ers. We used the incremental expansion and immediate determinization to
build both transducers, whereby the incremental expansion was essential for
the larger one,

5.3. HC Construction Statistics 21

4,000 leaves 16,000 leaves
Nodes Edges Nodes Edges
det(HC) 609,433 | 12,362,584 | 3,535,569 | 20,745,716
min(det(HC)) || 154,665 | 2,069,737 | 1,662,704 | 11,184,683

Table 4: Pentaphone combined HC transducer sizes for two decision trees

The construction times, memory usage. number of metastates during
construction, and the total number of enumerated cluster sequences are
given in Table 5. We see that a 4 times increase of the number of leaves

4,000 leaves 16,000 leaves
Memory usage N/A 11.7 GB
Cluster sequences 60.683 379,156
Metastates 356.702 1,746,894
Construction time || 1hr. 15 mins. | 82hrs. 26 mins.

Table 5: Construction statistics

does not correspond linearly to a 4 times increase in memory usage, nor
in construction time. This gives rise to the question of how the runtime
and memory footprint of the metastate connection algorithm depend on
the number leaves in the decision tree. The number of metastates during
construction, as well as the amount of cluster sequences, is influenced by
the type of questions in the decision tree and by the phone classes. The
tvpe of questions also conditions the tendency of the metastates to connect
to other metastates and thus form new ones, which in turn determines the
construction time.

Finally, we give a comparison of the static expansion and the incremental
on-demand expansion.

Memory Usage | Runtime
Static 7.70 GB | 50 min.
Hashing 7,69 GB | 103 min.
Dynamic 1,42 GB | 56 min.

Table 6: Algorithm comparison between static expansion, static expansion
with bit-matrix hashing and dynamic expansion

It is clear from Table 6 that a dynamic expansion is to be preferred when
compiling large distribution trees, because the memory usage is decreased
by a factor of 7. This decrease can be expected, because the memory oc-

6. Algorithm Proof 22

cupied by infrequently used portions of the network is now being recovered.
However, no significant increase in runtime is observed, which can again be
explained by the decision tree structure - a relatively small number of metas-
tates, which tend to connect to other metastates, will be kept in memory
and further expanded. The larger number of metastates are inactive and
their nodes’ adjacency lists will be deleted from memory.

6 Algorithm Proof

In this section we provide a proof of the correctness of the HC construction
procedure. We derive an explicit definition of the edges list of the transducer
H o C and compare it to that of HC, thereafter showing the equivalence of
both.

In the following discussion, we use these notations:

e P is the set of phones;
e n is the context-dependency depth:

e k is the number of states in an HMM model;

I = P2+l {¢} is the alphabet of context-dependent phones;

¥ = {d\|y €T,i € 1...k} is the alphabet of cluster symbols (leaves),
obtained from a decision tree clustering procedure, where & is the i-th
cluster for the context-dependent phone +.

As the metastates are the building blocks of HC, the following lemma
serves to make sure that each context-dependent polyphone is covered by
exactly one metastate in S as dictated by the decision trees.

Lemma 1. Assume that the k decision trees expand each polyphone to a
unique cluster sequence. ® There is a surjective mapping f : ' — S.

Proof. Let v = py...pane1 € I As explained in Section 2.1, a cluster in
the i-th decision tree is a set of phones for each context position:

d,={AAje2f j=1...2n+1}i=1...k

Observe that the decision tree growing procedure partitions the initial
pool of context-dependent phones in a set of nonintersecting clusters. This
justifies the notation d? , because there will be only one cluster corresponding
to a polyphone v. Therefore it holds that

ke
pie [A.ji=1.2n+1
=1

Ajed,

“The lemma assumption is valid anyway, as that is one of the main advantages of a
decision tree, see [5].

6.1. The H Transducer 23

Since the metastate enumeration step in Section 2.2 performs all possible
intersections of the above form, it follows that 4 corresponds to at least one
s € S. Furthermore, s is unique, since each df.{ in the above intersection is
unique.

The surjectivity of f can be easily seen, as there are no metastates, which
do not correspond to any polyphones. During the enumeration, we require
the validity of each bit matrix, thus imposing the condition

k
VyeT (] 4 #0, j=1...2n+1
A

However, because of the clustering, f is not an injection. O

6.1 The H Transducer

The role of the hidden Markov Model transducer H in the composition
chain descirbed in Section 1.2 is to assign to each hidden Markov model
(HMM) the symbol of the context-dependent phone it models. As Hidden
Markov models are represented naturally with directed state graphs, the
HMM transducer can be easilly constructed by placing all such state graphs
in a loop, connecting them with a common initial and final state,

For each HMM in the H, there is a transition from the common ini-
tial/end state of the HMM transducer to the begin node of each of the
HMMs, which is labeled with the cluster symbol corresponding to the begin
node of the HMM. The output of this transition is the context-dependent
phone symbol. which this HMM models. There is also a transition from the
end node(s) of the HMM back to Hs common initial /end state.

A hidden Markov model transducer H with a left-to-right k-state HMM
topology is a 6-tuple (S U e, [, Qp,nuy, Fy, Ef), where

¥ U {e} is the input alphabet of cluster symbols;

I"U {e} is the output alphabet of context-dependent phones

Qu = £ Uny is the set of states,

ny € Qp is the single initial state,

Fy = {nu} is the single final state,

Ep =Qu »x X xT xQp is the set of edges.

6.2. The C Transducer Structure 24

The edges set of H can be explicitly defined as follows:

Qu = {(ym.dy.,d;)}U
{(d, &t e, d)i =1...k—2}U

{(dﬁ_l ' d-;;_ : <6 TH) }

where d! . i = 1.k is the cluster expansion of the context-dependent phones
%-

The so constructed hidden Markov model transducer is simple but non-
sequential, because each polyphone +; is assigned its own cluster expansion.
Another important property is that it doesn’t admit null transitions, other
than the implicit epsilon self-loops at each state.

6.2 The € Transducer Structure

The purpose of the context-dependency transducer is to model the map-
ping of sequences of context-dependent phones to the correct sequences
of context-independent phones. It can be formally described as a 6-tuple
(T'. P.Qc.ne, Fo, Ec), where

e I' is the input alphabet of context dependent phones,
e [is the output alphabet of context-independent phones,

Qc = P? U {e} is the set of states,

L]

N € @ is the initial state,

Fe € Qe is the set of final states,
o Eo=0Qc xI' x Px Q¢ is the edges set.

Let ¥ = p1...pant1 = uwv be a context-dependent polyphone, where
u,v € Powe PP 1 For a state ¢ = uw

(ULL'" Y. Pn.wv) € Ec.

The start state of an arc, labelled by a context-dependent phone is the
state named after its first 2n phones. and the end state is named after its
last 2n phones, We should note that, similarly to the H transducer, the
context dependency transducer is epsilon-free.

6.3. Proof of Correctness 25

6.3 Proof of Correctness

Let A = (X,A,Qu4,m4,Fa,E4) and B = (A, T,Qp. 15, Fp, Ep) be two
weighted finite-state transducers. As described in [13], their composition
realizes the mapping from the input alphabet of A to the output alphabet of
B. This mapping simulates the application of transducer B on the output of
transducer A, thus requiring that the intersection of the set of input strings
of B and the set of output strings of A is non-empty.

The composition of A and B is the finite-state transducer. defined as

AoB=(%,T\Qa x @B, (na.n8), Fa x Fp, E10B),

whose edges set is

Esp = {((g4,98).0.7.(¢}4.98))
(ga.0.08,q4) € Ea,

(gg,0.7,qB) € B, € A}

We are interested in an explicit definition of the set of edges of H o C.
Using the composition formula from above, such definition can be given as
follows.

Let Eyoc be the edges set of the composition of H and C, and d',i =
1...k be the cluster expansion of v = py ...pzn41 = uwwv as in Lemma 1.

Epec = {((gn.qc).0.p:(@h-4c))| (1)
(gu.0.7,9y) € En, (2)
(gc.7,p:90) € Ec,o € £,v€Tpe P} (3)

= {(nu,uw),d}. pa, (d}, wv))} U (4)
{((d, uw), &5 e, (5T uw))|i = 1.. .k — 2} U (5)
{((dy~" uw),di™ €. (np, ww) } (6)

The inverse of H o C, (H o C)™! is defined simply by interchanging the
input and output labels on the arcs of H o C:

E[HGC)" = {(T?H' uw), Py, d],- (d»ln 1.!.'11)]} U (7)
{((d uw),e. & (dH uw))li =1...k—2}U (8)
{((d{:’l. uw).e,dﬁ'l. (e, uw)} (9)

For simplicity, the proof of the following lemma and Theorem 1 con-
siders the inverses of H o C' and HC. The lemma provides a neccessary
and sufficient condition for the acceptance of a phone string by the inverse
transducer (H o C')~1.

6.3. Proof of Correctness 26

Lemma 2. Let s = p;...p; be a phone string of length | > 2n + 1. Also, let
Y1.%2...Ym' be the consecutive polyphones contained in s. s ts accepted by
(HoC) iffforj=1...2n+1

2n+1 k
pmiz1€ [V [) A r=m—q+j (10)
— i=1
™ Ajea,

Proof. We prove the lemma by induction on the string length [. For [=
2n+1, m=1 and

2n+1 k _
pie () A)yr=1-g+j (11)
g=j =1
Aled,,

Since r is the poylphone index, r > 0. But 1 —g+j>0& g < j+ 1.
The starting value of g is equal to j, hence, for each context position j this
inequality is true for only one value of ¢, namely g = j. Thus, (11) reduces
to

k
pie [Al forj=1...2n+1, (12)
=1
A::Ed:”
which is implicitly true, since d’, are the symbols in the cluster expansion
of 7 (see the proof of Lemma 1).
Let (H o C)™! accept a polyphone of length [> 2n + 1 and

2n+1 k
Pmtj—1 € ﬂ(n Ay r=m—q+j, forj=1...2n+1 (13)
=2 =l
Agsds,

Trivially, this implies

2n+-1 k
Pm+j-1 € ﬂ (ﬂ ‘A::}‘ r=m—q+j, for j=2...2n+1,
=1 =1
Ayed:,
or
2n+l ok
Ptz € [V ([AD.r=m—g+j+1, forj=1...2n (14)
g=j+1 =1
Ay€dt,

"m=1—12n

6.3. Proof of Correctness 27

Now consider the phone string s = py...pipr +1 of length [+ 1. Equations
(7). (8) and (9) show that (H o C)~' assigns a cluster symbol sequence to
this phone string iff

k
Pmi; € [Api=1l...2m+1, (15)
s

i
Ajed:

Tm4l

where Ym+1 = P ... pre1. From (14) and (15) follows that

2n+1 k k
i€ [V O[] AN [A)r=m+l—g+j forj=1...2n
g=j+1 =l i=1
Ajeds Aled,
(16)
which is equivalent to
2n+1 & _
Pmii € [[) ADr=m+1l—g+j forj=1...2n+1. (17
q=7 1=1 (i}

Theorem 1. The string-to-string transducer HC implements the composi-
tion of H and C.

Proof. We use induction on the phone string [and follow closely the proof
of Lernma 2.

Let [= 1. Since each utterance must start and end with silence, a phone
string of length 1 consists of the silence phone only. The HC construction
pushes the silence metastate on the expansion queue Q and connects it to
the start node of the transducer (Lines 02 - 03). Only silence phones are
allowed to be connected to the final node as assured by the condition at Line
06.

Let (HoC)™ ! and HC ™! both provide the same unique cluster symbol
expansion for a phone string p; ... p of length [, We can assume without
loss of generality that { > 2n. Indeed, if [< 2n, we can pad it with enough
€ symbols at the beginning and the end. By Lemma 2, (H o C')~! assigns a
cluster symbol sequence to this phone string, iff property (10) holds.

The set intersection (10) describes exactly a metastate g € Q. The
equivalence is obvious when we cousider that j denotes the context-position
and Aj is modeled by a column at context position ¢ in a bit matrix. The
successive intersections are performed at Line 09 in each loop iteration.

Now consider a string py...ppi41. Property (10) holds for (H o €)1,
We need to make sure that a new metastate t is formed as in (16) and (17).
Lemma 1 provides that a metastate s € S, satisfying property (15), will
always exist for the new polyphone +,,.;. Therefore, the condition at Line

7. Conclusions 28

10 is fulfilled and indeed a new metastate t is created (Line 11) and q and t
are connected (Line 15). Pushing t on Q for further expansion ensures that

the metastate connection algorithm emulates the inductive proof of Lemma
2. O

7 Conclusions

We presented an algorithm for directly constructing a transducer mapping
from gaussian mixture model sequences to phone sequences. We corrected
and extended the work of Schuster and Hori [2], by introducing a correct con-
nection algorithm and providing it with an on-the fly implementation. The
direct construction avoids explicitly expanding all possible context-depedent
phones by deciding which decision tree clusters can be connected in the final
H o C composition, allowing for fast compilation of large decision trees into
transducers.

Another property of the metastate connection algorithm is that it is
local, which allows for an on-demand implementation. In addition, this
property enables the on-the-fly application of another weighted finite-state
transducer algorithm. We used weighted determinization to construct and
immediately determinize an HC' transducer, containing as many as 16,000
codebooks. A set of recognition experiments performed with it showed the
clear advantage of a semi-continuous acoustic model over a fully continuous
acoustic model.

We also proved the correctness of the algorithm, by comparing it with
the explicit composition of H and €. We showed that the two transducers
implement the same string-to-string transduction.

8 Future Work

As seen in Table 3, it is neccessary to store many metastates during the ex-
pansion. Future work may concentrate on compressing the memory demand
of a single metastate, or reducing the size of the T list during expansion.

Another unexplored property is the on-demand composition of the com-
bined HC transducer with the composition of the language model and the
dictionary transducer. Using an HC transducer for a larger decision tree, we
were unable to expand a full network with even a bigram language model,
which on the other hand might be possible if using a combination of on-the-
fly composition and determinization.

8. Future Work 29

References

1l

[8]

9

[10]

1]
2]

13

S. Kanthak, H. Ney, M. Riley, and M. Mohri, A Comparison of Two
LVR Search Optimization Techniques, in Proc. ICSLP "02, September
2002.

M. Schuster and T. Hori, Efficient generation of high-order context-
dependent weighted finite-state transducers for speech recognition, in
Proc. ICASSP "05, pp. 201-204, 2005

| M. Mohri, F. Pereira, M. Riley, Weighted Finite State Transducers in

Speech Recognition, in Computer Speech & Language, Volume 16, Issue
1, pp 69-88, January 2002

E. Stoimenov, J. McDonough Modeling polyphone context with weighted
finite-state transducers, in Proc. ICASSP, 2006

J. Odell, The Use of Context in Large Vocabulury Speech Recognition,
PhD thesis, Cambridge University Engineering Department, March
1995

S. J. Young, P. C. Woodland, The Use of State Tying in Continuous
Speech Recognition, in Proc. Eurospeech '93, pp. 2203-2206, 1993

S. J. Young, J. J. Odell, and P.C. Woodland, Tree-based State Tying
for High Accuracy Acoustic Modelling. In Proc. ARPA Workshop on
Human Language Technology. pages 307-312, 1994

M. Mohri, Statistical Natural Language Processing, in M. Lothaire, ed-
itor, Applied Combinatoriecs on Words, Cambridge University Press,
2005.

M. Mohri, Finite-State Transducers in Language and Speech Processing,
Computational Linguistics, 23:2, 1997

S.J. Young, N.H. Russell., J.H.S Thornton, Token Passing: a Simple
Conceptual Model for Connected Speech Recognition Systems, Technical
Report CUED/F-INFENG/TR38, Cambridge University Engineering
Dept, 1989

S. F. Chen, Compiling Large-Context Phonetic Decision Trees into
Finite-State Transducers, in Proc. Eurospeech '03, pp. 1169-1172, 2003

R. Sproat, M. Riley, Compilation of Weighted Finite-State Transducers
from Decision Trees, in Proe. ACL, Santa Cruz, California, June 1996

F. Pereira and M. Riley, Speech recognition by composition of weighted
[finite automata, in Finite-State Language Processing, (E. Roche and Y.
Schabes, eds.), pp. 431-453, Cambridge, MA: MIT Press, 1997

8. Future Work 30

4]

(16]

[17]

[18]

19

20]

21]

[22]

23]

[24]

[25]

126]

K. Fukunaga, Introduction to Statistical Pattern Recognition, New
York: Academic Press, 1990

M. J. F. Gales, Semi-tied covariance matrices for hidden Markov mod-
els, IEEE Transactions Speech and Audio Processing, vol. 7, pp. 272281,
1999

E. Eide and H. Gish, A parametric approach to vocal tract length nor-
malization, in Proc. ICASSP, 1996

M. J. F. Gales, Mazimum likelihood linear transformations for HMM-
based speech recognition, Computer Speech and Language, vol. 12, 1998

J. McDonough, T. Schaaf, and A. Waibel, On mazimum mutuel infor-
mation speaker-adapted training, in Proc. ICASSP, 2002

G. Saon, D. Povey, and G. Zweig, Anatomy of an extremely fast LVCSR
decoder, in Proc. Interspeech, Lisbon, Portugal, 2005

A. Ljolje, F. Pereira, and M. Riley, Efficient general lattice generation
and rescoring, in Proc. Eurospeech, Budapest, Hungary, 1999

M. Mohri and M. Riley, Network optimizations for large voecabulary
speech. recognition, Speech Communication, vol. 25, no, 3, 1998.

M. Mohri and M. Riley, A Weight Pushing Algorithm for Large Vocabu-
lary Speech Recognition, in European Conf. on Speech Communication
and Technology, Aalborg, Denmark, pp. 1603 — 1606, 2001

V. Valtchev, P, C. Woodland, and S. J. Young, MMIFE training of large
vocabulary speech recognition systems, Speech Communication, vol. 22,
pp. 303314, 1997

J. McDonough, M. Woelfel, and E. Stoimenov On mazimum mutual
information speaker-adapted training, Computer Speech and Language,
submitted, September, 2006

J. Duchateau, K. Demuynck, D. V. Campernolle, and P. Wambacq, Im-
proved parameter tying for efficient acoustic model evaluation wn large
vocabulary continuous speech recognition, in Proc. ICSLP, 1998

L. Uebel, P. Woodland, Improvements in linear transform based speaker
adaptation. in Proe. ICASSP, 2001

