
Backchannel Prediction for Conversational
Speech Using Recurrent Neural Networks

Bachelor’s Thesis of

Robin Ruede

At the Department of Informatics
Institute for Anthropomatics and Robotics

Interactive Systems Labs

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr.-Ing. Tamim Asfour
Advisor: Markus Müller

Duration: 2016-10-25 – 2017-02-24

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 2017-02-24

Abstract

Backchannels such as yeah, right or uh-huh are a method for the listener of a conversation
to give feedback to the speaker without taking the turn. This thesis describes the process of
the creation of a prediction system for backchannel responses. We train neural networks to
detect segments of speech that are cues for backchannels using acoustic and linguistic input
features, and to emit a trigger signal whenever appropriate. We compare the performance
of various feature combinations and search for the optimal layer configurations and context
lengths. We evaluate the performance of our system objectively using the F1-Score and
subjectively in a survey, showing it performs significantly better than a random baseline.

Sogenannte Backchannels wie mhm, aha und okay geben einem Zuhörer die Möglichkeit
dem Sprecher ohne Sprecherwechsel Feedback zu geben. Diese Arbeit beschreibt den
Prozess einen Prediktor für Backchannels zu entwerfen. Wir trainieren neuronale Netze
mithilfe von akustischen und linguistischen Merkmalen um die Segmente der Sprache zu
erkennen, die Auslöser für Backchannels sind, und um ein Trigger-Signal auszugeben wann
immer es angebracht ist. Wir vergleichen die Performanz mit verschiedenen Input-Merkmal-
Kombinationen und suchen nach der optimalen Layer-Konfiguration und Kontext-Länge.
Wir evaluieren die Performanz unseres Systems objektiv mit dem F1-Score und subjektiv in
einer Studie, wobei wir zeigen, dass die Ergebnisse signifikant besser sind als eine zufällige
Baseline.

vi

Contents

1 Introduction 1

2 Related Work 3

3 Backchannel Prediction 5

3.1 BC Utterance Selection . 5

3.2 Feature Selection . 5

3.3 Training Area Selection . 5

3.3.1 Binary Training Areas . 6

3.3.2 Gaussian Training Area . 6

3.4 Neural Network Design and Training . 7

3.5 Postprocessing . 8

3.5.1 Low-pass Filtering . 8

3.5.2 Thresholding and Triggering . 8

3.6 Evaluation . 9

3.6.1 Objective Evaluation . 9

3.6.2 Subjective Evaluation . 10

4 Experimental Setup 13

4.1 Dataset . 13

4.2 Extraction . 14

4.2.1 Backchannel Utterance Selection . 14

4.2.2 Feature Extraction . 16

4.2.2.1 Acoustic Features . 16

4.2.2.2 Linguistic Features . 16

4.2.2.3 Context and Stride . 17

4.3 Training . 18

4.3.1 Recurrent Neural Networks . 19

4.3.2 Multicategorical Data . 20

4.4 Evaluation . 23

5 Results 25

5.1 Subjective Results . 25

5.2 Objective Results . 27

5.2.1 Binary Output . 27

5.2.2 Multicategorical Output . 30

6 Implementation 31

6.1 Web Visualizer . 31

6.1.1 Description . 31

6.1.2 Implementation Details . 32

6.2 Extraction, Learning and Evaluation . 33

viii Contents

6.2.1 Evaluation . 33
6.2.2 Automatic Caching . 33

6.3 Survey software . 34
6.4 Evaluation Visualizer . 34

7 Conclusion and Future Work 39

Bibliography 41

1. Introduction

When listening to someone, we find ourselves wanting to express sympathy or to acknowledge
or reject what we are being told. This form of feedback is called a backchannel. The term
stems from the idea that we complement the dominant channel of the conversation lead
by the speaker with a secondary response channel. While the dominant channel directs
the primary speech flow, the backchannel provides feedback about the current state of the
listener with regards to their interest and opinion about the conversation topic.

A backchannel is generally defined as any kind of feedback a listener gives a speaker as
an acknowledgment in a segment of conversation that is primarily one-way. Backchannels
include, but are not limited to, acoustic expressions like short phrases (“uh-huh”, “hum”,
“yeah”, “right”, etc.) or laughter, and physical responses like nodding [WaYu89] or a shift
in the gaze direction. Backchannels are said to help build rapport, which is the feeling of
comfortableness or being “in sync” with conversation partners [HuMG11].

Artificial assistants like Siri, Alexa, etc. are becoming increasingly popular, but they are still
distinctively non-human. Social dialogs are much less well understood than goal-directed
ones. They do not necessarily aim for a particular outcome, other than indirect goals of
building sympathy, bonding or mutual entertainment. Adding backchannel responses could
help make a conversation with an artificial assistant feel more natural.

We concentrates on short phrasal backchannels consisting of a maximum of three words.
We try to predict these for a given speaker audio channel in a causal way, using only
past information. This allows the predictor to be used in an online environment. This
thesis is structured as follows: In Section 2, we provide an overview of related research. In
Section 3, we show our general approach, describing our methods for extraction, training,
postprocessing and evaluation. Section 4 is a detailed description of the experiments we
conducted. The results of these experiments are shown in Section 5. Section 6 contains
descriptions and technical details of the software components we implemented in the course
of this thesis.

2 1. Introduction

2. Related Work

Most related work is either completely rule-based or uses at least some manual components
in combination with data-driven learning. [WaTs00] were the first to propose specific rules
for when to produce backchannel feedback based on acoustic cues:

“[. . .] we formulate the following predictive rule for English:

Upon detection of

• a region of pitch less than the 26th-percentile pitch level and
• continuing for at least 110 milliseconds,
• coming after at least 700 milliseconds of speech,
• providing you have not output back-channel feedback within the preceding

800 milliseconds,
• after 700 ms wait,

you should produce back-channel feedback.” [WaTs00]

These rules contain many variables tuned for English speech, based on the general pitch
and pause information. They were used as a basis and a comparison in many following
publications. In general, most related work is based on some variations of pitch and pause,
for example [ModG10] extracted multiple different pitch slope features and binary pause
regions and then trained sequential probabilistic models like Hidden Markov Models or
Conditional Random Fields to extract the relevant subset of those features. The authors
additionally included eye gaze and head movement features, which increased their F1-Score
from 0.206 with only acoustic features to 0.221. [TaKN04] trained a decision tree with the
C4.5 learning algorithm to distinguish between backchannel responses, turn-taking, and
turn-keeping without a backchannel.

A lot of related research is based on Japanese speech, where backchannel responses
(Aizuchi) are more frequent than in English speech. Examples include [OKKI96], [Ward96],
[WaTs00], [FuFK04], [TaKN04], [KTRS05] [NiKN07]. Some research is based on English
speech [WaTs00] [ModG08] [deHe09] [HuMG10a] [OzMo10] [OzSM10], and some on Dutch
speech [ModG10] [dOHM10].

Rule-based approaches can be inflexible, error-prone and involve a lot of manual fine-tuning.
A first approach for distinguishing different speech acts, including backchannels, using

4 2. Related Work

a combination of hidden markov models and neural networks was proposed by [Ries99].
Previous work at this institute also includes using a feed-forward neural network for
backchannel detection [MLBS+15], though this work focused on offline prediction, meaning
their input features included sections of audio happening during or after the backchannel,
making it unsuitable for a real-time environment.

[deHe12b] compared different evaluation metrics for backchannel predictors. As an objective
evaluation method, the use of the F1-Score has been established. Most research uses a fixed
margin of error to accept a prediction as correct. The width of this margin ranges from
400 ms to 1000 ms, and the center of the margin of error ranges from ±0 ms to +500 ms.
This means some research accepts a far larger latency (up to one second) than other
research (up to 200 ms). Together with the fact that no one standard data set exists, this
makes a comparison between different evaluation results hard.

3. Backchannel Prediction

3.1 BC Utterance Selection

The definition of backchannels varies in literature. There are many different kinds of
phrasal backchannels, they can be non-committal (“uh huh”, “yeah”), positive / confirming
(“oh how neat”, “great”), negative / surprised (“you’re kidding”, “oh my god”), questioning
(“oh are you”, “is that right”), et cetera. To simplify the problem, we initially only try to
predict the trigger times for any type of backchannel, ignoring the distinction between
different kinds of positive or negative responses. Later we also try to distinguish between a
limited set of categories.

3.2 Feature Selection

The most commonly used acoustic features in related research are fast and slow voice pitch
slopes and pauses of varying lengths [WaTs00, TrPH10, ModG10]. A neural network is
able to learn advantageous feature representations on its own. This means we can feed it
the absolute pitch and power (signal energy) values for a given time context, from which the
network is able to automatically extract the pitch slopes and pause triggers by subtracting
the neighboring values in the time context for each feature.

We also evaluated using other tonal features used for speech recognition in addition to
and instead of pitch and power. The first feature is the fundamental frequency variation
spectrum (FFV) [LaHE08], which is a representation of changes in the fundamental
frequency over time, giving a more accurate view of the pitch progression than the single-
dimensional pitch value, which can be very noisy.

Other features we tried include the Mel-frequency cepstral coefficients (MFCCs) with 20
dimensions, and various combinations of all of the above.

3.3 Training Area Selection

We generally assume to have two separate but synchronized audio tracks, one for the
speaker and one for the listener, each with the corresponding transcriptions. We need
to choose which areas of audio we use to train the network. As we want to predict the
backchannel without future information (also called causally or online), we need to train
the network to detect segments of audio from the speaker track that probably cause a
backchannel in the listener track.

6 3. Backchannel Prediction

Figure 3.1: An example for binary BC and NBC training areas. The BC training area
ends right before the backchannel utterance. From top to bottom: Speaker audio, speaker
words, listener words.

3.3.1 Binary Training Areas

The easiest method is to choose the beginning of the utterance in the transcript of the
listener channel as an anchor t, and then use a fixed context range of width w before
that as the audio range [t − w, t] to train the network to predict a backchannel. The
width can range from a few hundred milliseconds to multiple seconds. We feed all the
extracted features for this time range into the network at once, from which it will predict
if a backchannel at time t is appropriate. This approach of selecting the training area is
easy because it only requires searching for all backchannel utterance timestamps and then
extracting the calculated range of audio. It may not be optimal though, because the delay
between the last utterance of the speaker and the backchannel can vary significantly in
the training data. This means it is not guaranteed that the training range will contain
the actual trigger for the backchannel, which is assumed to be the last few words said by
the speaker, and even if it does the last word will not be aligned within the context. This
causes the need for the network to first learn to align it’s input, making training harder
and slower.

The second method is to use the last few words before a backchannel as the anchor in the
hope of directly aligning the input so the actual trigger of the backchannel is always aligned
within the training range. We could for example extract the center t of the last speaker
utterance before the backchannel, and then use [t− 0.5s, t+ 0.5s] as the training range. In
reality this proved to be hard because without manual alignment it isn’t clear what the
last relevant utterance even is, and in many cases the relevant utterance ends after the
backchannel happens, so we would need to be careful not to use any future data. The first
approach seemed to work reasonably well, so we did not do any further experiments with
the second approach.

In addition to selecting the positive prediction area as defined above, we also need to choose
areas to predict zero i.e. “no backchannel” (NBC). The number of training samples of
this kind should be about the same amount as backchannel samples so the network is not
biased towards one or the other. To create this balanced data set, we can choose the range
a few seconds before each backchannel as a negative sample. This gives us an exactly
balanced data set, and the negative samples are intuitively meaningful, because in that
area the listener explicitly decided not to give a backchannel response yet, so it is sensible
to assume whatever the speaker is saying is not a trigger for backchannels. An example of
these training areas with a context of 1500 ms is shown in Figure 3.1.

3.3.2 Gaussian Training Area

The method of choosing the training areas described in Section 3.3.1 assumes we train the
network on binary values, with 1 = 100% = “Backchannel happens here” and 0 = 0% =
“Definitely no backchannel happens here”. Another approach for choosing a training area

3.4. Neural Network Design and Training 7

would be to not choose two separate areas to predict binary 1 and 0 values, but to instead
use the area around every actual backchannel trigger and train the network on a bell curve
with the center being at the ground truth with the maximum value of 1, and lower values
between 0 and 1 for later and earlier values. For example, if there is a backchannel at
t = 5 s and we identify t = 4.5 s as the actual trigger time, we could train the network on
output=1 for a context centered at 4.5 s, output=0.5 for 200 ms earlier and later and on
0 < output� 1 for more distant times. This has the same problem as described above in
that we would need to know the exact time of the event that triggered the backchannel.
Testing this approach by simply using a fixed offset before the onset of the backchannel
utterance gave far worse results than the binary training approach, so we discarded the idea
in favor of concentrating on finding the optimal context ranges for the binary approach.

3.4 Neural Network Design and Training

We initially used a simple feed forward network architecture. The input layer consists of all
the chosen features over a fixed time context. We assume to have one input feature frame
for every 10 ms. With a time context of cms and a feature dimension of f , this gives us an
input dimension of f · b c

10msc. One or more hidden layers with varying numbers of neurons
follow. After every layer we apply an activation function (also called a nonlinearity) like
tanh or a rectifier (ReLU). The output layer is (n+ 1)–dimensional, where n is the number
of backchannel categories we want to predict. This layer has softmax as an activation
function, which maps a K-dimensional vector of arbitrary values to values that are in the
range (0, 1] and that add up to 1, which allows us to interpret them as class probabilities.

We then calculate the categorical cross-entropy of the output values of the network and
the ground truth from the training data set. This gives us the loss function as the function
mapping from the network inputs to the cross-entropy output. We can now train the
parameters of the network by partially deriving the loss function for each of the neurons
and descending the resulting gradient. This is done using the back-propagation algorithm
[RuHW86].

In the simplest case (ignoring different kinds of backchannels) we train the network on the
outputs [1, 0] for backchannels and [0, 1] for non-backchannels. When evaluating we can
ignore the second dimension of this output, simply interpreting the first dimension as a
probability. A visualization of this architecture can be seen in Figure 3.2. In the following
sections we will concentrate on this architecture.

A

B

A

B

A

B

input features
with context

-1500ms

-1490ms

-10ms

A Feature 1 (e.g. power)
B Feature 2 (e.g. pitch)

BC

non BC

hidden layers

Figure 3.2: Feed-forward neural network architecture for backchannel prediction.

8 3. Backchannel Prediction

The placement of backchannels is dependent on previous backchannels: If the previous
backchannel utterance was a long time ago, the probability of a backchannel happening
shortly is higher and vice versa. To accommodate for this, we want the network to also
take its previous internal state or outputs into account. We do this by modifying the
above architecture to use Long-short term memory layers (LSTM) instead of dense feed
forward layers. LSTM neurons are recurrent, meaning they are connected to themselves in
a time-delayed fashion, and they have an internal state cell which is transmitted through
time and has set and clear functions which are triggered by any combination of their
inputs. LSTM networks are trained in similar fashion as feed forward networks, with the
time-stacked layer instances unrolled into individual copies with shared parameters before
applying the backpropagation algorithm.

3.5 Postprocessing

Our goal is to generate an artificial audio track containing utterances such as “uh-huh” or
“yeah” at appropriate times. The neural neural network gives us a noisy value between
0 and 1, which we interpret as the probability of a backchannel happening at the given
time. To generate an audio track from this output, we need to convert the noisy floating
probability value into discrete trigger timestamps. We first run a low-pass filter over the
network output, which removes all the higher frequencies and gives us a less noisy and
more continuous output function.

3.5.1 Low-pass Filtering

To ensure our predictor does not use any future information, the low-pass filter must be
causal. A common low-pass filter is the gaussian blur, which folds the input function with
a bell curve. This filter is symmetric, which in our case means it uses future information as
well as past information. To prevent this, we cut the filter of asymmetrically for the right
side (that would range in the future), with a cutoff at some multiple c of the standard
deviation σ. Then we shift the filter to the left so the last frame it uses is ±0 ms from the
prediction target time. This means the latency of our prediction increases by c ·σms. If we
choose c = 0, we cut off the complete right half of the bell curve, meaning we do not need
to shift the filter, which keeps the latency at 0 at the cost of accuracy of the low-pass filter.

Another possible filter to use would be exponential smoothing, defined as s(t) = p · f(t) +
(1− p) · s(t− 1), where t is the current time, f is the original function, s is the smoothed
output, and 0 < p < 1 is a factor describing the weighing of the current value as opposed to
the past values. Even though this has the advantage of producing no latency it performed
worse than the gaussian filter even with a cutoff of c = 0. A third possibility is the Kalman
Filter [Kalm60], which generally tries to predict the value of a function based on a noisy
function masking the actual function. This filter has many parameters requiring tuning, so
we used the described gaussian filter method instead.

3.5.2 Thresholding and Triggering

After this filter we use a fixed trigger threshold to extract the ranges in the output where
the predictor is fairly confident that a backchannel should happen. We trigger exactly once
for each of these ranges. Within each range we have multiple possibilities to choose the
exact trigger time point.

The easiest method is to use the time of the maximum peak of every range where the value
is larger than the threshold, but this requires us to wait until the value is lower than the
threshold again before we can decide where the maximum is, which introduces another
delay and is thus bad for live detection.

3.6. Evaluation 9

Raw net output

Smoothed

Audio output
Trigger

if nothing else i tend to turnonthe television at eleven o'clock just to watch th

Threshold

Figure 3.3: Example of the postprocessing process. The top shows the input audio channel
together with the corresponding transcriptions. The raw output of the neural network is
fairly noisy, so we smooth it. The highlighted range on the smoothed output is where the
value is larger than 0.7. We trigger at the first local maximum of this range, outputting an
“uh-huh” sound sample.

Another possibility is to use the start of the range, but this can give us worse results
because it might force the trigger to happen earlier than the time the network would give
the highest probability rating.

A compromise between the best quality and immediate decision is to use the first local
maximum within the thresholded range. Because of the low-pass filter we mostly have
no or few local maxima which differ from the global maximum within the given range so
this should give results close to using the global maximum. We can decide when the local
maximum was reached by triggering as soon as the first derivate is < 0.

When we have the trigger anchor, we can either immediately trigger, or delay the actual
trigger by a fixed amount of time, which can be useful if we notice the prediction would
happen too early otherwise. An example of this postprocessing procedure can be seen in
Figure 3.3.

3.6 Evaluation

For a simple subjective assessment of the results, we take some random audio segments
where one person is talking in a monologue. For each segment, we remove the original
listener channel and replace it with the artificial one. This audio data is generated by
inserting a random backchannel audio sample at every predicted timestamp. We get these
audio samples from a random speaker from the training data, keeping the speaker the same
over the whole segment so it sounds like a specific person is listening to the speaker.

3.6.1 Objective Evaluation

To get an objective evaluation of the performance of our predictions, we take a set of
monologuing segments from the evaluation data set and compare the prediction with the
ground truth, i.e., all the timestamps where a backchannel happens in the original data.

We interpret a prediction as correct if it is within a specific margin of the nearest real
backchannel in the dataset. For example, with a margin of error of [−100 ms,+300 ms],
if the real data has a backchannel at a timestamp of 5.5 seconds from the beginning of
the conversation, we say the predictor is correct if it also produces a backchannel within
[5.5 s− 0.1 s, 5.5 s + 0.3 s] = [5.4 s, 5.8 s].

10 3. Backchannel Prediction

In other research, varying margins of error have been used. We use a margin of 0 ms to
+1000 ms for our initial tests, and later also do our evaluation with other margins for
comparison with related research.

After aligning the prediction and the ground truth using the margin of error, we get two
overlapping sets of timestamps. The set of predictions is called “selected elements” and the
set of true elements is called “relevant elements”. The number of true positives is defined as
TP = |selected ∩ relevant |, which is all the backchannels the predictor correctly identified
as such. The number of false positives is defined as FP = |selected \ relevant |, which is
all the backchannels the predictor output that are not contained in the actual dataset.
The number of false negatives is defined as FN = |relevant \ selected |, which is all the
backchannels that the predictor should have found but didn’t.

With these, we can now calculate the measures Precision and Recall as commonly used in
information retrieval and binary classification:

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

Both of these are values between 0 and 1. The Precision value is the fraction of returned
values that were correct, and can thus be seen as a measure of the quality of an algorithm.
The Recall value, also known as Sensitivity is the fraction of relevant values that the
algorithm output, thus it can be interpreted as a measure of quantity. Precision and Recall
are in an inverse relationship, and it is usually possible to increase one of them while
reducing the other by tweaking parameters of the algorithm. An example of this can be
seen in Figure 3.4. Recall can be easily maximized to 100% by simply returning true for
every given timestamp. To solve this problem and to introduce a single scalar for measuring
the performance, we can use the normalized harmonic mean of precision and recall, also
known as the F1-Score or F-Measure, as defined in eq. 3.3.

F1 Score = 2 · 1
1

Recall + 1
Precision

= 2 · Precision · Recall

Precision + Recall
(3.3)

We used the F1-Score to objectively measure the performance of our prediction systems.

3.6.2 Subjective Evaluation

Because the placement of backchannels is subjective, we did a subjective evaluation to
complement the objective data. We first extracted all monologuing segments of more than
fifteen seconds from the evaluation data set where the ground truth contained at least
three backchannels. Then we randomly picked six of these, excluding those that contained
noise leaking from from one channel to the other. The picked segments were of an average
length of 30 seconds. For each segment, we generated three versions of audio:

1. Neural net predictor: Predictions from our best trained LSTM according to the
objective evaluation1.

1Best LSTM with the postprocessing hyperparameters optimized for a margin of error of −200ms to
200ms, because a short subjective assessment of the results showed a margin of error of 0ms to 1000ms
lead to backchannels that sounded too delayed.

3.6. Evaluation 11

Figure 3.4: Evaluating the performance of a network while varying the threshold described
in Section 3.5.2. The inverse relationship between Precision and Recall is clearly visible.

2. Ground truth predictor: Predictions as read from the real backchannel audio track.
3. Random predictor (baseline): For each segment, we read the real backchannel count,

and then uniformly distributed that amount of triggers throughout the segment. Note
that this method actually has additional information compared to the neural net
predictor because it knows the expected backchannel count.

For each of these, we generated the backchannel audio track by putting a backchannel
audio sample at each trigger time. We then down-mixed the speaker and artificial listener
channel to a mono mp3 file to maximize accessibility. We chose the backchannel audio
samples randomly from all neutral backchannels with a minimum loudness in a fixed set of
11 conversations that had a lot of neutral backchannels without leaking audio.

This gave us a total of 6 · 3 = 18 audio files. For every participant we randomly selected six
audio files so that everyone heard every speaker track exactly once and two samples of every
method (Truth, Random, NN). The order was shuffled to remove any structural effects.
Then we asked the participants to rate the audio samples by how natural it sounded in
general and how appropriate they thought the backchannel timing was. A screenshot of
the survey interface can be seen in Figure 3.5.

12 3. Backchannel Prediction

Figure 3.5: Screenshot of the survey interface.

4. Experimental Setup

4.1 Dataset

We used the switchboard dataset [GoHo93], which consists of 2438 english telephone
conversations of five to ten minutes, 260 hours in total. Pairs of participants from across
the United States were encouraged to talk about a specific topic selected from 70 possibilities.
Conversation partners and topics were selected so two people would only talk once with
each other and every person would only discuss a specific topic once. These telephone
conversations are annotated with transcriptions and word alignments [Haot03] with a total
of 390k utterances or 3.3 million words. The audio data is given as stereo files, where the
first speaker is on the left channel and the second speaker on the right channel. We split
the dataset randomly into 2000 conversations for training, 200 for validation and 238 for
evaluation. As opposed to many other datasets, the transcriptions also contain backchannel
utterances like uh-huh and yeah, making it ideal for this task.

The transcriptions are split into utterances, which are multiple words grouped by speech
structure, for example (slashes indicate utterance boundaries): “did you want me to go
ahead / okay well one thing i- i- i guess both of us have very much aware of the equality /
uh it seems like women are uh just starting to really get some kind of equality not only
in uh jobs but in the home where husbands are starting to help out a lot more than they
ever did um”. The length of these utterances varies in length from one word to whole
sentences. Each of them has a start time and stop time attached, where the stop time
of one utterance is always the same as the start time of the next utterance. For longer
periods of silence, an utterance containing the text [silence] is between them.

The word alignments have the same format, except they are split into single words, each
with start and stop time. Here the start and stop times are mostly exactly aligned with
the actual word audio start and end. [silence] utterances are between all words that have
even a slight pause between them.

To better understand and visualize the dataset, we first wrote a complete visualization GUI
for viewing and listening to audio data, together with transcriptions, markers and other
data. This proved to be very helpful. A screenshot of the UI inspecting a short portion of
one of the phone conversations can be seen in Figure 4.1.

14 4. Experimental Setup

Figure 4.1: From top to bottom: Speaker A audio data, transcription, word alignment;
Then the same for Speaker B.

name act tag example full count

1 Statement-non-
opinion

sd Me, I’m in the legal de-
partment.

75145

2 Acknowledge
(Backchannel)

b Uh-huh. 38298

3 Statement-
opinion

sv I think it’s great 26428

4 Agree/Accept aa That’s exactly it. 11133
5 Abandoned or

Turn-Exit
% So, - 15550

6 Appreciation ba I can imagine. 4765
7 Yes-No-Question qy Do you have to have any

special training?
4727

Figure 4.2: Most common categories from the SwDA Corpus

4.2 Extraction

4.2.1 Backchannel Utterance Selection

We used annotations from The Switchboard Dialog Act Corpus [JuVEDo97] to decide
which utterances to classify as backchannels. The SwDA contains categorical annotations
for utterances for about half of the data of the Switchboard corpus. An excerpt of the
most common categories can be seen in Table 4.2.

We extracted all utterances containing one of the tags beginning with “b” (which stands
for backchannels or backchannel-like utterances), and counted their frequency. Because the
dataset also marks some longer utterances as backchannels, we only used those that are at
most three words long to exclude the ones that transmit a lot of additional information to
the speaker.

We chose to use the top 150 unique utterances from this set. For the most common ones,
see Table 4.3.

The SwDA is incomplete, it only contains labels for about half of the Switchboard dataset.
Because we wanted to use as much training data as possible, we had to identify utterances

4.2. Extraction 15

aggregated self count category text

31.9% 31.9% 14319 b uh-huh
61.1% 29.2% 13075 b yeah
69.0% 7.9% 3532 b right
71.7% 2.8% 1249 b oh
73.7% 2.0% 877 b [silence]
75.1% 1.4% 629 b oh yeah
76.5% 1.4% 627 b yes
77.8% 1.4% 607 b okay
78.9% 1.0% 458 bk okay
79.8% 0.9% 399 b huh
80.6% 0.8% 364 b sure
81.3% 0.7% 325 bk oh okay
82.0% 0.6% 288 b huh-uh
82.6% 0.6% 282 bh oh really
83.2% 0.6% 264 ba wow
83.7% 0.6% 259 b um
84.2% 0.4% 193 bh really
84.6% 0.4% 186 b really
85.0% 0.4% 177 bk oh

Figure 4.3: Most common backchannel utterances in the SwDA dataset. bk = Response
Acknowledgement, bh = Backchannel in question form, ba = Appreciation.

as backchannels just by their text. As can be seen in Table 4.3, the SwDA also has some
silence utterances marked as backchannels, as well as only laughter and noise, which we
can’t distinguish from normal silence, so we ignore them altogether. We manually removed
some requests for repetition (e.g. “excuse me”) from the SwDA list, and added some other
utterances that were missing from the SwDA transcriptions but present in the original
transcriptions, by going through the most common utterances and manually selecting those
that seemed relevant, including but not limited to “um-hum yeah”, “absolutely”, “right
uh-huh”.

In total we now had a list of 161 distinct backchannel utterances. The most common
backchannels in the data set are “yeah”, “um-hum”, “uh-huh” and “right”, adding up to
41860 instances or 68% of all extracted backchannel phrases.

The transcriptions also contain markers indicating laughter while talking (e.g. “i didn’t
think that well we wouldn’t still be [laughter-living] [laughter-here] so . . . ”), laughter on
its own (“[laughter]”), noise markers (“[noise]”) for microphone crackling or similar, and
markers for different pronunciations (for example “mhh-kay” is transcribed as “okay 1”). To
select which utterances should be categorized as backchannels and used for training, we first
filter noise and other markers from the transcriptions (e.g. “[laughter-yeah] okay 1 [noise]”
becomes “yeah okay”) and then compare the resulting text to our list of backchannel
phrases.

Some utterances such as uh can be both backchannels and speech disfluencies. For example:
“. . . pressed a couple of the buttons up in the / uh / the air conditioning panel i think and
uh and it reads out codes that way”. Note that the first uh is it’s own utterance and would
thus be seen by our extractor as a backchannel. The second occurrence of uh has normal
speech around in the same utterance it so we would already ignore it. We only want those

16 4. Experimental Setup

Figure 4.4: From top to bottom: Audio samples, transcription, pitch and power for a single
audio channel. Note that the pitch value is only meaningful when the person is speaking.

utterances that are actual backchannels, so after filtering by utterance text we only choose
those that have either silence or another backchannel before them.

This gives us the following selection algorithm:

def is_backchannel(utterance):

if index(utterance) == 0:

no other utterance before this, can’t be a backchannel

return False

text = noise_filter(utterance)

previous_text = noise_filter(previous(utterance))

return (text in valid_backchannels and

(is_silent(previous_text) or

is_backchannel(previous(utterance)))

This method gives us a total of 62k backchannels out of 390k utterances (16%) or 71k
out of 3.2 million words (2.2%). Note that the percentage of words is much lower because
backchannel utterance are on average much shorter than other utterances.

4.2.2 Feature Extraction

4.2.2.1 Acoustic Features

We used the Janus Recognition Toolkit (JRTk) [LLWG+00] for the acoustic feature extrac-
tion (power, pitch tracking, FFV, MFCC). The power value used is the base-10 logarithm
of the raw adc2pow value output by JRTk. The pitch value is the raw value output by the
JRTk pitch tracker. All features are normalized so they fit in the range of [−1, 1]. For
FFV, we used the default JRTk configuration of seven dimensions, for MFCCs the default
configuration of 20 dimensions. These features are extracted for 32 ms frame windows,
with a frame shift of 10 ms. This gives us 100 frames per feature per second. A sample of
the pitch and power features can be seen in Figure 4.4.

4.2.2.2 Linguistic Features

In addition to these prosodic features, we also tried training Word2Vec [MCCD13] on the
Switchboard dataset. Word2Vec is an “Efficient Estimation of Word Representations in
Vector Space”. After training it on a lot of text, it will learn the meaning of the words from
the contexts they appear in, and then give a mapping from each word in the vocabulary
to an n-dimensional vector, where n is configurable. Similar words will appear close to
each other in this vector space, and it’s even possible to run semantic calculations on the

4.2. Extraction 17

Figure 4.5: five-dimensional Word2Vec feature for some text. The encoding is offset by
one word, for example the encoding for “twenty” is seen below the word “four”, because
we encode the word that ended before the current time. Note that with this method we
indirectly encode the length of the words and the time since the last word change.

result. For example calculating king −man + woman gives the result = queen with a high
confidence. Because our dataset is fairly small, we used relatively small word vectors (10 -
50 dimensions). Word2Vec automatically chooses a fitting vocabulary size. For words not
in the vocabulary, we output 0 on all dimensions. We trained Word2Vec only on utterances
that are not backchannels or silence to reduce the required vocabulary and prevent it from
learning about meta information such as pauses, noises and laughter on its own.

We extracted these features parallel to those output by Janus, with a 10 millisecond frame
shift. To ensure we don’t use any future information, we extract the word vector for the
last word that ended before the current frame timestamp. This way the predictor is in
theory still online, though this assumes the availability of a speech recognizer with instant
output. An example of the Word2Vec feature extracted with this method can be seen in
Figure 4.5.

4.2.2.3 Context and Stride

We extracted the features for a fixed time context. Then we used a subset of that
range as the area we feed into the network. As an example, we could extract the range
[−2000 ms, 0 ms] for every feature, giving us 200 frames. To train the network on 1500 ms
of context, we would treat every offset like [−2000 ms,−500 ms], [−1990 ms,−490 ms], . . . ,
[−1500 ms, 0 ms] as individual training samples. This would give us 50 training samples
per backchannel utterance, greatly increasing the amount of training data, but introducing
smear as the network needs to learn to handle a larger variance in when the backchannel
cue appears in its inputs, and thus reducing the confidence of its output.

This turned out to not work very well, so in the end we settled on only extracting the
features for the range [−w − 10 ms, 0 ms] where w is the context width, and training the
network on both [−w − 10 ms, 10 ms] and [−w, 0 ms]. This gives us two training samples
per utterance, reduces the smearing problem and at the same time forces the network to
learn to correctly handle when its inputs are the same or similar but offset by one.

We can also choose to only use every n-th timestep, which we call the “context stride”. This
works under the assumption that the input features don’t change with a high frequency,
which greatly reduces the input dimension and speeds up training. Because we extract
our features for a frame width of 32 ms as described in Section 4.2.2.1, our features do not

18 4. Experimental Setup

change much over two or three frames. In practice a stride of 2 worked well, meaning one
frame every 20 milliseconds. This works great in combination with the above method for
choosing context ranges from the training areas. For example, with a stride of 2 and a
context size of 100 ms, we would now get these two training samples (described as frame
indices used to extract the input features relative to the onset of the backchannel utterance):

1. [-10, -8, -6, -4, -2, 0]
2. [-11, -9, -7, -5, -3, -1]

4.3 Training

We used Theano [Thea16] with Lasagne v1.0-dev [DSRO+15] for rapid prototyping and
testing of different parameters. We trained a total of over 250 neural networks with various
context lengths (500 ms to 2000 ms), context strides (1 to 4 frames), network depths (one
to four hidden layers), layer sizes (15 to 125 neurons), activation functions (tanh and relu),
optimization methods (SGD, Adadelta and Adam [KiBa14]), weight initialization methods
(constant zero and Glorot [GlBe10]), and layer types (feed forward and LSTM).

In general, we used three variables to monitor training: The first is training loss, which is
what the network optimizes, as defined in Section 3.4. We expect this variable to decrease
monotonically on average while training, because the network is descending it’s gradient.
The second variable is validation loss, which is the same function as training loss, but on
the separate validation data set. This allows us to tell whether the network is still learning
useful information or starting to overfit. In general, we expect this to be about the same
as the training loss, possibly a bit higher. If the training loss is still falling but validation
loss is starting to increase again, the network is overfitting on the training data.

The third variable is the validation error, which we define as

1−
∑

s∈S{1 if prediction(s) = truth(s) else 0}
|S|

,

where S is all the frames for all the samples in the validation data set, and prediction(s) =
argmax(output), which is the index of the category with the maximum output value. This
means we take the network output, convert it into the category the network is currently
most confident in, and compare it with the ground truth. For example, say we are training
with two outputs, one for “Non BC” and one for “BC”. The network will always give us two
values between 0 and 1 that add up to one because of the softmax function as described
in Section 3.4. If the network output is [0.7, 0.3] for a specific sample we interpret it as
“Non BC”, because the confidence in the “Non BC” category is higher. If the ground truth
for this sample is also “Non BC”, the validation error is 0, otherwise 1. This gives us a
statistical rating of the current state of the predictor that has less resolution than the
loss function (because it throws away the “confidence” of the network), but is closer to
our interpretation of the network output when evaluating. We use this value as an initial
comparison between predictors and to decide which epoch of the network will probably give
the best results. We will use a different threshold than 0.5 for evaluation, so the validation
error is not a completely accurate measurement.

We train the network in epochs of minibatches. A minibatch is a set of N training samples
that we feed into the network at once, updating the weights with their average loss. This
means we only update the gradient every N training samples, which reduces the probability
of a single huge gradient disturbing training. We used a minibatch size of N = 250 training
samples. One epoch is defined as one whole backward pass of all the training data through
the network.

4.3. Training 19

We started with a simple model with a configuration of pitch and power as input and
800 ms of context, giving us 80 · 2 = 160 input dimensions, hidden layers of 100 → 50 feed
forward neurons. We trained this using many different gradient descent methods such as
stochastic gradient descent (SGD), SGD with momentum, Nesterov momentum, Adadelta
and Adam, each with fixed learning rates to start. The momentum methods add a speed
variable to the descent. This can be interpreted similar to its physical name giver. Imagine
a ball rolling down a mountain slope. For each time period, it keeps its previous momentum
and is thus able to jump over small dents in the ground (local minima). In our case, SGD
/ Nesterov momentum worsened the results, so we stayed with normal SGD and Adam.

We tried different weight initialization methods. Initializing all weights with zero gave
significantly worse results than random initialization, so we stayed with the Lasagne default
of Glorot uniform initialization, which uses uniformly distributed random values with the
maximum value scaled so the variance of each layer’s outputs is the same as its inputs
[GlBe10]. Another method to use would be layer-wise denoising autoencoder pretraining.
With this method, the initial weights are created by training the layers individually to
reproduce the input data with some dropout. The first layer is trained on its own, the
second layer is trained with the first layer before it but fixed and so on. We did not try
this, but it might give good results for this use case, especially for deeper networks with
vanishing gradients.

We compared online prediction and offline “prediction”, where offline prediction had 400 ms
of past audio and 400 ms of future audio available from the onset of the backchannel
utterance, and online prediction got 800 ms of past audio. Offline prediction gave 18%
better results, but of course we are more interested in online prediction.

4.3.1 Recurrent Neural Networks

The first LSTM we tested by simply replacing the feed forward layers with LSTM layers
immediately improved the results by 16% without any further adjustments. We kept the
default configuration of using “Peepholes” [GeSS03] and used only forward facing layers
(connections from past to future). But this showed the issues with a fixed learning rate,
as the loss regularily exploded after every 10 to 15 epochs, as can be seen in Figure 4.6.
When adding FFV, increasing the input dimension per time frame from 2 to 9, SGD
stopped working at all (everything became NaN) without manually tuning the learning
rate. One solution to this would be to use a scheduler. A scheduler automatically adjusts
the learning rate depending on some condition. An example is simple exponential decay,
which exponentially decreases the initial learning rate with a fixed factor. Another method
is newbob scheduling, which exponentially decreases the learning rate when the validation
error stops decreasing or only decreases very little. These schedulers need parameter tuning,
making them hard to use without a lot of experimenting.

We solved the problem of automatically adjusting the learning rate by using Adam [KiBa14]
instead of SGD, which is a gradient descent method related to Adadelta and Adagrad. It
also incorporates momentum in some way and intelligently adjusts the learning rate. I
have no idea how this works, but Adam with a fixed learning rate of 0.001 worked great,
so we did all further testing using Adam.

The LSTM networks we tested were prone to overfitting very quickly, but they still provided
better results after two to three epochs than normal feed forward networks after 100 epochs.
Overfitting happens when the results still improve on the training data set, but plateau or
get worse on the validation data set. This means the network is starting to learn specific
quirks in the training data set by heart, which it then can’t apply on other data.

We tried two regularization methods to reduce overfitting. At first we added dropout layers
to the networks to try and avoid overfitting and to generally improve the results. Dropout

20 4. Experimental Setup

Figure 4.6: Anomalies while training an LSTM network with a fixed learning rate. Shown
is the training loss over epochs.

layers randomly disconnect a specified fraction of neurons in a layer, different for every
training batch. This should in theory help the network interpret its inputs even when it
is partially “blind”, reducing the effective input dimension and thus reducing overfitting.
For validation and evaluation the dropout is deactivated, so the network is able to take
advantage of every single feature when actually using it as a predictor. In this case, we
tried adding different dropout settings such as

input(20% dropout)

⇓
125 neurons(50% dropout)

⇓
80 neurons(50% dropout)

⇓
output

but this only increased the noise in the training loss and did not improve the results over a
simple “input → 70 neurons → 45 neurons” configuration, both for feed forward and for
LSTM networks. The solution that worked was L2-Regularization with a factor of 0.0001.
L2-Regularization places a penalty on increasing complexity of the learned model (caused
by overfitting) by adding the sum of the squares of the weights to the loss function. This
reduced the overfitting problem greatly and slightly improved the results, as can be seen in
the example in Figure 4.7.

4.3.2 Multicategorical Data

In most of our experiments we only predicted two categories: Non-BC and BC. To extend
this to multiple categories, we can use the same output layer setup with more dimensions,
because softmax works for any number of categories.

We manually separated the data into the categories neutral, question, surprise/negative,
affirmative, positive. This gives us six outputs including the Non-BC output, with the
distribution shown in Table 4.8.

4.3. Training 21

Figure 4.7: The same LSTM network trained without (left) and with (right) L2-
Regularization. Note that without regularization the network starts overfitting after
two epochs. With regularization training and validation loss mostly stay the same, and
the validation error continues to improve. Training loss is blue, validation loss is red and
validation error is orange. The y-axis is scaled the same for both graphs.

Category sample count

NBC 50809
affirmative 2052

neutral 41153
positive 3264
question 1200

surprise/negative 3140

Figure 4.8: Number of instances in the training data set per category

To decide whether to trigger we first check if (1− outputNBC(t)) is larger than a threshold,
where NBC is the output for the category indicating no backchannel should happen. Then
we use argmax(output(t)) to decide which backchannel category was predicted.

With this method, the number of training samples for the categories vary, and the NBC
category has as many samples as the other categories together. To balance this data, we
can weigh the gradient update for each training sample by

w(sample) =
max(counts)

counts(category(sample))
,

where counts(category) is the total number of training samples for a specific category. This
means that the training samples with categories that have few samples are more important
for training than the more common categories. Alternatively, we can simply duplicate
samples from the minority categories until the categories are balanced. Both methods
produced similar results.

For training, the simplest method is to just train the whole network on the ground truth
for the categories. But because the data is limited, this might not give the best results.
Another method is to first train the network on just NBC and BC prediction, then fixing all
the layers except the output layer and just fine-tuning the output layer to output multiple
categories.

The results for a network trained on a binary output with the last layer finetuned on
multicategorical output can be seen in Figure 4.9.

22 4. Experimental Setup

Figure 4.9: The output of a neural network trying to predict backchannel categories for
a audio segment. The first category is “No Backchannel”, so it is roughly inverse to the
other categories (neutral, question, surprised, positive, affirmative). From top to bottom:
Audio, Text, Raw NN output, Smoothed NN output. Black means higher probabilities,
white means lower probabilities.

4.4. Evaluation 23

Figure 4.10: A short audio segment showing the automatically classified talking and
listening areas. Note that a backchannel from Speaker B in the middle (“yeah”) does not
classify that area as speaking. At the end both people talk at the same time, so Speaker B
needs to repeat themself.

4.4 Evaluation

The switchboard dataset contains alternating conversation. Because our predictor is only
capable of handling situations where one speaker is consistently speaking and the other
consistently listening, we need to evaluate it on only those segments. We call these segments
“monologuing segments”.

For this we define the predicate is_listening (is only emitting utterances that are
backchannels or silence) and is_talking (= not is_listening). An example of this can
be seen in Figure 4.10. A monologuing segment is the maximum possible time range in
which one person is consistently talking and the other only listening. We only consider
such segments of a minimum length of five seconds to exclude sections of alternating
conversation. The results did not significantly change when adjusting this minimum length
between two and ten seconds, though the amount of evaluation data and thus the accuracy
of the evaluation values changed (see Figure 6.6).

An interesting aspect is that in our tests the predictors had difficulty distinguishing segments
of speech that indicate a backchannel and those that indicate turn taking (speaker change).
Subjectively this makes sense, because in many cases a backchannel can be seen as a
replacement for starting to talk more extensively.

24 4. Experimental Setup

5. Results

5.1 Subjective Results

A total of 20 participants participated in the survey, mostly from the university group ML-
KA – Machine Learning University Group at Karlsruhe Institute of Technology. Because
every participant rated two samples for every evaluation method, this gives us a sample
size of N = 40. The detailed results of the survey can be seen in Table 5.1. The results
show that our neural network performs significantly better regarding timing than a random
predictor (p = 0.005%), but significantly worse than human performance (p = 0.4%). For
naturalness, our predictor is not significantly better than random performance (p = 7.7%),
as shown in Table 5.2.

Participants could leave comments on the survey. One person was confused because they
could still hear the leaking original listener audio track beneath the artificial one, even
though we explicitly chose segments where this problem should be minimal. Another
person commented “Telephone conversations are not in the best sound quality. For me it’s
hard to follow and it’s not easy to rate these conversations.”

26 5. Results

Predictor Sample Timing Naturalness Sample Size

random average 2.33 points 2.63 points 40
1 1.63 points 2.00 points 8
2 2.75 points 3.13 points 8
3 2.43 points 2.14 points 7
4 2.00 points 2.33 points 3
5 2.00 points 2.33 points 6
6 2.88 points 3.50 points 8

nn average 3.48 points 3.08 points 40
1 3.33 points 3.33 points 3
2 2.60 points 2.20 points 5
3 2.38 points 2.25 points 8
4 3.89 points 3.33 points 9
5 4.25 points 3.88 points 8
6 4.00 points 3.29 points 7

truth average 4.20 points 4.08 points 40
1 4.78 points 4.33 points 9
2 4.57 points 4.43 points 7
3 3.80 points 3.80 points 5
4 3.75 points 3.50 points 8
5 3.83 points 3.67 points 6
6 4.20 points 4.80 points 5

Table 5.1: Survey results. Shown are the average ratings the participants gave regarding
timing and naturalness for each prediction method and sound sample.

Predictor 1 Predictor 2 p-value (timing) p-value (naturalness)

random nn 0.005% 7.669%
random truth 0.000% 0.000%

nn truth 0.433% 0.007%

Table 5.2: Comparing performance of the predictors using Welch’s t-test on the survey
results, showing the differences in the mean of the rating between prediction methods are
all significant regarding timing.

5.2. Objective Results 27

5.2 Objective Results

5.2.1 Binary Output

We use “70 : 35” to denote a network layer configuration of “input → 70 neurons →
35 neurons→ output”. All of the results in Tables 5.3, 5.4, 5.5, 5.6, 5.7 use the following
setup unless otherwise stated:

• LSTM
• Configuration: (70 : 35)
• Input features: power, pitch, ffv
• Context frame stride: 2
• Margin of error: 0 ms to +1000 ms
• Precision, recall and F1-Score are given for the validation data set

We tested different context widths. A context width of nms means we use the range [−nms,
0 ms] from the beginning of the backchannel utterance, as defined by the beginning of the
first non-silent word according to the word alignments. The results improved significantly
when increasing the context width from our initial value of 500 ms. Performance peaked
with a context of about 1500 ms, as can be seen in Table 5.3. Longer contexts tended to
cause the predictor to trigger too late.

We tested using only every n-th frame of input data. Even though we initially did this for
performance reasons, we noticed that training on every single frame has worse performance
than skipping every second frame due to overfitting. Taking every fourth frame seems to
miss too much information, so performance peaks at a context stride of 2, as can be seen
in Table 5.4.

We tested different combinations of features. Using FFV as the only prosodic feature
performs worse than FFV together with the absolute pitch value. Adding MFCCs does not
seem to improve performance in a meaningful way when also using pitch. See Table 5.5 for
more details. Note that using only word2vec performs reasonably well, because with our
method it indirectly encodes the time since the last utterance, similar to the power feature.

Table 5.6 shows a comparison between feed forward and LSTM networks. The parameter
count is the number of connection weights the network learns in training. Note that LSTMs
have significantly higher performance, even with similar parameter counts. We compared
different layer sizes for our LSTM networks, as shown in Table 5.7. A network depth of
two hidden layers worked best, but the results are adequate with a single hidden layer or
three hidden layers.

In Tables 5.8, 5.9, our final results are given for the completely independent evaluation data
set. We compared the results by Mueller et al. (2015) [MLBS+15] with our system. They
used the same dataset, but focused on offline predictions, meaning their network had future
information available, and they evaluated their performance on the whole corpus including
segments with silence and with alternating conversation. We adjusted our baseline and
evaluation system to match their setup. As can be seen in Table 5.8, our online predictor
performs significantly better (p < 0.0001% when comparing our F1 sample mean of 0.153
with an assumed population F1 mean of 0.109). All other related research used different
languages, datasets or evaluation methods, making a direct comparison difficult.

Table 5.9 shows the results with our presented evaluation method. We provide scores for
different margins of error used in other research. Subjectively, missing a BC trigger may be
more acceptable than a false positive, so we also provide a result with balanced precision
and recall. Welch’s t-test shows that the difference of our F1-Score of 0.388 to that of the
random baseline (0.071) is statistically significant with p < 0.0001%.

28 5. Results

Context Precision Recall F1-Score

500 ms 0.219 0.466 0.298
1000 ms 0.280 0.497 0.358
1500 ms 0.305 0.488 0.375
2000 ms 0.275 0.577 0.373

Table 5.3: Results with various context lengths. Performance peaks at 1500 ms.

Stride Precision Recall F1-Score

1 0.290 0.490 0.364
2 0.305 0.488 0.375
4 0.285 0.498 0.363

Table 5.4: Results with various context frame strides.

Features Precision Recall F1-Score

power 0.244 0.516 0.331
power, pitch 0.307 0.435 0.360
power, pitch, mfcc 0.278 0.514 0.360
power, ffv 0.259 0.513 0.344
power, ffv, mfcc 0.279 0.515 0.362
power, pitch, ffv 0.305 0.488 0.375

word2vecdim=30 0.244 0.478 0.323
power, pitch, word2vecdim=30 0.318 0.486 0.385
power, pitch, ffv, word2vecdim=15 0.321 0.475 0.383
power, pitch, ffv, word2vecdim=30 0.322 0.497 0.390
power, pitch, ffv, word2vecdim=50 0.304 0.527 0.385

Table 5.5: Results with various input features, separated into only acoustic features and
acoustic plus linguistic features.

Layers Parameter count Precision Recall F1-Score

FF (56 : 28) 40k 0.230 0.549 0.325
FF (70 : 35) 50k 0.251 0.468 0.327
FF (100 : 50) 72k 0.242 0.490 0.324

LSTM (70 : 35) 38k 0.305 0.488 0.375

Table 5.6: Feed forward vs LSTM. LSTM outperforms feed forward architectures.

Layer sizes Precision Recall F1-Score

100 0.280 0.542 0.369
50 : 20 0.291 0.506 0.370
70 : 35 0.305 0.488 0.375
100 : 50 0.303 0.473 0.369

70 : 50 : 35 0.278 0.541 0.367

Table 5.7: Comparison of different network configurations. Two LSTM layers give the best
results.

5.2. Objective Results 29

Predictor Precision Recall F1-Score

Baseline (random) 0.042 0.042 0.042
Müller et al. (offline) [MLBS+15] – – 0.109
Our results (offline, context of −750 ms to
750 ms)

0.114 0.300 0.165

Our results (online, context of −1500 ms
to 0 ms)

0.100 0.318 0.153

Table 5.8: Comparison with previous research. [MLBS+15] did their evaluation without
the constraints defined in section 4.4, so we adjusted our baseline and evaluation to match
their setup.

Margin of Error Constraint Precision Recall F1-Score

−200 ms to 200 ms 0.172 0.377 0.237
−100 ms to 500 ms 0.239 0.406 0.301
−500 ms to 500 ms 0.247 0.536 0.339

0 ms to 1000 ms Baseline (random, correct BC count) 0.111 0.052 0.071
Baseline (random, 8x correct BC
count)

0.079 0.323 0.127

Balanced Precision and Recall 0.342 0.339 0.341
Best F1-Score
(only acoustic features)

0.294 0.488 0.367

Best F1-Score
(acoustic and linguistic features)

0.312 0.511 0.388

Table 5.9: Results with our evaluation method with various margins of error used in other
research [deHe12b]. Performance improves with a wider margin width and with a later
margin center.

30 5. Results

correct \ predicted No BC neutral question surp/neg affirmative positive

No BC — 2695 930 4018 1600 2697
neutral 1417 640 377 1057 366 341
question 31 16 14 24 8 12
surp/neg 99 35 24 120 14 25
affirmative 55 23 21 52 17 18
positive 113 43 25 78 24 20

Table 5.10: Confusion matrix for an LSTM with the output layer finetuned to distinguish
between multiple categories, trained on balanced training data.

5.2.2 Multicategorical Output

We evaluated the results for multicategorical output using confusion matrices. A confusion
matrix shows how many samples that should be categorized as one category are categorized
as another category for every combination of categories.

A confusion matrix for the best network configuration from above fine-tuned for multiple
categories can be seen in Table 5.10. The results were not impressive, with the size of the
dataset (see also Table 4.8) being a limiting factor.

6. Implementation

We implemented multiple software components to help us understand the data, extract
the relevant parts, train the predictors and evaluate the results. This software was also
used to create most of the figures in this document. All of the code will be available at
https://github.com/phiresky/backchannel-prediction. The repository also contains a script
to reproduce all of the results in Section 5.2.1.

6.1 Web Visualizer

6.1.1 Description

The web visualizer is an interactive tool to display time-based data. It can display audio
files as waveforms similar to other popular audio editing software. It can also show arbitrary
data that has one or more dimensions per time frame of arbitrary length. We use this to
show the features we extract from the audio and use for training of the neural networks, as
well as the resulting network outputs. It can show these either as a line graph as seen in
Figure 3.3 or as a grayscale color value, as seen in Figure 4.9.

In addition, it can also show time-aligned textual labels either as seperate features or as
overlays over the other data. We use this to display the transcriptions below the audio,
and to highlight ranges of audio, for example which areas we use as positive and negative
prediction areas, or which areas we interpret as “talking” or “listening” as can be seen in
Figure 4.10. This allows us to quickly check if the chosen prediction areas make general
sense.

The user can choose a specific or random conversation from the training, validation or
evaluation data set. Then they can choose to view a combination of the available features
from a categorical tree (Figure 6.1). The user can zoom into any section of the data and
play the audio, the UI will follow the current playback position.

The user can also save the exact current GUI state including zoom and playback position
to generate a unique URL that will restore the visualizer to that state when loaded. This
is useful for sharing and saving interesting sections.

Some state presets are also available, such as the default view which will show both channels
of a conversation, together with the transcriptions, power, pitch and highlights for the
training areas. Another meta preset is the NN output view, which includes a single audio
channel and the raw output, smoothed output and resulting audio track for a trained

https://github.com/phiresky/backchannel-prediction

32 6. Implementation

Figure 6.2: Loading the output of the best epoch of specific network for channel A of the
current conversation

network, as seen for example in Figure 3.3. The exact configuration can be chosen in a form
(Figure 6.2). Newly trained networks will automatically be available when the training is
finished, allowing a quick subjective evaluation of the results.

6.1.2 Implementation Details

Figure 6.1: Selecting a fea-
ture to display in the Web
Visualizer.

The visualizer is split into two parts, the server side (backend)
and the client side (frontend). The server is written in Python.
It accepts connections via Websockets. It sends a list of
available conversation IDs and corresponding features. The
client can then select a conversation and dynamically load any
combination of the available features, which the server will
evaluate on demand while caching the most recently used ones.
The backend is in a shared code base with the extraction code,
so it uses parts of the same code we also use for training and
evaluation.

The client is written in TypeScript with MobX and React
and runs in a web browser. It uses HTML canvas to draw
the visualization of the numerical features. The other visu-
alizations are drawn using DOM elements with CSS Flexbox.
The drawn waveform shows the maximum and minimum as
a dark blue color, and the root mean square of the signal

(rms =
√

1
n(x21 + x22 + · · ·+ x2n), similar to the signal power)

as a lighter blue overlay. Audio has many datapoints, for
example, for 10 minutes of 8kHz audio, the UI needs to iterate
over 5 million data points. When the Audio is played back, the
whole view shifts by some fraction of a pixel every 1/60th of a
second, which causes the need for a recalculation of the RMS,
min, max values for every pixel. This is too much data for
a browser client to handle. The trivial rendering of this takes
O(n) time for every rerender, where n is the total number of
samples that are in the region that is currently on screen. To
speed this up, the UI uses an intelligent data structure based
on binary trees to cache the values for [min, max, RMS] for every range over the indices
[k · 2l, (k + 1) · 2l − 1], where k ∈ N is the offset and l ∈ N is the “zoom level”. Now every
access takes only O(log n) time. For example, when requesting the range [3, 13], the system
will use the cached values for [2, 3], [4, 7], [8, 11], [12]. This works because min, max and rms
can all be combined from partial results without needing to know the individual values.

6.2. Extraction, Learning and Evaluation 33

For example max(5, 6, 1, 4, 7, 1, 5, 3) = max(max(5, 6, 1, 4), 7,max(1, 5, 3)). For RMS, this
can be done by saving both the square sum and element counts for every range, applying
the square root at the end.

6.2 Extraction, Learning and Evaluation

We wrote our own parsing toolkit for the transcriptions and word alignments from the
SwDA [JuVEDo97], which are formatted as plain text files. We used the Python interface
of the Janus Recognition Toolkit, numpy, scipy and sklearn for feature extraction and
filters. We implemented a small learning toolkit on top of Lasagne that reads the extraction
and training configuration from a JSON file and outputs the training history as JSON. We
used git to track the changes and git tags so every extraction and training output had the
exact state of the code attached. This allowed us to easily reproduce different outputs.
We also wrote a meta configuration generator that takes a set of interesting configuration
parameters and outputs all the relevant permutations, which can then be extracted, trained
and evaluated in parallel.

6.2.1 Evaluation

The evaluation procedures load a neural network model from the configuration file of a
trained network, and then use gpyopt to optimize the postprocessing parameters for each
margin of error on the validation data set. For the best parameter set, the same evaluation
is then run on the evaluation data set. The results are written to another JSON file for
each tested parameter set. An additional script loads a set of postprocessing parameters
and writes audio files for every monologuing segment with

(a) the speaker and listener tracks
(b) only the speaker track
(c) the speaker track, together with the truth listener track with randomized audio

samples
(d) the speaker track, together with a listener track as generated by a predictor (NN or

Random)

Another script calculates the statistical significance of the results.

6.2.2 Automatic Caching

Many of the methods for extraction were written as pure functions, which allowed us to
create a transparent caching system as a Python function decorator that automatically
caches the result of expensive functions on disk. For example, consider this function:

@functools.lru_cache

@DiskCache

def get_power(adc_filename: str, window_ms: int) -> Feature:

return Feature(numpy.log10(load_adc(adc_filename).adc2pow()))

When this function is called, the decorator function DiskCache is called first. This function
creates a deterministic JSON object of the function name, function source code, and
parameters. This JSON object is run through the hash function sha256. If a serialized
(pickled) file with the hash as the filename exists in the cache folder, that file is loaded.
Otherwise, the function is evaluated and its result is saved to the cache folder together
with the meta json file. To circumvent issues with thousands of files in a single folder, the

34 6. Implementation

first two letters of the hash are used as a subdirectory name, like git does it for its object
database. The first time this function is run it takes some time. The subsequent times, it
is loaded from disk and not evaluated. Because of automatic disk caching by the OS, this
becomes nearly instant for frequently accessed files. In addition, the lru cache ensures that
recently used function results are cached in RAM, which causes an additional speed boost
because it circumvents the time otherwise spent unpickling the file.

This way, we do not need to explicitly seperate the extraction from training and write data
files, we can simply run the training and the extraction only runs when the extraction
parameters (features / context size) changes. For example, if we have already trained a
network on the power and pitch features and we now add the FFV feature, the extraction
code will only evaluate the FFV feature while using the cached data for power and pitch.

We also used joblib, a Python library for easy parallelization, to enable the extraction and
evaluation processes to use all available CPU cores.

6.3 Survey software

The survey software is written in Typescript with SQLite, TypeORM, Express.js, MobX
and React. It loads a set of audio files as output by the software described in Section 6.2.1.
It creates a remapping from an incrementing counter to each of these files, so survey
participants cannot be biased by knowing what they are listening to. It stores the ratings
for each participants together with their comment into an SQLite database. It also has
an admin interface which shows an automatically updating interactive pivot table of the
current survey results, showing the average ratings depending on choosable dimensions
(e.g. average ratings for each predictor for each audio sample). It can then also export this
table to LATEX format, as seen in Table 5.1.

A second component, written in Python, does the significance test by loading the results
from the SQLite database and outputting a LATEX table for the significance of the difference
between each rating type and predictor combination, as shown in Table 5.2.

6.4 Evaluation Visualizer

The evaluation visualizer reads all the output JSON files from training and displays the
resulting loss graphs as seen in Figure 4.7. It also shows a table of the evaluation results
with various parameters for a every neural network sorted from best validation result to
worst (Figure 6.7). There is also a graph for detailed comparison of the postprocessing and
evaluation methods, by fixing every parameter except one of them and plotting Precision,
Recall, F1-Score with that parameter on the x-axis, as shown in Figure 6.4, Figure 6.5,
and Figure 6.6.

The UI can show multiple graphs at the same time, and also shows an overview over all
the best results from every network (Figure 6.3), which can be filtered by RegExp. In
addition, it can generate LATEX tables from the shown filtered outputs for any combination
of columns.

This program is completely client-side and runs in the webbrowser, loading all needed data
from the JSON files at runtime.

6.4. Evaluation Visualizer 35

Figure 6.3: Overview table of all found network evaluation results, sorted by validation
F1-Score.

Figure 6.4: Precision, Recall and F1-Score depending on the smoothing sigma used. The
F1-Score peaks at σ = 350 ms, Precision peaks at σ = 525 ms. With lower sigmas, the
predictor triggers more often causing the recall to approach 1.

36 6. Implementation

Figure 6.5: Precision, Recall and F1-Score depending on the margin of error center, showing
a very clear normal distribution. The center of this distribution depends on the filter sigma
and cutoff, meaning we can optimize it depending on the evaluation method.

Figure 6.6: Precision, Recall and F1-Score depending on the minimum monologuing segment
length. -1 has the symbolic meaning that we evaluate on all data, including silence.

6.4. Evaluation Visualizer 37

Figure 6.7: Full overview over a single training result, showing the loss graph for checking
for overfitting issues and the evaluation results.

38 6. Implementation

7. Conclusion and Future Work

We have presented a novel approach to predict backchannels using acoustic and linguistic
features. We experimented with different neural network designs and feature combinations
to find the best method. The use of recurrent neural networks (LSTMs) greatly increased
the performance of our system. We showed our results are subjectively and objectively
significantly better than random predictions.

There are some points where further improvements could be made. We only scraped the
surface of adding linguistic features via word2vec because it assumes the availability of
an instant speech recognizer. In our system we simply used the available hand-written
transcripts, but in a real online environment this would need a more sophisticated approach.
Further work is needed to evaluate other methods for adding word vectors to the input
features and to analyse possible improvements.

We only tested dense feed forward neural networks and LSTMs, other architectures like
time-delay neural networks [WHHS+89] or their generalized counterpart (convolutional
neural networks) may also give interesting results. In addition, the training method we
used makes the neural network unaware of the postprocessing. This means the network
cannot know when it is actually producing a trigger, which means it can’t know exactly
when the last backchannel was. Because backchannels are unlikely to happen too close to
each other, adding the time since the last trigger as a feature to the inputs may improve
the results. This means we would need to decide on the exact postprocessing parameters
before training, which would be incompatible with our current approach of optimizing those
paramters with bayesian optimization depending on the specific outputs of the network.

Our approach of choosing the training areas may not be optimal because the delay between
the last utterance of the speaker and the backchannel can vary significantly. A possibility
would be to align the training area by the last speaker utterance instead of the backchannel
start, but this has some problems as described in Section 3.3.

Our tests of predicting multiple separate categories of backchannels did not produce any
notable results, further work is needed to analyse whether more context or features are
needed to facilitate this.

In our survey, we did not compare different margins of error for our neural network output
and used postprocessing assuming a margin of error of −200 ms to 200 ms, even though we
used a margin of 0 ms to 1000 ms for most of our objective evaluation. Because backchannels
are a largely subjective phenomenon, a user study would be helpful to subjectively evaluate

40 7. Conclusion and Future Work

human performance in our chosen evaluation method. Another method would be to find
consensus for backchannel triggers by combining the predictions of multiple human subjects
for a single speaker channel as described by Huang et al. as “parasocial consensus sampling”
[HuMG10b].

An interesting extension for use in Virtual Assistants would be to also predict turn taking
in addition to backchannels. Our current model already often predicts a backchannel at
a time where the speaker stops talking and expects a longer response. Our method of
predicting [No BC, BC] could be extended to predict [No BC, BC, Speaker Change]. This
would allow a virtual assistant to give natural sounding backchannel responses and detect
when it is supposed to start answering a query.

Bibliography

[CaCK03] N. Cathcart, J. Carletta und E. Klein. A Shallow Model of Backchannel
Continuers in Spoken Dialogue. In Proceedings of the Tenth Conference on
European Chapter of the Association for Computational Linguistics - Volume
1, EACL ’03, Stroudsburg, PA, USA, 2003. Association for Computational
Linguistics, S. 51–58.

[deHe09] I. de Kok und D. Heylen. Multimodal End-of-Turn Prediction in Multi-Party
Meetings. In Proceedings of the 2009 International Conference on Multimodal
Interfaces. ACM, 2009, S. 91–98.

[deHe12a] I. de Kok und D. Heylen. Integrating Backchannel Prediction Models into
Embodied Conversational Agents. In International Conference on Intelligent
Virtual Agents. Springer, 2012, S. 268–274.

[deHe12b] I. de Kok und D. K. J. Heylen. A Survey on Evaluation Metrics for Backchannel
Prediction Models. In Proceedings of the Interdisciplinary Workshop on
Feedback Behaviors in Dialog, 2012.

[deHM13] I. de Kok, D. Heylen und L.-P. Morency. Speaker-Adaptive Multimodal
Prediction Model for Listener Responses. In Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, ICMI ’13, New York,
NY, USA, 2013. ACM, S. 51–58.

[dePH14] I. de Kok, R. Poppe und D. Heylen. Iterative Perceptual Learning for Social
Behavior Synthesis. Journal on Multimodal User Interfaces 8(3), September
2014, S. 231–241.

[dOHM10] I. de Kok, D. Ozkan, D. Heylen und L.-P. Morency. Learning and Evaluating
Response Prediction Models Using Parallel Listener Consensus. In Interna-
tional Conference on Multimodal Interfaces and the Workshop on Machine
Learning for Multimodal Interaction, ICMI-MLMI ’10, New York, NY, USA,
2010. ACM, S. 3:1–3:8.

[DSRO+15] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby und others.
Lasagne: First Release., August 2015.

[FuFK04] S. Fujie, K. Fukushima und T. Kobayashi. A Conversation Robot with
Back-Channel Feedback Function Based on Linguistic and Nonlinguistic
Information. In Proc. ICARA Int. Conference on Autonomous Robots and
Agents, 2004, S. 379–384.

[GeSS03] F. A. Gers, N. N. Schraudolph und J. Schmidhuber. Learning Precise Timing
with Lstm Recurrent Networks. J. Mach. Learn. Res. Band 3, 2003, S. 115–
143.

42 Bibliography

[GlBe10] X. Glorot und Y. Bengio. Understanding the Difficulty of Training Deep Feed-
forward Neural Networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial
Intelligence and Statistics, 2010.

[GoHo93] J. Godfrey und E. Holliman. Switchboard-1 Release 2. https://catalog.ldc.
upenn.edu/ldc97s62, 1993.

[Haot03] D. Harkins und others. ISIP Switchboard Word Alignments. https://www.
isip.piconepress.com/projects/switchboard/, 2003.

[HuMG10a] L. Huang, L.-P. Morency und J. Gratch. Learning Backchannel Prediction
Model from Parasocial Consensus Sampling: A Subjective Evaluation. In
Intelligent Virtual Agents. Springer, Berlin, Heidelberg, September 2010,
S. 159–172.

[HuMG10b] L. Huang, L.-P. Morency und J. Gratch. Parasocial Consensus Sampling:
Combining Multiple Perspectives to Learn Virtual Human Behavior. In
Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, Richland, SC, 2010.
International Foundation for Autonomous Agents and Multiagent Systems,
S. 1265–1272.

[HuMG11] L. Huang, L.-P. Morency und J. Gratch. Virtual Rapport 2.0. In H. H.
Vilhjálmsson, S. Kopp, S. Marsella und K. R. Thórisson (Hrsg.), Intelligent
Virtual Agents, Lecture Notes in Computer Science. Springer Berlin Heidelberg,
September 2011, S. 68–79.

[JuVEDo97] D. Jurafsky, C. Van Ess-Dykema und others. Switchboard Discourse Language
Modeling Project. http://compprag.christopherpotts.net/swda.html, 1997.

[Kalm60] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering 82(Series D), 1960,
S. 35–45.

[KiBa14] D. P. Kingma und J. Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], Dezember 2014.

[KTRS05] N. Kitaoka, M. Takeuchi, N. R und N. S. Response Timing Detection
Using Prosodic and Linguistic Information for Human-Friendly Spoken Dialog
Systems. Transactions of the Japanese Society for Artificial Intelligence 20(3),
2005, S. 220–228.

[LaHE08] K. Laskowski, M. Heldner und J. Edlund. The Fundamental Frequency
Variation Spectrum. Proceedings of FONETIK 2008, 2008, S. 29–32.

[LLWG+00] L. Levin, A. Lavie, M. Woszczyna, D. Gates, M. Gavaldá, D. Koll und
A. Waibel. The Janus-III Translation System: Speech-to-Speech Translation
in Multiple Domains. Machine Translation 15(1), 2000, S. 3–25.

[MCCD13] T. Mikolov, K. Chen, G. Corrado und J. Dean. Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs], Januar 2013.

[MLBS+15] M. Mueller, D. Leuschner, L. Briem, M. Schmidt, K. Kilgour, S. Stueker und
A. Waibel. Using Neural Networks for Data-Driven Backchannel Prediction:
A Survey on Input Features and Training Techniques. In Human-Computer
Interaction: Interaction Technologies. Springer, Cham, August 2015, S. 329–
340.

https://catalog.ldc.upenn.edu/ldc97s62
https://catalog.ldc.upenn.edu/ldc97s62
https://www.isip.piconepress.com/projects/switchboard/
https://www.isip.piconepress.com/projects/switchboard/
http://compprag.christopherpotts.net/swda.html

Bibliography 43

[ModG08] L.-P. Morency, I. de Kok und J. Gratch. Predicting Listener Backchannels: A
Probabilistic Multimodal Approach. In Intelligent Virtual Agents. Springer,
Berlin, Heidelberg, September 2008, S. 176–190.

[ModG10] L.-P. Morency, I. de Kok und J. Gratch. A Probabilistic Multimodal Approach
for Predicting Listener Backchannels. Autonomous Agents and Multi-Agent
Systems 20(1), 2010, S. 70–84.

[NiKN07] R. Nishimura, N. Kitaoka und S. Nakagawa. A Spoken Dialog System for
Chat-Like Conversations Considering Response Timing. In Text, Speech and
Dialogue. Springer, Berlin, Heidelberg, September 2007, S. 599–606.

[NoDe98] H. Noguchi und Y. Den. Prosody-Based Detection of the Context of Backchan-
nel Responses. In ICSLP, 1998.

[OKKI96] Y. Okato, K. Kato, M. Kamamoto und S. Itahashi. Insertion of Interjectory
Response Based on Prosodic Information. In , Third IEEE Workshop on
Interactive Voice Technology for Telecommunications Applications, 1996.
Proceedings, September 1996, S. 85–88.

[OzMo10] D. Ozkan und L.-P. Morency. Concensus of Self-Features for Nonverbal
Behavior Analysis. In Human Behavior Understanding. Springer, Berlin,
Heidelberg, August 2010, S. 75–86.

[OzMo11] D. Ozkan und L.-P. Morency. Modeling Wisdom of Crowds Using Latent
Mixture of Discriminative Experts. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Tech-
nologies: Short Papers-Volume 2. Association for Computational Linguistics,
2011, S. 335–340.

[OzMo13] D. Ozkan und L. P. Morency. Latent Mixture of Discriminative Experts.
IEEE Transactions on Multimedia 15(2), Februar 2013, S. 326–338.

[OzSM10] D. Ozkan, K. Sagae und L.-P. Morency. Latent Mixture of Discriminative
Experts for Multimodal Prediction Modeling. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics, COLING ’10, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics, S. 860–868.

[PTRH10] R. Poppe, K. P. Truong, D. Reidsma und D. Heylen. Backchannel Strategies for
Artificial Listeners. In Intelligent Virtual Agents. Springer, Berlin, Heidelberg,
September 2010, S. 146–158.

[Ries99] K. Ries. HMM and Neural Network Based Speech Act Detection. In 1999
IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings. ICASSP99 (Cat. No.99CH36258), Band 1, 1999, S. 497–500
vol.1.

[RuHW86] D. E. Rumelhart, G. E. Hinton und R. J. Williams. Learning Representations
by Back-Propagating Errors. Nature 323(6088), Oktober 1986, S. 533–536.

[TaKN04] M. Takeuchi, N. Kitaoka und S. Nakagawa. Timing Detection for Realtime
Dialog Systems Using Prosodic and Linguistic Information. In Speech Prosody
2004, International Conference, 2004.

[Thea16] Theano Development Team. Theano: A Python Framework for Fast Com-
putation of Mathematical Expressions. arXiv e-prints Band abs/1605.02688,
Mai 2016.

44 Bibliography

[TrPH10] K. P. Truong, R. W. Poppe und D. K. J. Heylen. A Rule-Based Backchannel
Prediction Model Using Pitch and Pause Information. In Proceedings of
Interspeech 2010, 2010.

[Ward96] N. Ward. Using Prosodic Clues to Decide When to Produce Back-Channel
Utterances. In Spoken Language, 1996. ICSLP 96. Proceedings., Fourth
International Conference On, Band 3. IEEE, 1996, S. 1728–1731.

[WaTs00] N. Ward und W. Tsukahara. Prosodic Features Which Cue Back-Channel
Responses in English and Japanese. Journal of pragmatics 32(8), 2000,
S. 1177–1207.

[WaYu89] T. Watanabe und N. Yuuki. A Voice Reaction System with a Visualized
Response Equivalent to Nodding. In Proceedings of the Third International
Conference on Human-Computer Interaction, Vol.1 on Work with Computers:
Organizational, Management, Stress and Health Aspects, New York, NY, USA,
1989. Elsevier Science Inc., S. 396–403.

[WHHS+89] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano und K. J. Lang. Phoneme
Recognition Using Time-Delay Neural Networks. IEEE Transactions on
Acoustics, Speech, and Signal Processing 37(3), 1989, S. 328–339.

	Contents
	1 Introduction
	2 Related Work
	3 Backchannel Prediction
	3.1 BC Utterance Selection
	3.2 Feature Selection
	3.3 Training Area Selection
	3.3.1 Binary Training Areas
	3.3.2 Gaussian Training Area

	3.4 Neural Network Design and Training
	3.5 Postprocessing
	3.5.1 Low-pass Filtering
	3.5.2 Thresholding and Triggering

	3.6 Evaluation
	3.6.1 Objective Evaluation
	3.6.2 Subjective Evaluation

	4 Experimental Setup
	4.1 Dataset
	4.2 Extraction
	4.2.1 Backchannel Utterance Selection
	4.2.2 Feature Extraction
	4.2.2.1 Acoustic Features
	4.2.2.2 Linguistic Features
	4.2.2.3 Context and Stride

	4.3 Training
	4.3.1 Recurrent Neural Networks
	4.3.2 Multicategorical Data

	4.4 Evaluation

	5 Results
	5.1 Subjective Results
	5.2 Objective Results
	5.2.1 Binary Output
	5.2.2 Multicategorical Output

	6 Implementation
	6.1 Web Visualizer
	6.1.1 Description
	6.1.2 Implementation Details

	6.2 Extraction, Learning and Evaluation
	6.2.1 Evaluation
	6.2.2 Automatic Caching

	6.3 Survey software
	6.4 Evaluation Visualizer

	7 Conclusion and Future Work
	Bibliography

