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Abstract

Gesture Recognition is becoming more and mora important in multi-modal user-
interfaces. This work gives an overview of existing gesture recognition systems.
It explains how these systems work and which techniques they use.

Based on experience with former systems, this work describes a new approach
for recognizing pen-based gestures. This was done with a sample set of
approximately 50 military symbols, drawn by 22 test subjects. The new system
(GRec) is an on-line recognition system that uses a template-matching technique
as its basic algorithm.

Results have shown GRec to be flexible with respect to the addition of new
gestures and to possess high recognition accuracy. Furthermore it can be
integrated into existing applications very easily.
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Pen-based Gesture Recognition

1. Introduction

"A primary goal of gesture recognition research is to create a system which can
identify specific human gestures and use them to convey information or for
device control. ,,1

This sounds quite good, but how is a gesture actually defined. The Random
House Dictionary", e.g., defines a gesture as "the movement of the body, head,
arms, hands or face that is expressive of an idea, opinion, emotion, etc."

This is a rather general definition. And, in fact, it is even not easy for humans to
interpret gestures correctly, since they are often ambiguous.

Gestures are used for a wide range of activities. They are used, for example, to
point at persons/objects or to indicate a certain direction. The main application,
however, is the emphasis of speech and it is well known that bcdy language is an
important part in the communication between humans.

For applications in computer science this general idea of gestures is yet too
complicated. It is therefore necessary to restrict to a certain set of gestures,
which are non-ambiguous in their application domain.

1.1. Motivation

Even though the computer technology has evolved rapidly in the last few
decades the way humans interact with it has basically remained the same. The
user has to type specific commands via the keybcard or use the mouse.

This involves difficulties particularly for novice users. A new, more intuitive way
would be desirable. Users should not only be able to operate computers without

1 A Brief Overview of Gesture Recognition
~http://'MVW.dai.ed.ac.ukJCVOnlineJLOCAL_COPIESlCOHEN/gesture_overview.html)
Jess Stein, editor. The Random House Dictionary of the English Language. Random House,
Cambridge, Mass., , 969
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a wide knowledge of these systems, but there should also be an effective and
fast way to provide a computer with data of what the human operator would like
to do.

Besides speech and handwriting recognition, gesture recognition plays an
impcrtant role in achieving this new level of ease of use.

Imagine for example a word-processing program, which can be operated by
speech, handwriting and gestures. If you want to write something, you can just
use a stylus and write naturally or use speech. It you did something wrong, you
can just draw an X gesture to cancel the operation.

In recent years there has already been great effort in the field of speech and
handwriting recognition and a number of commercial and non-commercial
software products have been released that are quite successful in respect to
recognition accuracy. Gesture recognition, however, has so far been relatively
neglected. Nevertheless it promises great new ways of interacting with
computers in a variety of application domains.

1.2. SomeExisting systems

1.2.1. Gregory B. Newby (Ph.D. Thesis)'

This system was concerned with recognition of the American Sign Language
(ASL). It used data gloves as input devices.

Newby discussed two different approaches.

In one approach he tried to use a tixed-parameter model. That means that each
gesture is recognized by a specific number of parameters, e.g. how many fingers
are used.
The problem with fixed-parameter approaches is that you can use only a limited
number of gestures. The main advantage, however, is the conceptual and
computational simplicity.

In the second he tried a somewhat more sophisticated approach using statistical
similarity. He measured the similarity by the "sum of squares" method. Even
though this is a simple statistical function it involves great computational
complexity. But this approach can distinguish a large number of different
gestures.

3 Gesture Recognition using statistical similarity. Center On Disabilities Virtual Reality Conference
1993
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1.2.2. D.H. Rubine (Ph.D. Thesis)'

In his PhD thesis Rubine deals with both single path gestures drawn with a
mouse or stylus and multi-path gestures consisting of the simultaneous paths of
multiple fingers (made with input devices such as a data glove).

The single-path gestures are used to represent word processing commands. His
system requires the computation of 13 different features, e.g. distance between
first and last peint, total gesture length or maximum writing speed. These
features are used to train the parameters of a linear classifier function which is
used to discriminate between gestures.

The multi-path approach is somewhat more sophisticated. He uses algorithms to
sort the different paths and cluster them according to their similarity. Finally a
decision tree is used to classify the gestures.

1.2.3. JOVE Project'

The JOVE project was created to recognize infantry command signals. It was
based on hand and arm pesitions of the standard army set gestures. There were
both static and dynamic gestures.
The data was obtained from sensors on a persons wrists and shoulders.

The first method of recognition used was a template matching approach. Thereby
regions of space are defined in which sensors would be pesitioned for certain
gestures at a certain time.

Another method was trajectory matching. The idea is to view dynamic gestures
as space curves. These space curves can be defined by their start peint,
curvature, torsion etc.

1.2.4. ALIVE 116

ALIVE identified full body gestures through basic image processing techniques. It
was used to control virtual creatures in a virtuai environment. The system
distinguishes not only command types but also directions. For instance, the
direction of a pointing arm is translated into a virtual creature's travel direction.
The system also uses background information of the virtual environment to
interpret commands.

-4 The Automatic Recognition of Gestures. Dean Harris Rubina PhD Thesis
5 http://ww.v.hitl.washington.edu/scivw/JOVEI Aniclesldsgbjsbb. txt
6 A brief overview of Gesture Aecognition
(http://www.dai.ed.ac.u.ttJCVonlineJLOCAL_COPIES/COHENlgesture_overview.html)

http://ww.v.hitl.washington.edu/scivw/JOVEI
http://www.dai.ed.ac.u.ttJCVonlineJLOCAL_COPIES/COHENlgesture_overview.html
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2. Recognizer technologies

2.1. Problems

As we have seen, gesture recognition has a wide-range of applications. These
applications still offer a large number of problems, which have to be solved.

First of all gestures normally don't have a well-defined semantics. Therefore it is
necessary to define a certain meaning to a subset of gestures, which should be
used for interacting with a computer system.

Defining gestures poses some difficulties. On the one hand you would like to
define gestures, which are easily distinguishable by a classifying algorithm. On
the other hand the gestures should be intuitive and easy to perform.

To achieve this compromise Palm Corp., for example, introduced a graffiti style
handwriting in their handheld devices, which was easy recognizable for the
software, but still relatively intuitive and simple to learn for a human operator.

Another big issue in the topic of gesture recognition is the question of
representation. Often it is not obvious how to represent a gesture or a sequence
of gestures in the computer. Is it reasonable to represent a gesture by a high-
dimensional feature vector and which features should be used? Or is it cleverer
just to store the trajectory of the gesture as a template?

Since recognition should work for every user, gesture recognition systems have
to be very flexible. Either the used classifier can deal with exceptions and
particular variations or the algorithm is designed to learn these exceptions from a
training set. That is the reason why learning algorithms are very popular in all
recognition problems.

2.2. Input devices

Input devices provide the interface between humans and the computer. In order
to adapt to application specific necessities numerous input devices are used.

Vision-based systems provide the most general approach. But they also involve
many difficulties. Arms, hands and the body have to be tracked and separated
from the background. Then the trajectory of the different moving body parts has
to be calculated from the recorded images.
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Data-gloves are very useful devices for gesture recognition. They allow a wide-
range of motions and still provide an easy way to transfer the information about
the gestures to the computer system.

Pen-based gesture recognition systems are mainly based on touch screens or
graphic tablets. They could offer an easy and comprehensive way of interacting
with already existing applications. For example, the gestures could be used for
editing in a word-processing application.

2.3. Preprocessing

Pre-processing of the data provided by the input devices is crucial for decent
recognition results.

On the one hand the data is mostly noisy. This may be caused by the input
device itself or simply because of the fact that human movement is not uniform
especially at the beginning and at the end of the gesture.

On the other hand pre-processing prepares the data for the classifier that is
used. This can be done by simple conversion of the data format or by applying
sophisticated algorithms.

For the following it is assumed that gesture trajectories are already ex1racted
from the data of the input devices. We therefore do not focus here on image
processing techniques for vision-based solutions.

2.3.1. Normalization

Having the raw coordinates of the gesture trajectories, there are various
techniques that can be applied to improve the classifying accuracy.

Particularly important for input devices with slow sampling rates is smoothing
(sometimes called noise reduction). Smoothing takes the coordinates of the input
data and adds points, which seem to belon? to the trajectory. This can be
accomplished, for example, with spline filtering.

Another technique, which is necessary in combination with some classifiers, is
rescaling. In doing this, the dimensions of the trajectory are simply stretched by a
certain factor. Most of the times this is used in combination with an orientation
normalization, which tries to determine the actual orientation of the gesture and
then rotates the coordinates by an appropriate angle.

7 ~Comutationof Smoothing and Interpolating Natural Splines via Local Bases", T.Lyche and L.L.
Schumaker
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Since many classifiers require a specific number of data points, and because of
computation complexity issues, trajectories are offen resampled. Which means
that their coordinates are equally distributed along the trajectory (this is called a
equal-are-length resampling procedure). This can be achieved by interpolation. In
most cases simple linear interpolation is applied, but in some areas different
types of interpolation offer beller results. These different types offer additional
smoothing features.

Figure 2.1 • Bezier Interpolation'

The reader should be aware that the goal of normalization is not to produce a
perfect gesture, which isn't possible, but to process the gesture in a way, that
makes the classifier achieve high recognition accuracies.

2.3.2. Feature Extraction

Feature extraction is one of the basic parts in recognition research. Determining
which features to use and to compute them is strongly correlated with the
recognition accuracy. Of course, the importance of the different features may
differ from application to application.

However, some basic features are used in almost every gesture recognition
system.

First of all, there are the features that are associated with the angles of the
trajectory. Out of these angles you can calculate the curvature in each point and
therefore determine whether a coordinate is an important feature point like a
cusp (point of sharp directional change) or not. Other important feature points are
turning points. These are the points where angle between the tangent and the
axis turn from positive to negative or vice-versa.

Crucial feature points are also loops and crossings. These are rather writer-
independent and invariant of the sampling rate.

B "On-line Erkennung kursiver Handschrift bel grossen Vokabularen", p75 PhD.Thesis Stefan
Manke
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Further geometric features are, for example. the maximum/minimum coordinate,
initial direction etc.

Writing speed is a non-geometric feature, but it is a good indicator, since a user
usually moves rather slowly in important feature points. That is why it can be
used to confirm the above-detected geometric features.

2.4. Recognition

2.4.1. HMM'

Hidden Markov Models are widely used in speech recognition, but have also
been applied in handwriting recognition systems. Their advantage is that they are
very well able to process sequential data that is variable in time.

A Markov Models consists of a set of states:

{5,.5,,. ..,5,, I

And transition probabilities between them:

il,) = P(q,+l =5, Iq, =5)

Furthermore there are probabilities for the initial distribution:

If, = /'[q, = 5,J

As you can see from the definition, markov models assume that the probability of
a state only depends on the preceding state. This is a strong assumption and the
reader should be aware that this restricts the generality of markov models.

An example of a markov model is for example the weather as displayed in Figure
2.2 - Example of a Markov Model

II A tutorial on hidden-Markov models and selected applications in speech recognition, L.R.
Rabinier 1989
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Figure 2.2 - Example of a Markov Model

Hidden Markov Models differ from normal markov models in the way that the
states are not directly observable. Instead of that you have a number of
observations that give you some Information about a system:

{O,.O, •.... OM}

These observations give you an Indication In what state the underlying markov
model might be. The Indication Is represented by observation probabilities:

b/k) = P(v, = 0t Iql =5)

I.e. the probability of the fact that you observe an observation 0, while the
system is in state 5j.

Let's keep up the link to the weather example. Imagine you're silting in an office
without a window. As we have seen the weather conditions represent the states.
but what would the observations be? An observation could be the way people
dress, for example. You know when somebody wears an umbrella the probability
of rainy weather is quite high, but your not sure it it's really true.

How can apply the notion of hidden markov models to gesture recognition. In
fact, the principal is quite simple. Known gestures represent the states of the
markov model and the gestures actually executed represent the observations.
There are plenty of ways how to associate the gestures with states and this
association is the most difficult part in this approach.
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Once you have decided which states you use and how the gestures represent
them, the only thing you have to do Is to assign a probability of how likely it is that
the user wants to do gesture X, when he moves in a certain manner.

But how do I assign these probabilities?
Fortunately there's a learning algorithm (EM) that let's you train the parameters
of the hidden markov model. Therefore you simply have to initialize the model
and let the algorithm do the work for you.

The algorithm consists of two steps.
The calculation of the expectation (E-step):

• Compute P(q, = S, Ia,A) for given A = (Jr.a,b)
And the computation of a new A out of these expectations (Maximization-step).

It can be proven, that the EM algorithm converges, but the reader should be
aware of the fact, that the EM algorithm not necessarily converges to a global
optimum, but only to a local one. The initial probabilities should therefore be set
wisely.

2.4.2. Neural Networks

Neural Networks have been applied to almost every recognition probiem. And, in
fact, they are doing very well on many problem classes.

Neural Networks consists of a number of interconnected nodes traditionally
referred to as neurons. A neuron has n input signals (x" ... , Xn) and one output
signal (see Figure 2.3. neuron) and actually computes a mathematical function f.
Usually a sigmoid function for f is used, that means f is non-negative, monotone
and asymptotically bounded (for x --> =).
The output y of the neuron is therefore:

v=j('wx)- L. ,

The parameters w, define the neurons behavior.

Figure 2.3 - neuron
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A network consisting of only one layer of these neurons is called a perceptron
(see Figure 2.4 - Perceptron). Perceptrons are able to compute a large number
of mathematical functions, but unfortunately they are not able to compute any
function, that is not linear separable, for example the XOR.function.

Figure 2.4 - Perceptron

More complex functions are representable by multi-layer perceptrons, which
consist of an input layer, one or more hidden layers and a output layer (see
Figure 2.5 - Multi-Layer Perceptron). The output of a neuron in layer j is:

v =}"("", v)-} L I'"
where y, is the output of the neurons of the preceding layer.

\" \"~ I _ 2

Figure 2.5 - Multi-Layer Perceptron

How can I use this technique for gesture recognition?
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In a certain sense gesture recognition is also a mathematical function. You've got
a specific input (for example the features of the gestures) and an output that
determines which gesture has been recognized.

A multi-layer perceptron could therefore represent this function by having an
output neuron for each gesture. The output neuron i would ideally be 1, if the
gesture belongs to class i and 0 if the gesture does not belong to class i.

The actual problem now is, however, how to determine the weights Wij of the
edges, which connect the neurons and to determine which network architecture
should be used (number of hidden-layers, number of neurons, connection rate
etc.)

The question, which network architecture, is best, is still an unsolved problem,
but there's an easy algorithm (backpropagation technique) that computes the
optimal weights of the edges. It uses a gradient decent method to adjust the
values gradually.

Consider the multi-layer perceptron produces the output y" ... , Yo.The actual
output however should be dr, ... , do.You can now assign an error function E that
computes the difference between 2 outputs (an often used error function is the
mean-squared-error method). The overall error is therefore err:

err = LJ(d"y,)

Since d, and Yi are functions of the weights Wij. The error function err is also a
function of Wij. To determine the new values for w,',we're computing the gradient
of the error function and alter the each w,' by a fraction of the gradient in the
corresponding direction:

d
"'\l" = -li-E(IV)
" dwij

with W weight matrix and Ii E (0,1).

Like the EM algorithm Gradient decent doesn't converge necessarily to a global
minimum, but may get stuck in a local minimum.

2.4.3. Template Matching

The principle of the template matching approach is easy. Just store an example
of each gesture in the system and compare the executed gestures with them.
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Obviously this involves the question of representation, since the templates can
be stored in a variety of manners. Depending on this representation the
comparison algorithm should be chosen.

A commonly used algorithm is DTW (Dynamic Time Warping), which uses
dynamic programming to find the best way to match the gestures.

The algorithm tries to associate the characteristics of the gesture with a template.
If there's no corresponding characteristic the algorithm omits it and adds a
certain penalty.

For further information you can see an application of the algorithm in chapter
3.6.3.

2.5. Conclusion

As we have seen gesture recognition has a wide range of application and a
general technique that is applicable for all gesture recognition problems is not
feasible, since gesture recognition systems have to meet application specific
necessities.

Learning algorithms are particularly useful, when it's even for humans not evident
how to distinguish the gestures. The algorithm can then find its way of classifying
them. This is gelling more and more important the bigger the set of gestures
gets, since normal algorithms might have to be adjusted to many exceptions.

The question however is which technique is appropriate for the application, which
technique promises to have the best recognition accuracy and which technique is
the easiest to implement.
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3. Pen-based gesture recognition (GRec)

3.1. Pen-based gesture recognition and Hand-writing

Pen-basec gesture recognition has many similarities with handwriting
recognition.

Both recognition tasks try to classify a set of symbols. In handwriting recognition
this is the alphabet, whereas it is the gesture set in gesture recognition.

You can distinguish between online and offline recognition. Offline recognition is
based on a scanned image, whereas online recognition uses the pen-trajectory
data, which is recorded during the writing/drawing process.

Figure 3.1 • online vs. offline recognition

In both cases you have similar pre-processing problems. The symbols have to be
resampled. rescaled, rotated and the features have to be extracted.

Another issue is the so-called late strokes. These are strokes that are drawn
much later than they actually should be. In handwriting recognition you have this
problem, for example, in letters like t, where many writers draw the last stroke
only at the end of a whole word. In gesture recognition this problem is even
worse, because the gestures are often quite complicated and the strokes can be
drawn in every possible order.

3.2. Motivation

The GRec gesture recognition system is part of the CPoF project (Command
Post of the Future). The CPoF system is a program that allows military members
to display and edit military units and tactical information on a map (see Figure 3.2
- CPoF Map).
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Figure 3.2 - CPoF Map

So far the system was mainly operated by speech commands. GRec's objecfive
was now to integrate gesture recognition in the exisfing system. The recognizer
should be able to classify a set of about 40 military symbols including some
gestures for basic editing.

The operator should be able to draw the symbols directiy into the map. After the
recognition the corresponding image should be displayed. Furthermore it should
be able to use the basic editing symbols for selecting and moving the units.

Most of the military symbols are modular. That means they consist of a basic
symbol and some modifiers, which specify the exact properties of the unit (e.g.
airborne, armored or motorized)

Figure 3.3 - Symbols

Therefore a gesture recognition system should be very flexible in the respect of
adding and recognizing new symbols, since there are a variety of combinations
the modifiers can be used with.
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As the CPoF system is operated by a large number of people, the gesture
recognition system should be writer-independent. This involves that it should be
very flexible in respect of variations of how a gesture can be drawn.

3.3. GRecOverview

The GRec system tries to meet the requirements of an abcve mentioned gesture
recognition system. It can deal with a large gesture set and new gestures can be
added very easily.

GRec is based on an online template-matching algorithm and, as you will see,
implemented a couple of techniques to prepare the drawn gesture for the
classifying algorithm.

As in most recognition systems the GRec recognition process can be divided in 3
basic parts: Input, Preprocessing, Recognition.

Input

.-
Pl'eprocess

Figure 3.4 • Overview

Recognize

Preprocessing consists of further steps. Firstly a merge routine tries to merge
strokes, which belong together. Secondiy a rescaling method resizes the strokes
to a specific value. The third step is just a resampling of the data points.

The recognition process is split into two parts. The stroke matching function looks
for corresponding strokes in the gesture and the template. To find the
corresponding strokes it uses the template matching method for calculating an
error value. This error value is accumulated for all corresponding stroke pairs and
finally forms the result of the recognition process.
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3.4. GRecInput

The input device for the system is a pen, which is used the same way as an
ordinary computer mouse.

Therefore the system gets both "pen uplpen down" events and the pen
coordinates at specific points in time. With each "pen down" event a new stroke
is added. A "pen up event aborts the drawing of the current stroke.

Consequently you get several strokes that consist of a number of 2-dimensional
points. These strokes are processed by the recognition system.

Figure 3.5 • Input of the system

3.5. GRecPreprocessing

Preprocessing is perhaps the most important part in gesture recognition. Even a
really good classifying algorithm has a bad performance when the data is not
correctly pre-processed.

In this particular case pre-processing involves a number of non-trivial problems.

Since the user should be allowed to draw a symbol the way he likes to draw, it is
difficult to determine which stroke is to form which part of the gesture. E.g. a
rectangle can be drawn with one stroke or with four strokes.

To make it easier for the recognizer a pre-processing function tries to merge
strokes, which seem to form a certain component of the symbol. Since incorrect
merging may result in a bad classification, the function computes various
merging pcssibilities, which are transmitted to the recognizing algorithm.
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3

---~--.----~
1

3

1
Figure 3.6 - Stroke merging possibilities

After merging the strokes some other pre-processing functions are applied to the
data.

Firstly all the strokes will be rescaled to a certain size. On the one hand this is
necessary because the drawn gesture will be matched with a template that has a
specific size. On the other hand it is necessary to get an error that is comparable
for all stroke sizes.
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Figure 3.7 - Rescaling

Secondly, the strokes are resampled. That means that the points, which were
sampled in equidistant time intervals during drawing, are distributed equally
along the trajectory of the stroke. On the one hand resampling makes - as
rescaling • the error more comparable, on the other hand it compensates the
difference in drawing speed. After resampling the Euclidean distance d between
any two consecutive points has the same value. This is particularly important
when different input devices should be used.

The algorithm performing the resampling uses simple linear interpolation. That
means that, if 2 points are two far away from each other additional points are
added on the interconnecting line. In the case of point 2 is too close to point 1,
point 2 is removed.

Figure 3.8 - Resampling

GRec has no smoothing feafure, since the sampling rate of the input device is
fairly high.
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3.6. Recognition

After carefully considering all techniques that are applied in gesture recognition, I
decided to use a template-matching approach as basic classifying algorithm, This
was because template matching promises a good accuracy even if features like
cusps are not easily extractable from the symbol and because it is very easy to
implement.

3.6.1. Representation

The templates that are used to match a drawn symbol are represented as a
compound of a number of basic components. E.g. an infantry symbol (see Figure
3.3 - Symbols) consists of a rectangle component and 2 lines. This is described
in a file called templa tes . txt.

Example of a file entry in templa tes. txt:

infantry rectangle line(35) line(325) EOF

The values in the brackets are the angles by which the components are rotated
and are relative to a horizontal line.

Figure 3.9 - Angles

The basic components itself are represented simply by the set of 2-dimensional
points they consist of (at the moment they are painted with a special symbol
editor and then stored in the GRec file format via serialization). To add a new
component you have to add its filename to components. txt.

Since symbols can be drawn in various ways and a template-matching algorithm
is sensitive for writing direction it is often necessary to draw a component in
different manners, rotate the component or invert the writing direction.

Example 1: a triangle may be painted starting from an arbitrary corner. Therefore
the component has to be rotated by 120 and 240 degrees in order to ensure
correct recognition.
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Figure 3.10 - rotating components

The rotation of a gesture requires a little bit of mathematics. Suppose the gesture
consists of the points (x"y,) ... (Xn, Yo) or in matrix form:

G = (x, x.)
)'1 ).'"

As we know a 2-dimensional rotation matrix looks like this:

(
cosa

R=
sina

The transformed gesture is thus:

-Sina)
cosa

(
cosa

G'=RG= .
sma

- sinalx' x.)
cos a )'1 )'"

Example 2: For a rectangle simple rotation is not enough, even though a
rectangle is symmetric to both the x-axis and y-axis. Besides the rotation a
second rectangle component is needed.

Style 1

Figure 3.11 - different components

The different styles have to be added to the component file (using the GRec
symbol editor). Each stroke in the file represents a different way to draw the
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gesture. The rotation, however, is done dynamically during loading the templates
from the filesystem.

Example of an entry in components.txt:

triangle 0:120 0:240

The vaiues following the component name mean that stroke 0 should be added
to the template rotated by 120 and 240 degrees (as you saw in Figure 3.10 -
rotating components)

The loading of the templates and basic components is done during initialization
of the GRec application. That is why GRec has to be restarted after modifying,
adding or removing a template or component.

3.6.2. Stroke-Matching

The first step in the recognition process is stroke matching. The system tries to
assign each stroke in the drawn symbol to a corresponding stroke in the
template. The error value that is determined during the comparison of two
strokes is calculated by a dynamic programming technique described in chapter
3.6.3.

Example:

Total Distance: 13830
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Total Distance: 8616

Total Distance: 1944
Figure 3.12 - assign strokes

The stroke-matching algorithm calculates the distance (error value) between
each pair of strokes, chooses the pair with the minimum distance and removes
them from the list of strokes.

So far the recognition process is aborted when the number of strokes in the
template is not equal to the number in the drawn symbol.

For n strokes the computing complexity is O(n') (i> = "'; " ).
,~I -

Since this has to be done for each of the m templates, the overall complexity for
this step is O(m'n').

3.6.3. Template-Matching"

10 MDynamic Programming Algorithm Optimization for Spoken Word Recognition", Hiroaki Sakoe
and Seibi Chiba
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As you have seen above the actual template-matching algorithm is used to
calculate the distance between 2 strokes.

It's a dynamic programming algorithm, which finds the best way to match the
ditterent points of the 2 strokes (referred to as strokel and stroke2).

This works as follows:

• let pl, be the i.th point of strokel and p2i the j.th point of stroke2
• Move stroke2 on top of stroke 1. So that pl, and p2, are identical
• label the i-th row of a matrix with pl, and j-th the column of the matrix with

p2,
• Let p be the current position in the matrix
• Set the position p to (0,0) (the upper-left corner)
• Assign ° to the most upper-left element in the matrix (the ° represents the
distance of pl, and p2, which is 0, since we moved stroke2 before)

• For each iteration calculate the Euclidian distances between ph.1 and p21t
p1", and p2" •. p1, and p2", (where (k,l) is the current position p in the
matrix)

• Choose the shortest distance and move the position pointer to the new
cell

You may notice that this algorithm terminates after a maximum of n+m iterations
(where n is the number of points in strokel and m the number of points in
stroke2), since during each iteration the algorithm increases either the row or the
column index (or both).

The operation of increasing only the rowlcolumn index corresponds to leaving out
a dispensable point in one of the strokes. The increase of both indexes, however,
is similar to match the next 2 points together.

In the example below (see Figure 3.13 - template-matching example) the two
strokes match pretty well. But stroke 2 has one point more than stroke 1.
Therefore the algorithm finds the best point to leave out. As you can see in the
matrix of Figure 3.14, this is point 4 of stroke 2.
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Figure 3.13 - template-matching example

Figure 3.14. matrix

3.7. Problems of the TemplateMatchlngapproach

Even though template matching oHers an easy and appropriate technique for
gesture recognition, it has several drawbacks.

Firstly, the algorithm is sensitive to the writing direction, which makes it
necessary to perform a variety of rotation and inversion operations. This may
result in higher computational complexity compared to other techniques.

For the basic symbols used so far, it may have been easier to use oH-line instead
of on-line recognition. For further extensions, however ,on-line recognition will be
probably better, since if promises higher recognition rates.

Secondly, since template matching in its basic form does not suppert some kind
of feature extraction, the technique is fragile to mixing up symbols that, for a
human, seem pretty easy to distinguish.
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Templ."lle ::

Figure 3.15 - mixing up gestures

AS far as the development of the GRec system has evolved, no information about
the orientation of the various components and modifiers are stored. This
sometimes leads to misinterpretation of the symbol.
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4. Implementation

GRec is developed using Microsoft Visual C++ 6.0 and uses numerous classes
of the Microsoft Foundation Classes.

4.1.1. GRec's own user interface

The GRec system is an MDI (Multiple Document Interface) application. That
means it is possible to load multiple documents into the main window.

A document represents a single open file. The document itself is not visible, but a
specific view displays the document's data in a sub-window. This is
accomplished by implementing two different classes at the code-level: a
document class for storing the data and one or many view class/classes for
displaying and editing a certain portion of the document's data.

In the GRec system itself there's only one view implemented. In the GRec data-
collection tool, however, there is a further view that does not allow to edit the
document's data.

The MFC class hierarchy contains classes - CDocument and CView - that make
this structure easy to create, since they already implement the basic functionality.

The goal of the document class is to completely encapsulate the data for one
open document. It holds the data for the document in a data structure in memory
and knows how to load the data from the disk and save it to the disk. The view
class uses and manipulates the data in the document based on user events. The
view class is responsible for letting the user view the contents of the document.
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Figure 4.1 - documenUview paradigm

The user-interface itself is pretty easy. You can create a new document via the
toolbar or the menu and then draw a symbol into the opened sub-window.

Besides the simple recognition button that classifies the symbol, you can choose
to perform some single steps of the recognition process (merging, rescaling,
resampling, rotating).
Furthermore it is possible to scan all recorded data in the recorded-directory.
This is very useful to test the recognition accuracy of the system.

The application also offers the functionality for opening existing documents or
storing documents to files.
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4.1.2. GRec as part of the CPoF system

The GRec system communicates with the CPoF system via a socket (CSocket
class of the MFC). GRec is the server that waits on a specific port the data. The
CPoF system operates as the client and records the drawn strokes. It converts
them to a string of coordinates and then transmitted them over the socket to the
GRec server. GRec converts the data into its format and tries to recognize the
gesture. The result of the recognition is sent back to the CPoF system.

In order to separate the functionality - GRec has as server and as recognizer -
the system is split up into two threads. A server thread, which takes care of the
communication and a recognizer thread. which recognizes the gestures.

4,1,3. Class hierarchy and interface definition
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GRec consists of 5 modules: application module, stroke module, display module,
recognizing module and template module. These modules represent the basic
function units of the system.

4.1.3.1. Application module

The application module takes care of the initialization, the user-interface and the
event handling. Its code is mainly produced by the Appwizard of Microsoft Visual
C++ and I will therefore not go into details.

4.1.3.2. Stroke module

The stroke module handles everything concerning storing and editing of strokes.
Therefore it implements the basic pre-processing methods like rescaling,
resampling, rotating etc. It consists of 3 classes.

The CStrake class represents an actual stroke and uses CList-ternplate of the
MFC to store the points that form the stroke. Since encapsulation is one of the
main rules in object oriented programming this internal representation is only for
private access. The class offers a variety of different public methods to get
information about a stroke and edit it.

The CStrokes class is a container for all strokes that form a specific symbol.
Similar to the CStroke class CStrokes holds a list of strokes using the CList-
template. CStrokes implements all the methods, which can be applied to a set of
strokes.

The CGestureMDIDoc class is basically used for storing/loading documents and
the interaction with the application module. It implements the serializable-method
for serialization.

4.1.3.3. Displaying Module

As the name suggests, this module takes care of displaying the data stored in the
stroke module (more specifically in the document class).

The CPaint class is an abstract class, which implements the actual functionality
of this module. On the one hand the class has methods for drawing the strokes
on the screen. On the other hand it also provides also event-handling methods.
These event-handling methods are used to add new points to a stroke or add a
new stroke to the active document.
Since this class is abstract there is no possibility to create an instance of the
class.
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The CGestureMDIView class inherits from the CPaint class. Additional
functionality is the interaction with the application module. This is e.g. necessary
to retrieve the device context for drawing on the screen.

4.1.3.4. Recognizing module

The recognizing module is the core of the system. Principally it consists of only 2
classes.

The CStrokeMatcher class fetches the templates and tries to match the different
strokes to their corresponding counterparts. For the assignment of the strokes it
uses the CTemplateMatcher class.

The CTemplateMatcher class calculates the distance between two strokes. This
is accomplished using the dynamic time warping algorithm described in chapter
3.6.3.

4.1.3.5. Template module

The template module is responsible for loading and storing the templates.

The CTemplateContainer class provides methods to load the components and
template descriptions from the file system. The components are loaded via
serialization. The templates itself however are described in a text file. which is
loaded and parsed.

The CTemplate class represents an actual gesture template and stores the list of
components of which it consists.

4.2. Conclusion

GRec's modules offer a good structuring of the system. They help to encapsulate
the different parts and therefore make it easy to change the implementation of
specific modules.

In future versions of the system. there will also be a separation between the user-
interface and the actual recognition engine. This wiil enable it to integrate gesture
recognition into other existing applications very easiiy
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5. Evaluation

5.1. Data-collection

In order to get some data for testing and modifying the system, we had about 20
people, who volunteered to draw the symbols. For the recording we used a
8martBoard where the volunleers could draw with normal pen. However, some
people had problems in pressing the pen strong enough on the board, which led
in some cases to many dropouts.

The volunteers had never seen the symbols before. This resulted sometimes in
confusion of how to draw the symbols. As a consequence some symbols where
drawn in a really chaotic way.

There are two data sets. One is based on a 29 gesture alphabet, the other on a
41 symbol alphabet. The first data set is a little bit older and since then templates
have changed a little bit.

5.2. Performance

As you can see in the diagram below, the average recognition accuracy of the 29
gestures data set is 81% (column 15). The accuracies vary from 63% to 93%. An
analysis of the wrongly recognized symbols has shown that most failures come
either from drop outs of the smart board or ways of drawing gestures that are not
covered by templates. Adding more templates should therefore increase the
accuracy by some percent, but it may also lead to mixing up gestures more
frequently.

The data set with 41 gestures had an accuracy of 83%, which was quite
surprising for me, since I expected an increase of the error rate because of
possible mix-ups. One of the reasons might be that I told the test persons to pay
attention to 8martBoard dropouts.
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5.3. Conclusion

For practical use the recognition performance of the system is quite acceptable.
Particularly - as we have seen from the data-collection - if the gestures are drawn
in a simple way. That means. for example. if the system does not get confused
by lines that are drawn twice or just by a large number of strokes.
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6. Summary

The whole GRec system works fairty well. It is able to recognize a large number
of gestures and the recognition accuracy is quite stable even if new gestures are
added.

We also have seen, that it is very simple to add new gestures. Most of the times
it is enough just to add an entry into a text file and restart the program. You don't
have to run a training algorithm, as it is common when learning algorithms are
used.

Even though there are still some problems, the decision to use a template-
matching approach was rather successtul and there is still enough potential for
further improvements.
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7. Future Perspectives

As you have seen GRec works pretty well so far. But there's still a lot of work that
can be done,

The first thing that should be implemented is a feature extraction, Some features,
like cusp detection etc, are already implemented (CFeature class), but they are
not taken into account by the recognizer so far. Feature extraction could boost
the recognition accuracy considerably, since it would add a lot of new
information, which could be used in addition to the template matching result. In
this context it might be useful to use the convex hull for determining specitic
geometric features,

Another important issue would be to include some kind of orientation feature in
the templates, That means a feature that indicates in which position a stroke
resides in comparison to others. This would be especially useful to distinguish
small modifiers, which are often drawn frowsy and therefore could be identified
by their orientation.

To try different classifiers like neuronal networks or HMMs for the recognition
would also be very interesting. Even though I do not expect much improvement
from that, since most of the recognition errors are caused by the preprocessing
routines. A way to tweak the existing template matching approach would be to try
different metrics for the penalties. I already tried using squared-euclidean
distance instead of Euclidean distance, but did not get better results. In addition
to altering the recognition technique there is a lot of optimization in both
performance and recognition issues that could be done.

In my opinion the biggest accuracy improvement could be achieved by working
on the stroke-merging algorithm. As already mentioned, most ot the errors are
caused by a wrongly merged strokes. Maybe a combination with an offline
recognition technique would help to significantly boost the recognition
performance.



8. Appendix

8.1. Appendix A (GestureSet)
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8.2. Appendix B (ClassHierarchy)
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