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Chapter 1

Introduction

In todays computer systems, the interaction between user and computer still
has to be done by keyboard and mouse. On the other hand humans use a
vast amount of different modalities when they communicate with each other.
For example, they speak, write, point and gesture to express their thoughts,
intentions or feelings. If the context does not impose any restriction, humans
usually select the modality which appears to be the most natural in a given
situation. To accommodate this fact, a lot of research has been conducted in the
past years to enable computers to offer different input modalities. Especially the
field of handwriting recognition has seen a lot of progress. As a matter of fact,
there are already a lot of commercial systems available, which offer handwriting
recognition. Applications range from mobile computer systems and special data
entry tasks to the reading of address labels and verification of signatures.

1.1 Handwriting Recognition

In general, handwriting recognition systems can be classified according to the
type of input data they are working on. So-called Optical Character Recogni-
tion Systems (OCR) deal with scanned text or words, whereas on-line Character
Recognition Systems (OCLR) work on a sequence of data points generated by
writing on a touch-screen or a graphic tablet. In the latter case, the dynamic
writing information is available which facilitates the recognition task. There-
fore, OCLR systems usually show a better performance than OCR systems (see
[YMS92] and [OWM92] for surveys of OCR and OCLR systems).

1.2 Run-On Recognition

For the task of human-computer interaction, OCLR systems are usually used.
In order to provide an easy-to-use natural interface, the handwriting recognizer
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should impose as few restrictions on the input style as possible. Idealistically, the
recognizer works in the background, constantly transforming the handwritten
input into characters, words or, in the case of gestures, meanings. This kind
of recognition, where the recognizer keeps up with the input of the user is
called Run-On Recognition. Unfortunately, a lot of recognizer do not support
it. Due to the way the preprocessing and the recognition component is designed,
input can only be processed in certain portions. This usually forces the user
to explicitly start the recognition by pushing a button, which makes the whole
interaction slow and unpleasant.

1.3 Objective of this work

In this report we will describe the work we have been doing within the NPen™*

handwriting recognition system. NPen®" is a writer independent large vocab-
ulary on-line handwriting recognition system for the recognition of single words,
written in any kind of writing style: printed (all characters separated from each
other), cursive (no lifting of the pen within the word) or any mixture of both. Tt
was mainly developed by Stefan Manke at the University of Karlsruhe, Germany
([MB94, MFW94, MFW95a, MFW95b, MFW96]). The purpose of our research
was to enable NPent™ to do run-on recognition. Because of the setup of the
recognition engine, all further considerations should be seen in the context of a
single word on-line handwriting recognition system for words written by using
Latin characters (unless otherwise stated).

The report is organized as follows. Chapter 2 describes the NPen™ system as
it was available when this work started. In chapter 3 the incremental prepro-
cessing and the changes to the recognition engine are presented. The results of
the evaluation of the whole system are given in chapter 4. Finally, chapter 5
summarizes these results and outlines future work.



Chapter 2

The NPen™ " system

In contrast to the architectural uniformity of todays state-of-the-art speech
recognition systems, one can find a large variety in the way current handwriting
recognizers are designed. They differ not only in the type of the recognition
engine (e.g. template matcher, neural net, HMM), but also in fundamental as-
pects of the preprocessing (e.g. segmentation of the input before recognition
or not). This diversity can even be found on the input level, as some systems
require the user to write in a certain style. Bearing this in mind, NPen™*
can be considered as being one of the most powerful handwriting recognizers
available. It accepts any kind of input style and recognizes words out of large
vocabularies (up to 100 000 words). The system is writer independent, so there
1s no need to retrain or adapt the system to a new user.

This chapter describes the NPen™™ system in all its components. After a brief
systems’ overview in 2.1, the preprocessing is described in detail in section 2.2.
The following sections deal with the recognition engine and the search compo-
nent (2.3).

2.1 System Overview

As stated earlier, NPent™ is an on-line handwriting recognizer. Therefore, it
uses a time ordered sequence of data points as input, obtained by an LCD tablet
or a touch-screen (an example of the input can be seen in figure 2.1).

Figure 2.2 shows the system with its two major modules: preprocessing and
recognition. The preprocessing transforms the original point sequence into a
still temporal sequence of feature vectors. This stream of feature vectors is then
given to a neural network based recognizer.
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(118, 10, 1) (100, 30, 1)
(118,8,1) (104.30, 1)
(116,6, 1) (110,28, 1)
(114,5,1) (114, 24, 1)
(110, 4,1) (117, 15,1)

&  NPen++

Figure 2.1: Diagram of the input format.

2.2 Preprocessing

The reason why handwriting recognition is a difficult task is obvious. Different
people have significantly different handwritings and it is not likely that two
words, written by two writers look the same. Therefore, recognizers have to
deal with a large amount of variability (see figure 2.3).

Instead of using the raw data from the input device, all existing systems
perform a couple of preprocessing steps before the recognition engine comes
to work. This approach facilitates the recognition process significantly. The
techniques applied during preprocessing can be divided into two groups:

e Normalization
reduces meaningless variability which does not help to discriminate be-
tween classes, therefore builds up invariance

e Feature Extraction
enhances variability which does help discrimination between classes

As already mentioned, there is a fundamental difference in todays handwrit-
ing recognizers regarding the “atomic” unit the recognizer is handling. One
philosophy 1s to segment the input sequence into character or sub-character
units and then perform recognition on those pieces. In most of the cases, the
segmentation is done using heuristic rules, which is error-prone. Therefore, a lot
of systems use whole words as basic units. The segmentation is implicitly done
by the recognizer during the recognition run, which usually gives better results
in terms of word accuracy. NPentt follows the latter approach and does not
perform segmentation prior to recognition. For that reason, all preprocessing
steps always involve the whole word.

The following subsections describe the essential preprocessing steps conducted
by NPen™ ™.
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Figure 2.2: Overview of the NPen™*- System.
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Figure 2.3: Examples for variations in handwriting.

2.2.1 Normalization
Resampling

The input device is sampled in fixed intervals, therefore, the raw data points
are equidistant in time. As the writing speed is not constant (between different
writers, for one writer within a single word or character), the number of points
collected in different sections of a character varies a lot (see figure 2.4).

.- o 1
- oy L

Figure 2.4: Examples for variations in writing speed.

In addition, different input devices work with different sampling rates. In
order to eliminate this variability, the original point sequence is resampled to be
equidistant in space. This means that after resampling the Euclidean distance
d between any two consecutive points has the same value. The value of d
is determined from the height of the center of the word (the so-called core
height, see following paragraph on baseline normalization ). The algorithm
performing the resampling uses simple linear interpolation. For some of the
feature extraction steps, it is important that the input sequence is continuous,
which is obviously not the case between the locations of a pen-lift and a pen-
down. Therefore, these points are included in the resampling, which means
that the algorithm interpolates a connecting line between every pen-up and
the following pen-down. Figure 2.5 shows an original and a resampled point
sequence.

Smoothing

Just like any real world system, NPen™™ has to deal with noise or imperfections
in input data. These imperfections originate from hardware problems, limited
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original sequence resampled sequence

Figure 2.5: Example for a resampling step.

accuracy of the input device, erratic hand motions and inaccuracies of pen-down
indications. A popular technique to deal with these problems is smoothing. This
technique averages the point position of every data point with a certain number
of neighbor points:

with z,, being the x-position of point p;, the new x-coordinate of p;, £,, can be
calculated as:

Tp, =Ci—p Tp,_, T ... FC - Bp,+ ...+ Ciym  Tp,y,,

n, m: number of preceding / succeeding points used for the calculation
Ci—n,y .-+, Citm: Weighting factors
The new value g, of y,, is calculated accordingly.
In NPen™ the best results could be obtained by using n = m = 2. Figure
2.6 shows a word before and after smoothing.

before smoothing after smoothing

LA %;ﬂi LA ULST[,

Figure 2.6: Example for smoothing.

Removal of crosses and dots

A further source for unwanted variability in the input data are diacritical marks
such as dots (as found on “I”, “j”) or crosses (like in “t”). Unfortunately, people
are not following consistent rules on when to draw these points or crosses. They

do 1t:

e right after the “main” part of the character was written
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e after the whole word was written

e after any pen-up following this character

This obviously is a problem for time-ordered representations. The standard
procedure to address this problem is to remove delayed diacritical marks (e.g.
[Sch93]) or trying to reinsert them at a better position in the stroke sequence
(e.g. [MBPV93]). In NPen™ the decision was made to remove delayed dia-
critical marks (using a heuristic approach), but capture the information of their
presence by a binary feature, the so-called hat feature. Experiments show that
this leads to improvements in word accuracy in the order of 1.5 — 2% depending
on the task. These removal procedures have been left out in the incremental
system.

Baseline normalization

One of the major source of variance between the handwriting of different writ-
ers is the difference in size. Therefore, it is very important to create a normal-
ized input representation, which is invariant against scaling. In NPen™t | this
is achieved by performing a so-called baseline normalization (the idea follows
[BL94]). Here, the first step is to fit a geometric model to the input data. The
model comprises four “flexible” lines representing respectively the ascender line,
the core line, the baseline and the descender line (see figure 2.7).

original sequence sequence with baselines

a m@,z_cmjw@'/\

Figure 2.7: Original word and word with baselines: a (descender line), b (baseline),
¢ (core line), d (ascender line).

The adaption is done by using an Expectation Maximization (EM) approach.
Once the lines are determined, the baseline can be used to rotate the word to a
nearly horizontal orientation. This ensures that the normalized word is invariant
against rotation. The distance between the baseline and the centerline (the so-
called core height) is scaled to a fixed value, so that the size of the whole word
is normalized (see figure 2.8).
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original sequence normalized sequence
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Figure 2.8: Original word and word after baseline normalization.

2.2.2 Feature Extraction

The purpose of the feature extraction is to enhance the variability which helps to
discriminate between classes. For each data point of the normalized coordinate
sequence, a NN-dimensional feature vector is calculated. The system uses N =
17 features. The general idea of the selected features is to extract low level
topological information and leave the extraction of high level features to the
connectionist recognizer.

Absolute y position

The lines computed during baseline normalization divide the word into three
areas: upper, medium and lower area (see above paragraph on baseline normal-
ization). This information can be fed into the recognizer with the y position of
the data points. Instead of using the pure y-coordinate the vertical position of
the coordinate points is expressed relative to the centerline and baseline. The x
position of the input points has been left out of the feature set. Even calculated
relative to the predecessor point, the x position depends on the word length,
which is not normalized during preprocessing. Therefore a feature based on the
x position would not be bound as the described y-feature is.

Local angle information

The features described in this section provide information about the direction
and the curvature of the trajectory at a given instant of time.
Direction: The direction of a stroke is determined by a discrete approxima-

tion of the first derivatives with respect to the arc length, le_z and Z—g where

ds = \/dz? + dy?

The approximations can be calculated as:

cosf(n) = iﬁ((z))
sinfi(n) = Ay(n)
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where

Az(n)=z(n+1)—z(n—1)

Ay(n) =y(n +1) —y(n — 1)

As(n) = /Ax(n)? + Ay(n)?

(see figure 2.9).

This representation has various advantages: it does not require the com-
putation of transcendental functions, the feature values are bound and for a
smooth curve the parameters change smoothly. Therefore, it is important that
the resampling also includes the points where a pen-up/pen-down takes place.

x(n-1),y(n-1)

Xx(n+1),y(n+1)

x(n),y(n)

Figure 2.9: Estimation of writing direction.

Curvature: As the second derivatives % and le—g are not bound, the local
curvature 1s approximated by the angle between two elementary segments:
é(n) = f(n+ 1) — 6(n — 1) (see figure 2.10). This angle is also encoded by
its cosine and sine. Using the subtraction formulas for sine and cosine these
values can be computed as:

cosg(n) = cos(@(n+1)—0(n—1))
= cosf(n+1) -cosf(n—1)+sinf(n+ 1) -sind(n—1)

sing(n) = sin(@(n+1)—0(n—1))
= sinf(n+1) - -cosf(n—1)—cosf(n+1) -sinf(n—1)
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x(n-2),y(n-2)

(1) y(1) x(n+2),y(n+2)

x(n+1),y(n+1)

Figure 2.10: Estimation of curvature.

1 2

o 89

N
"y .y g

Figure 2.11: Examples for hard to detect differences between cursive characters.

Context Bitmaps

All the features described so far are strictly local in both time and space. Rec-
ognizers using only local features showed significant problems in discriminating
between cursive letters like “a” and “u” or “g” and “y”, which differ only in
very small regions of the character (see figure 2.11).

Since the feature vectors are ordered in time and the points of region 2 were
written a lot later than the points of region 1 there is no immanent connection
between them in the data. Therefore, the recognizer does not obtain any infor-
mation on the relative position of those points to each other and the characters
remain indistinguishable. To overcome these problems, the recognizer has to
get a notion of the vicinity of each data point. This information can be derived
from a grey scale bitmap representation B = b(i, j) of the normalized coordinate
sequence. The bitmap is created by counting the number of points (x4, y:) of
the sequence, which fall into pixel (4, j) (see figure 2.12).

For every data point (x¢, y:) a d xd section centered around the corresponding
pixel (4, j) is determined. This section is then down sampled to a 3 x 3 bitmap.
The resulting nine values are the new feature values. These features are still
local in space but global in time (see figure 2.13). Adding these so-called context
bitmaps to the feature set of NPent™ resulted in a 50% error reduction. They
are able to model temporal long range and spatial short range dependencies as
they occur in pen trajectories.
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normalized sequence bitmap representation
e i
//—\ i i e
(WS == 6 S,
N S UL \} \_/ | M

Figure 2.12: Example for bitmap representation of normalized coordinate sequence.

Hat Feature

As already mentioned, delayed crosses and dots are removed from the point
sequence. The information on where these points were located is captured by
the binary hat feature. It marks every remaining point of the point sequence
which was originally covered by a delayed cross or dot (see figure 2.14).

Since removing of dots and crosses is not done in the incremental system,
this feature 1s left out of the feature set of the incremental system.

Pen Feature

The resampling algorithm also includes the points where pen-ups and pen-downs
take place, so that a sequence of points is interpolated between those locations.
The binary pen feature indicates which of the data points are is generated by a
real pen movement and which are interpolated points between a pen-up and a
pen-down. An example for a whole feature vector can be found in figure 2.15.
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normalized sequence

s " " " _— B dxd section hitmaps

B [ ] context hitmaps

Figure 2.13: Calculation of context bitmaps with d = 9.

2.3 The NPen'" recognizer

Like in speech recognition, the main problem of recognizing continuous words
is that character or stroke boundaries are not known (especially if there are no
pen lifts or white spaces that indicate these boundaries). The NPen™™ recog-
nition engine integrates recognition and segmentation of words into a single net-
work architecture, the so-called Multi-State Time Delay Neural Network (MS-
TDNN), which was originally proposed for continuous speech recognition tasks
(see [BHMW93, HW92]). The Time Delay Neural Network (TDNN) [WHH*89)]
with 1ts time-shift invariant architecture has been applied successfully to on-line
single character recognition [GALT91]. The MS-TDNN combines the high ac-
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original word word after cross removing

Figure 2.14: Original word and word after cross removing. Emphasized part repre-
sents the area where the value of the hat feature is 1.

curacy pattern recognition capabilities of a TDNN with a non-linear time align-
ment algorithm (dynamic time warping) in order to find an optimal alignment
between stroke and characters in handwritten words. The following section
describes the network architecture, the training procedures and the search tech-

niques used in the recognition component of NPen™ ™.

2.3.1 Modeling assumptions

Let W = wy,...,wg be a dictionary consisting of K words. Each of these
words w; 1s represented as a sequence of characters w; = ¢;,¢;,...¢;,. Each
character ¢; itself is modeled by a three state Hidden Markov Model (HMM)
¢ = q?q}q? (for an introduction to HMMs see [Rab89]). Inside these models,
only self-loops q;, — ¢;, and state transitions q;, — ¢;,,, are allowed. The
self-loop probability p(g;; | ¢;;) and the transition probabilities p(q;, | ¢i;_,) are
both set to %, while all the other transition probabilities are set to zero. The
idea behind using three states per character is to model explicitly the initial,
middle and final section of the character. A word w; is then modelled by the
sequence of the states of its characters: w; = ¢;,¢s, - . . ¢j,s -

During recognition of an unknown sequence of feature vectors zi = zq...27
the recognizer has to find the word w; € W in the dictionary that maximizes
the a posteriori probability p(w; | =, 8) given a fixed set of parameters 6 and
the feature sequence . The recognized word then satisfies:

wj = argmax o, ew p(w; | el )
Using Bayes’ rule, the probability p(w; | 1, 8) can be expressed as

plag | wi, 0)P(wi | 6)
p(xg | 6)

Instead of approximating p(w; | % ,6) directly the MS-TDNN models the like-
lihood of the feature vector sequence p(zl | w;, 6).

plw; | g, 0) =
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Figure 2.15: Complete feature vector for the word “able”.

2.3.2 The MS-TDNN architecture

As stated earlier, the TDNN and the MS-TDNN architectures were originally
developed for speech recognition. The objective was to develop a neural net-
work able to represent relationships between events in time. The actual features
or abstractions learned by the neural network should be invariant under trans-
lations in time. In order to achieve that every neuron is not only exposed to
the current input, but also to the temporal vicinity (through so-called time
delays). This enables a TDNN unit to relate and compare the current input
to events happening shortly before or afterwards. Another way of seeing the
net is depicted in figure 2.16. In this case a time window is shifted over the
time varying input and over the activations in the hidden layer as well. The
output of the TDNN are activations in the so-called states layer, which can be
interpreted as an estimate of the probabilities of the states ¢; given the input
window xﬁfl = %t—q...%eyq for each time frame ¢. In order to recognize words,
which are sequences of characters, the best sequence through the states in the
states layer has to be found. This is done by the so-called dynamic time warping
(DTW) algorithm. The activations from the states layer are simply copied into
the DTW layer. The DTW algorithm finds an optimal alignment path for each
word and the sum of all activations along this optimal path is taken as the score
for the word output unit.
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The MS-TDNN is trained with standard back-propagation. In a first step,
the network is trained in a forced alignment mode, during which hand-segmented
training data is used. The back-propagation here starts at the states layer of
the front-end TDNN with fixed state boundaries. After a certain number of
iterations, the forced alignment is replaced by a free alignment found by the
DTW algorithm. Now training starts at the word level of the MS-TDNN and
is performed on unsegmented training data.
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Figure 2.16: The Multi-State TDNN architecture used in this work. It comprises 17
input units, 40 units in the hidden layer and 78 state output units. There are 7 time
delays in the input layer and 5 time delays in the hidden layer. The representation of
the search is simplified. See section 2.3.3 for an exact version.
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2.3.3 Search Technique

The search for the most likely word out of the dictionary consists of two steps:
First, the most likely state sequence in every word of the dictionary has to be
determined and then the word with the highest total score has to be selected.
If the search is executed exactly as described one ends up searching through a
flat dictionary structure as depicted in figure 2.17. This is only feasible as long
as the number of words in the dictionary 1s small.

a b i

R R o
a b | e

-G-8 ] B-8-8 14886566
a n y
el B-8b

Figure 2.17: Flat dictionary structure.

Since the run time for a recognition pass scales linearly with the number
of entries in the dictionary, this approach can not be used for building very
large vocabulary neural network recognizer. For a 100k dictionary, the search
engine would have to evaluate 968,005 different HMMs. To reduce the number
of different HMMs the organization of the dictionary was changed, extending
the MS-TDNN to a tree-based TDNN. For each letter a search tree for all words
starting with this character is built. The nodes in each tree consist of HMMs
representing the individual letters (see figure 2.18).

This technique reduces the ratio of the number of HMMs to the size of the
dictionary from 10 for the flat structure to 3. If a 100k dictionary is used, the
number of different HMMs to be evaluated drops down to 277,382. In order
to further reduce this number a beam search is performed instead of a search
over all models. This means that all branches whose accumulated scores are
below a certain threshold (called beam) are pruned. Experiments show that
the tree search with pruning is about 15 times faster than the flat search. This
allows running NPent™ in real-time with dictionary sizes up to 100, 000 words

[MFW96].
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Figure 2.18: Tree structured dictionary.




Chapter 3

The Run-On System

In general, users want computer systems to be fast. This is especially true for
interactive systems, where input and output are interleaved, allowing the user’s
input to depend on earlier output from the same run. In this case, small differ-
ences 1n response times can decide whether a system is usable or not. The most
obvious way to tackle this problem is to speed up the recognizer. Of course,
this can not be done ad infinitum especially if the system is supposed to handle
large vocabularies with a high recognition accuracy. If the recognizer itself can
not be made any faster, the next idea is to just start the recognition process
earlier. This can only be done by overlapping the user input with the recogni-
tion. Thus, the recognizer has to be enabled to do run-on recognition. Being
convenient for an isolated word recognizer, the ability to do run-on recognition
is almost a must for continuous word recognizers.

This chapter is organized as follows. The first section describes the basic ar-
chitectural concepts of the run-on system. Sections 2 and 3 then show how

incremental preprocessing and recognition are done in NPen™t.

3.1 System Architecture

In order to be able to accept user input and to do recognition of the previous
input at the same time the recognizer is split into two separate processes (see
figure 3.1).

The first process is constantly recording the coordinates of the pen move-
ment. After a certain number of data points has been collected (and the rec-
ognizer has finished the processing of the previous input), the data collecting
process sends the points to the recognition engine, where preprocessing and
recognition is done. An important question here is how the coordinates are
grouped. The optimization of this process has to deal with two conflicting
goals. First, the recognizer should produce results as early and as often as pos-

23
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(X5, Y5, pS)
(x4,y4, p4)

(x1, y1, p1) (x0, yO, p0) (x3,y3, p3)

Record
Coordinates Recognition
Engine
Display Result | ——
able {340.4}
about {300.2}

above {299.5}

Figure 3.1: Overview of the Run-On System.

sible, which implies sending the coordinate bunches as soon as possible (with
small amounts of coordinates). On the other hand, it only makes sense to start
a recognition run if there is enough information in the coordinate sequence,
e.g. data points of at least one complete character. Since it usually can not
be determined where a character ends (for cursive script), a simple strategy
would be to just put together as much coordinates as possible. The compromise
implemented in NPen™ is to group the data points according to the number
of local extrema in the sequence. After a certain number of local minima and
maxima is reached the coordinates are passed to the recognizer. The value of
these thresholds together with the length of the initial sequence is optimized on
the given data set (see section 4.3).

As will be shown in section 3.2, incremental preprocessing is not always pos-
sible for every coordinate group. First of all the initial coordinate sequence
is processed using the normal methods. Subsequent coordinate bunches have
to fulfill certain conditions in order to be preprocessed incrementally. In case
the corresponding check fails, the whole previous sequence (including the new
data points) has to be preprocessed and recognized together. If incremental
preprocessing is possible the new bunch of feature vectors is given to the rec-
ognizer. The result of the recognition run is then presented to the user. Figure
3.2 depicts this approach for the incremental preprocessing.
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Figure 3.2: Preprocessing cycle of the run-on system.
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3.2 Incremental Preprocessing

Seen in a more abstract way, doing incremental preprocessing means doing pre-
processing without knowing the whole word. This already leads to the first
problem: scaling. As it is stated in section 2.2, scaling the handwritten word
to a fixed size and therefore eliminating size variations between words is an im-
portant preprocessing step. It is very likely that the height of a word is not
constant along its trajectory. By scaling different parts to the same size, which
would happen if the parts are scaled independently from each other, the varia-
tions present in the original word would disappear (remove size variations within
words). The consequence is a distorted word. An example for this erroneous
processing can be found in figure 3.3.

original sizerelation sizerelations after wrong resizing
0 A e N i I e Y
I R L e
bunch 1 bunch 2 bunch 1 bunch 2

Figure 3.3: Example for wrong scaling of the word “center”.

Therefore, the scaling has to be done relative to the maximum height of the
word. All coordinate bunches processed prior to the point of maximal height
have to be scaled again, which means that the whole preprocessing has to be
redone. For the parts of the input processed after this point, the scaling factor
determined earlier has to be applied. In this case the preprocessing can be done
incrementally.

The following subsection explains how incremental preprocessing is done for the
different preprocessing steps. Subsection 3.2.2 then describes our approach for
detecting and handling of height changes.

3.2.1 Techniques for the various preprocessing functions
Local Techniques

As shown in section 2.2, most of the preprocessing algorithms operate locally.
Only a very limited number of data points out of the temporal vicinity of the
point to be processed is involved in the calculation. The fact that not all coor-
dinates from the input sequence are available only matters at the end of a given
sequence. During incremental preprocessing the points which the algorithm can
not process because of missing corresponding points are stored. As soon as the
next coordinate group is available, these points are simply added at the begin-
ning of the new bunch. (see figure 3.4). The algorithms where this approach is
possible produce the same results for normal and incremental preprocessing. As
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can be concluded from the description in section 2.2 this technique is applica-
ble to resampling (see also next section), smoothing and for the local features:
y-position, curvature, writing direction and pen indication!
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Figure 3.4: Approach for local preprocessing techniques. White dots are already
processed, black dots could not be processed at the end of the first bunch and are
therefore copied to the beginning of the second bunch. The grey dots are auxiliary
points needed for processing the black dots. The grey and black dots have been
enlarged for better understanding.

Context Bitmaps

In contrast to the algorithms described in the last section, context bitmaps
are local in space, but global in time. They are especially designed to capture
temporal long range dependencies (see figure 2.2.2). Tt is obviously impossible to
include future coordinate points into the calculation of the bitmaps. Therefore,
only the data points of the current coordinate bunch and the points collected so
far can be considered. As can be seen in figure 3.5, the information about the
existence of points in region 2 is not accessible from region [ at the time when
the points in that region are processed. For the processing of region 2 on the
other hand, the points of region I are available.
There is no means to compensate for a loss of information of this kind.

3.2.2 Detection and Handling of word height changes

The easiest way to measure the height of a word is to simply calculate the
vertical distance between the points with minimum and maximum values in
the y coordinate (see absolute word height in figure 3.6). Unfortunately, this

L As the removal of the diacritical marks has been left out in the incremental system, the
hat feature is not used.
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Figure 3.5: Example for incomplete context bitmaps occurring during incremental
processing.

approach fails if the baseline of the word deviates a lot from the horizontal. In
this case, changes to the absolute word height (in terms of the distance just
mentioned) are not necessarily related to true word height changes (measured
orthogonal to the baseline). An example for these cases can be found in figure
3.6. Therefore, we made the decision to use the word core height as a criterion
to detect word height changes. Besides being invariant against rotation of the
word, the core height is also more robust against very small variations in the
word height, which can be tolerated for the matters of scaling.

Figure 3.6: Example for a case where absolute word height and true word height
differs.

This approach only works if the core height is not constantly changing
throughout the word. Figure 3.7 shows that after a certain point the changes to
the core height are very small. This follows our expectations, as the true word
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height is not changing any more after the highest and the lowest points of the
word are reached.

el
core height

0 50 100 150 200 250 200 0 5 100 15 200 250 300 350 400 450 500

position of core height calculation [x coordinate] position of core height calculaton [x coordinate]

Figure 3.7: Graphs showing the core height for words starting with capital letters
(left) and small letters (right) respectively.

The approach taken in NPen™ ™ can be described as follows (see also figure
3.2). The baselines and the core height are calculated for the first coordinate
bunch. Every further group of coordinates is added to the points collected so
far and the core height of the whole sequence is determined. If the difference
between this core height and the previously calculated core height exceeds a cer-
tain threshold, the whole sequence together is preprocessed again. If this is not
the case, the previously fixed core height and baselines are used for the prepro-
cessing of the new coordinate bunch (for resampling and baseline normalization).

The threshold used to decide on whether a new full preprocessing of the
coordinates collected so far is necessary or not is very crucial. If it is assigned
to a low value the number of full preprocessings performed while processing a
word overweight the number of incremental preprocessings. For a high threshold
value the opposite is true. The effect of this threshold on the overall system
performance is analyzed in section 4.2.

3.3 Incremental Recognition

The changes to the recognition engine are a lot less extensive than the changes
to the preprocessing. In order to perform incremental recognition, the neural
network had to be enhanced by the ability to add frames to the various layers.
In each forward pass of the net, the time windows are shifted to the very end
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of the available input and the last feature vectors and activations are stored.
Then the new feature frames are just appended to the stored vectors and the
windows are shifted out of the position where they stopped at the end of the
last pass. Figure 3.8 depicts this strategy. The neural net was trained with
normally preprocessed training data (see 4.1 for a description of the data used
for training).

The search component had to be enabled to find the single best path out of
the active paths at the end of the last search and to issue the characters along
this path. The fact that the search i1s done along a dictionary tree can be used
to perform word completion. If the tree does not branch off after the node with
the highest score at the end of the search run, the whole word is emitted and
not just the beginning. As can be seen in chapter 4 in a considerable amount
of cases, this technique saves the user from writing the whole word?.

2The work described in this section was predominantly done by Stefan Manke.
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Second Coordinate Bunch

First Coordinate Bunch

Second Coordinate Bunch

First Coordinate Bunch
Figure 3.8: Incremental version of the TDNN.



Chapter 4

Evaluation of the System

This chapter describes the various tests conducted with the run-on system. The
exact results of the presented tests can be found in appendix A.

4.1 Setup for the Experiments

4.1.1 Training of the Neural Net

The neural net we used for the experiments was trained on approximately
18300 samples written by 191 different writers. The writers were only pro-
vided with minimal instructions. The training set contains all types of writing
styles, namely cursive, hand-printed and mixtures of both. As stated earlier,
the neural net was trained on normally preprocessed data.

4.1.2 Test Environment

All tests performed with the run-on system use the same test set. It consists
of 2345 words written by 45 different writers. The set was build from test
data with which the normal NPen' T system is evaluated. None of the writers
in the test set contributed to the training data. The tests were done using
a 50,000 word dictionary with lower and upper case letters. It was selected
randomly from the ARPA Wall Street Journal Task (WSJ), which was originally
defined for speech recognition evaluations. The test data consists of coordinate
sequences of whole words. In order to test the incremental system the coordinate
sequence is chopped into bunches following the strategy described in section 3.1.
The parameters controlling this grouping and their optimization is described in
section 4.3.

32
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4.2 Recognition Performance of the Run-On
System

As described in section 3.2.2, the value of the core height threshold is very im-
portant, since it determines the ratio between the number of full preprocessings
and the number of incremental preprocessings. This can be seen in figure 4.1.

4.5 T T T T T T T T T

. full preprocessings —<—
incremental preprocessings —+--
4 P 4

35

3

25

number of preprocessings

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

core height threshold

Figure 4.1: Number of full and incremental preprocessings plotted against the word
core height threshold. Refer to table A.1 for exact values.

If the threshold value is raised up 0.1 the number of full preprocessings
approaches 1. This is the lower boundary because the first coordinate bunch is
always fully preprocessed. The core height threshold also affects the average x
position of the last full preprocessing as shown in figure 4.2.

In order to determine the recognition capability of the run-on system, two
different kind of tests are conducted. The first test examines the incremental
preprocessing, excluding the influence of the incremental recognition. This is
done by simply putting together the individually preprocessed bunches to get the
feature vector of the whole word. The whole vector is then recognized simply as
the feature vector of a conventionally preprocessed word would be recognized.
The results of these experiments are shown in figure 4.3. As expected the
recognition rate drops with raising values of the core height threshold.

In the second set of experiments, the effects of the incremental recognition
are included. Every coordinate bunch determined by the splitting routine is
given to the recognizer and processed according to the preprocessing mode (full
or incremental recognition). The recognition rates achieved at the different
points of the input sequence are shown in figures 4.4 and 4.5 (again depending
on the core height threshold).
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core height threshold

Figure 4.2: x position of the last full preprocessing plotted against the word core
height threshold. The average length of the words in the test set is 270.5. Refer to
table A.2 for exact values.

For the first set of graphs only the words which are correctly recognized
when processed like in the first experiment were taken into account. It might
be the case that the recognizer gets on the wrong path towards the end of the
word after following the right character sequence before, but usually one would
expect the recognizer to be off all the way through if it recognizes the wrong
word while processing the whole feature vector. This can also be concluded
from the second set of graphs where all words are considered for the recognition
rates. There the accuracies are significantly lower. The average length of the
sections between the points where the recognition rates are measured is 60 for
both sets of graphs.

The shape of the graphs in figure 4.4 are very similar to each other. The
recognition rate for the first recognizer run is significantly higher than the rate
for the second one, due to the fact that the first run is always done with full
preprocessing. After this first break the rate rises because more and more infor-
mation is available. The maximal accuracy depends on the core height threshold.
It falls with raising values of that parameter (as expected). For the graphs in
figure 4.5 the situation is not as homogeneous as it was just described. The
effects sketched for the first set of graphs get washed out by the high number
of wrong recognition results incorporated in the second set of graphs.

During these recognition experiments the number of word completions was
also determined. For all tested systems the completion succeeded for approxi-
mately 36% of the correctly recognized words. On average, the correct result
was found after 74% of the word was written. The word completion rate can be
expected to be even higher if the dictionary size is smaller.
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Figure 4.3: Word accuracies of the incremental system as they are achieved at different
values of the core height threshold. See table A.3 for exact values.
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Figure 4.4: Overview of the intermediate recognition results for different core height
thresholds if only the correctly recognized words are taken into account. The exact

values can be found in table A.4.
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Figure 4.5: Overview of the intermediate recognition results for different core height
thresholds if all words are taken into account. The exact values can be found in A.5.
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4.3 System selection and parameter optimiza-
tion

As shown in the last section, the task of choosing one system, which means
choosing one core height threshold, involves optimization of at least two con-
flicting values, namely:

e recognition accuracy
e ratio of full / incremental preprocessings

As a compromise between a system with high recognition accuracy and a
system with a high number of incremental preprocessings we selected the system
with a 0.03 core height threshold. This recognizer combines a recognition rate
of 70.23% with a reasonable ratio of full and incremental preprocessings (1.38
versus 2.25).

For this setup, we optimized the parameters controlling the grouping of the
coordinates. During the previously described tests we used default values. The
parameters are:

e minimal length of the first coordinate bunch
e minimal length of any further sequence

e number of minima and maxima per sequence

In order to keep the computational costs within reasonable limits, we assume
these parameters to be independent. Therefore, the following graphs are only
supposed to give an impression on how the parameters are related to word
accuracy and preprocessing ratio. Figures 4.6 | 4.7 and 4.8 show the whole word
recognition accuracies and the ratio between the number of full and incremental
preprocessings depending on the said parameters. This ratio should be low
since one of the aims is to have a high number of incremental preprocessings
(compared to the number of full preprocessing). Following the optimization
goals, we selected the system using:

e minimal length of the first coordinate bunch: 70
e minimal length of further sequences: 30
e number of extrema per sequence: 2

This system reaches a word accuracy of 70.6% while performing 1.42 full and
2.35 incremental preprocessing on average.
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Figure 4.6: Graphs showing the word accuracy (left) and the ratio between the num-
ber of full and incremental preprocessings (right) depending on the minimal length of
the first coordinate bunch.

4.4 Timings

In order to determine the speed-up gained by using incremental preprocessing
and recognition instead of full preprocessing and full recognition, we measured
the time the system spent in those modules. We used the recognizer described
in the last section and determined how long it takes to process a word using
full preprocessing and full recognition for all coordinate bunches versus applying
incremental preprocessing and incremental recognition whenever possible. The
incremental system only needs 54.1% of the time of the full system (averaged
over 1560 words). Test runs with an interactive application also showed, that
this speed-up reaches the user-level.

4.5 Discussion

The results given in this chapter show that it is possible to perform run-on recog-
nition with NPen®. The system we presented achieves a recognition accuracy
of 70.2% on a 50k dictionary. Compared to a system with full preprocessing
and full recognition this result constitutes a loss of 7.2% in word accuracy. Con-
sidering the limited information the incremental system gets while processing
a word and the fact that the neural network was not trained on incrementally
preprocessed data, this result is very encouraging.



CHAPTER 4. EVALUATION OF THE SYSTEM 40

074 14
073
072 2 12
g on g
7 g
¢ 2
3 1
8
g o9

065 L L L L L L L L L L L L
1 70 80

0 40 50 60 30 2 50 60
minimal length of sequence [points] minimal length of sequence [points]

Figure 4.7: Graphs showing the word accuracy (left) and the ratio between the num-
ber of full and incremental preprocessings (right) depending on the minimal length of
all further coordinate bunches.
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Figure 4.8: Graphs showing the word accuracy (left) and the ratio between the num-
ber of full and incremental preprocessings (right) depending on the minimal number
of extrema for all further coordinate bunches.



Chapter 5

Summary

5.1 Summary

We showed that it is possible to do run-on recognition with the NPen®on-line
handwriting recognition system. We changed the system architecture and all
parts (preprocessing, recognition, search) in order to enable them to perform
incremental processing. The system we built achieved a recognition accuracy of
70.2% on a 50k dictionary. For 36% of the correctly recognized words the result
was already found before all coordinate points were passed to the system (using
word completion). The run-on system showed a significant speed up compared
to a system performing full preprocessing and full recognition on the coordinate
bunches.

5.2 Future Work

The major aim for the future is the improvement of the recognition accuracy. We
achieved the results presented in this report by using a neural network recognizer
for data which deviates significantly from the data the net was trained on.
This can also be concluded from the fact that the recognition accuracy depends
on the core height threshold. This threshold basically controls the amount of
deviation the incrementally preprocessed data has from the “optimal” data,
which 1s the normally preprocessed data. Therefore, the next step will be to
train the recognizer on incrementally preprocessed data. We especially hope
that the strong dependency on the core height threshold can be removed or at
least weakened. We also plan to integrate run-on recognition into the continuous

version of NPentt.
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Appendix A

Detailed Test Results

Nbr full preproc.

core height threshold

Nbr incr. preproc.

core height threshold

0.00 1.01
0.005 1.47
0.01 1.58
0.015 1.55
0.02 1.49
0.025 1.42
0.03 1.38
0.035 1.33
0.04 1.29
0.045 1.24
0.05 1.22
0.055 1.20
0.06 1.18
0.065 1.15
0.07 1.14
0.075 1.12
0.08 1.11
0.085 1.09
0.09 1.08
0.095 1.07
0.1 1.06

0.00 0.0
0.005 0.74
0.01 1.32
0.015 1.68
0.02 1.93
0.025 2.11
0.03 2.25
0.035 2.36
0.04 2.44
0.045 2.52
0.05 2.55
0.055 2.60
0.06 2.64
0.065 2.66
0.07 2.70
0.075 2.72
0.08 2.74
0.085 2.76
0.09 2.78
0.095 2.79

0.1 2.81

Table A.1: Number of full (left) and incremental (right) preprocessings depend-

ing on the core height threshold.
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Position of last full preprocessing
core height threshold

0.00 275.23
0.005 256.69
0.01 235.76
0.015 216.37
0.02 204.28
0.025 193.44
0.03 182.34
0.035 174.82
0.04 167.27
0.045 160.11
0.05 156.66
0.055 152.39
0.06 148.05
0.065 144.74
0.07 140.01
0.075 138.13
0.08 135.21
0.085 131.30
0.09 127.00
0.095 124.32
0.1 121.64
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Table A.2: Point of last full preprocessing depending on core height threshold.
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Word accuracy
core height threshold

0.00 77.39
0.005 76.49
0.01 75.09
0.015 73.86
0.02 72.79
0.025 71.56
0.03 70.23
0.035 69.99
0.04 68.77
0.045 68.21
0.05 67.58
0.055 67.02
0.06 66.65
0.065 66.31
0.07 65.90
0.075 65.30
0.08 64.62
0.085 63.93
0.09 63.63
0.095 63.20
0.1 62.90

Table A.3: Word accuracy depending on core height threshold.
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Word accuracy

Word accuracy

Number of recognition run

Number of recognition run

core height 0.0 1 0.54 core height 0.06 1 0.59
2 0.54 2 0.52
3 0.57 3 0.55
4 0.64 4 0.61
5 0.69 5 0.64
6 0.73 6 0.74
7 0.81 7 0.74
core height 0.01 1 0.55 core height 0.07 1 0.60
2 0.53 2 0.52
3 0.56 3 0.54
4 0.63 4 0.59
5 0.68 5 0.62
6 0.75 6 0.71
7 0.84 7 0.72
core height 0.02 1 0.55 core height 0.08 1 0.60
2 0.52 2 0.52
3 0.56 3 0.53
4 0.65 4 0.60
5 0.66 5 0.61
6 0.76 6 0.70
7 0.77 7 0.74
core height 0.03 1 0.57 core height 0.09 1 0.61
2 0.52 2 0.52
3 0.56 3 0.54
4 0.66 4 0.61
5 0.66 5 0.62
6 0.75 6 0.71
7 0.78 7 0.74
core height 0.04 1 0.58 core height 0.1 1 0.61
2 0.53 2 0.53
3 0.56 3 0.54
4 0.67 4 0.60
5 0.66 5 0.62
6 0.80 6 0.72
7 0.80 7 0.71
core height 0.05 1 0.59
2 0.52
3 0.56
4 0.63
5 0.66
6 0.76
7 0.73

Table A.4: Intermediate recognition results for different core height thresholds

if only the correctly recognized words are taken into account.
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Word accuracy

Word accuracy

Number of recognition run

Number of recognition run

core height 0.0 1 0.47 core height 0.06 1 0.47
2 0.45 2 0.37
3 0.46 3 0.36
4 0.51 4 0.37
5 0.53 5 0.37
6 0.58 6 0.43
7 0.65 7 0.48
core height 0.01 1 0.47 core height 0.07 1 0.47
2 0.42 2 0.37
3 0.44 3 0.35
4 0.49 4 0.35
5 0.49 5 0.36
6 0.56 6 0.41
7 0.59 7 0.47
core height 0.02 1 0.47 core height 0.08 1 0.47
2 0.41 2 0.37
3 0.42 3 0.34
4 0.46 4 0.35
5 0.43 5 0.36
6 0.52 6 0.40
7 0.52 7 0.42
core height 0.03 1 0.47 core height 0.09 1 0.47
2 0.40 2 0.37
3 0.40 3 0.34
4 0.45 4 0.35
5 0.41 5 0.35
6 0.50 6 0.39
7 0.52 7 0.40
core height 0.04 1 0.47 core height 0.1 1 0.47
2 0.39 2 0.37
3 0.39 3 0.33
4 0.42 4 0.34
5 0.40 5 0.34
6 0.48 6 0.38
7 0.48 7 0.39
core height 0.05 1 0.47
2 0.38
3 0.38
4 0.39
5 0.45
6 0.47
7 0.49

Table A.5: Intermediate recognition results for different core height thresholds
if all words are taken into account.
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