
Interactive Systems LabsCarnegie Mellon UniversityPittsburgh, PA, USAUniversity of KarlsruheGermanyRun-On Recognition in an On-line HandwritingRecognition SystemREPORTRalph Gro�Supervisors:Stefan MankeAlex WaibelJune 1997

Contents1 Introduction 41.1 Handwriting Recognition : 41.2 Run-On Recognition : 41.3 Objective of this work : 52 The NPen++ system 62.1 System Overview : 62.2 Preprocessing : 72.2.1 Normalization : 92.2.2 Feature Extraction : 122.3 The NPen++ recognizer : 162.3.1 Modeling assumptions : 172.3.2 The MS-TDNN architecture : : : : : : : : : : : : : : : : : 182.3.3 Search Technique : 213 The Run-On System 233.1 System Architecture : 233.2 Incremental Preprocessing : 263.2.1 Techniques for the various preprocessing functions : : : : 263.2.2 Detection and Handling of word height changes : : : : : : 273.3 Incremental Recognition : 294 Evaluation of the System 324.1 Setup for the Experiments : 324.1.1 Training of the Neural Net : : : : : : : : : : : : : : : : : 324.1.2 Test Environment : 324.2 Recognition Performance of the Run-On System : : : : : : : : : 334.3 System selection and parameter optimization : : : : : : : : : : : 384.4 Timings : 394.5 Discussion : 391

CONTENTS 25 Summary 415.1 Summary : 415.2 Future Work : 41A Detailed Test Results 42

CONTENTS 3
AcknowledgmentsI would like to thank Alex Waibel for arousing my interest in handwritingrecognition and Stefan Manke for his advice and guidance during this project.I would also like to thank Uwe Meier for his help with technical problems andWolfgang H�urst for the various discussions we had on this subject.

Chapter 1IntroductionIn todays computer systems, the interaction between user and computer stillhas to be done by keyboard and mouse. On the other hand humans use avast amount of di�erent modalities when they communicate with each other.For example, they speak, write, point and gesture to express their thoughts,intentions or feelings. If the context does not impose any restriction, humansusually select the modality which appears to be the most natural in a givensituation. To accommodate this fact, a lot of research has been conducted in thepast years to enable computers to o�er di�erent input modalities. Especially the�eld of handwriting recognition has seen a lot of progress. As a matter of fact,there are already a lot of commercial systems available, which o�er handwritingrecognition. Applications range from mobile computer systems and special dataentry tasks to the reading of address labels and veri�cation of signatures.1.1 Handwriting RecognitionIn general, handwriting recognition systems can be classi�ed according to thetype of input data they are working on. So-called Optical Character Recogni-tion Systems (OCR) deal with scanned text or words, whereas on-line CharacterRecognition Systems (OCLR) work on a sequence of data points generated bywriting on a touch-screen or a graphic tablet. In the latter case, the dynamicwriting information is available which facilitates the recognition task. There-fore, OCLR systems usually show a better performance than OCR systems (see[YMS92] and [OWM92] for surveys of OCR and OCLR systems).1.2 Run-On RecognitionFor the task of human-computer interaction, OCLR systems are usually used.In order to provide an easy-to-use natural interface, the handwriting recognizer4

CHAPTER 1. INTRODUCTION 5should impose as few restrictions on the input style as possible. Idealistically, therecognizer works in the background, constantly transforming the handwritteninput into characters, words or, in the case of gestures, meanings. This kindof recognition, where the recognizer keeps up with the input of the user iscalled Run-On Recognition. Unfortunately, a lot of recognizer do not supportit. Due to the way the preprocessing and the recognition component is designed,input can only be processed in certain portions. This usually forces the userto explicitly start the recognition by pushing a button, which makes the wholeinteraction slow and unpleasant.1.3 Objective of this workIn this report we will describe the work we have been doing within the NPen++handwriting recognition system. NPen++ is a writer independent large vocab-ulary on-line handwriting recognition system for the recognition of single words,written in any kind of writing style: printed (all characters separated from eachother), cursive (no lifting of the pen within the word) or any mixture of both. Itwas mainly developed by Stefan Manke at the University of Karlsruhe, Germany([MB94, MFW94, MFW95a, MFW95b, MFW96]). The purpose of our researchwas to enable NPen++ to do run-on recognition. Because of the setup of therecognition engine, all further considerations should be seen in the context of asingle word on-line handwriting recognition system for words written by usingLatin characters (unless otherwise stated).The report is organized as follows. Chapter 2 describes the NPen++ system asit was available when this work started. In chapter 3 the incremental prepro-cessing and the changes to the recognition engine are presented. The results ofthe evaluation of the whole system are given in chapter 4. Finally, chapter 5summarizes these results and outlines future work.

Chapter 2The NPen++ systemIn contrast to the architectural uniformity of todays state-of-the-art speechrecognition systems, one can �nd a large variety in the way current handwritingrecognizers are designed. They di�er not only in the type of the recognitionengine (e.g. template matcher, neural net, HMM), but also in fundamental as-pects of the preprocessing (e.g. segmentation of the input before recognitionor not). This diversity can even be found on the input level, as some systemsrequire the user to write in a certain style. Bearing this in mind, NPen++can be considered as being one of the most powerful handwriting recognizersavailable. It accepts any kind of input style and recognizes words out of largevocabularies (up to 100 000 words). The system is writer independent, so thereis no need to retrain or adapt the system to a new user.This chapter describes the NPen++ system in all its components. After a briefsystems' overview in 2.1, the preprocessing is described in detail in section 2.2.The following sections deal with the recognition engine and the search compo-nent (2.3).2.1 System OverviewAs stated earlier, NPen++ is an on-line handwriting recognizer. Therefore, ituses a time ordered sequence of data points as input, obtained by an LCD tabletor a touch-screen (an example of the input can be seen in �gure 2.1).Figure 2.2 shows the system with its two major modules: preprocessing andrecognition. The preprocessing transforms the original point sequence into astill temporal sequence of feature vectors. This stream of feature vectors is thengiven to a neural network based recognizer.6

CHAPTER 2. THE NPEN++ SYSTEM 7
(117, 15, 1)

NPen++

(118, 10, 1)

(110, 4, 1)

(118, 8, 1)
(116, 6, 1)
(114, 5, 1)

(100, 30, 1)

(104. 30, 1)
(110, 28, 1)
(114, 24, 1)Figure 2.1: Diagram of the input format.2.2 PreprocessingThe reason why handwriting recognition is a di�cult task is obvious. Di�erentpeople have signi�cantly di�erent handwritings and it is not likely that twowords, written by two writers look the same. Therefore, recognizers have todeal with a large amount of variability (see �gure 2.3).Instead of using the raw data from the input device, all existing systemsperform a couple of preprocessing steps before the recognition engine comesto work. This approach facilitates the recognition process signi�cantly. Thetechniques applied during preprocessing can be divided into two groups:� Normalizationreduces meaningless variability which does not help to discriminate be-tween classes, therefore builds up invariance� Feature Extractionenhances variability which does help discrimination between classesAs already mentioned, there is a fundamental di�erence in todays handwrit-ing recognizers regarding the \atomic" unit the recognizer is handling. Onephilosophy is to segment the input sequence into character or sub-characterunits and then perform recognition on those pieces. In most of the cases, thesegmentation is done using heuristic rules, which is error-prone. Therefore, a lotof systems use whole words as basic units. The segmentation is implicitly doneby the recognizer during the recognition run, which usually gives better resultsin terms of word accuracy. NPen++ follows the latter approach and does notperform segmentation prior to recognition. For that reason, all preprocessingsteps always involve the whole word.The following subsections describe the essential preprocessing steps conductedby NPen++.

CHAPTER 2. THE NPEN++ SYSTEM 8
C
E
R

I
N

T
I
O

T

P
T

U

U
O

"able"

N

O
G

Tree-based dictionary search

G
N
I
S
S
E
C
O
R
P
E
R
P

T
U
P
N
I

a1
a2

a0

b0
b1

...

a
b
l
e

y
....

....
.

17 dimensional feature vector

normalized input sequence

time ordered sequence of coordinate points

Time-Delay Neural Network

Figure 2.2: Overview of the NPen++- System.

CHAPTER 2. THE NPEN++ SYSTEM 9
Figure 2.3: Examples for variations in handwriting.2.2.1 NormalizationResamplingThe input device is sampled in �xed intervals, therefore, the raw data pointsare equidistant in time. As the writing speed is not constant (between di�erentwriters, for one writer within a single word or character), the number of pointscollected in di�erent sections of a character varies a lot (see �gure 2.4).Figure 2.4: Examples for variations in writing speed.In addition, di�erent input devices work with di�erent sampling rates. Inorder to eliminate this variability, the original point sequence is resampled to beequidistant in space. This means that after resampling the Euclidean distanced between any two consecutive points has the same value. The value of dis determined from the height of the center of the word (the so-called coreheight, see following paragraph on baseline normalization). The algorithmperforming the resampling uses simple linear interpolation. For some of thefeature extraction steps, it is important that the input sequence is continuous,which is obviously not the case between the locations of a pen-lift and a pen-down. Therefore, these points are included in the resampling, which meansthat the algorithm interpolates a connecting line between every pen-up andthe following pen-down. Figure 2.5 shows an original and a resampled pointsequence.SmoothingJust like any real world system,NPen++ has to deal with noise or imperfectionsin input data. These imperfections originate from hardware problems, limited

CHAPTER 2. THE NPEN++ SYSTEM 10
resampled sequenceoriginal sequenceFigure 2.5: Example for a resampling step.accuracy of the input device, erratic hand motions and inaccuracies of pen-downindications. A popular technique to deal with these problems is smoothing. Thistechnique averages the point position of every data point with a certain numberof neighbor points:with xpi being the x-position of point pi, the new x-coordinate of pi, x̂pi can becalculated as:̂xpi = ci�n � xpi�n + : : :+ ci � xpi + : : :+ ci+m � xpi+mn;m: number of preceding / succeeding points used for the calculationci�n; : : : ; ci+m: weighting factorsThe new value ŷpi of ypi is calculated accordingly.In NPen++ the best results could be obtained by using n = m = 2. Figure2.6 shows a word before and after smoothing.

after smoothingbefore smoothingFigure 2.6: Example for smoothing.Removal of crosses and dotsA further source for unwanted variability in the input data are diacritical markssuch as dots (as found on \i", \j") or crosses (like in \t"). Unfortunately, peopleare not following consistent rules on when to draw these points or crosses. Theydo it:� right after the \main" part of the character was written

CHAPTER 2. THE NPEN++ SYSTEM 11� after the whole word was written� after any pen-up following this characterThis obviously is a problem for time-ordered representations. The standardprocedure to address this problem is to remove delayed diacritical marks (e.g.[Sch93]) or trying to reinsert them at a better position in the stroke sequence(e.g. [MBPV93]). In NPen++ the decision was made to remove delayed dia-critical marks (using a heuristic approach), but capture the information of theirpresence by a binary feature, the so-called hat feature. Experiments show thatthis leads to improvements in word accuracy in the order of 1:5�2% dependingon the task. These removal procedures have been left out in the incrementalsystem.Baseline normalizationOne of the major source of variance between the handwriting of di�erent writ-ers is the di�erence in size. Therefore, it is very important to create a normal-ized input representation, which is invariant against scaling. In NPen++, thisis achieved by performing a so-called baseline normalization (the idea follows[BL94]). Here, the �rst step is to �t a geometric model to the input data. Themodel comprises four \
exible" lines representing respectively the ascender line,the core line, the baseline and the descender line (see �gure 2.7).
original sequence

d

c

b

a

sequence with baselinesFigure 2.7: Original word and word with baselines: a (descender line), b (baseline),c (core line), d (ascender line).The adaption is done by using an Expectation Maximization (EM) approach.Once the lines are determined, the baseline can be used to rotate the word to anearly horizontal orientation. This ensures that the normalized word is invariantagainst rotation. The distance between the baseline and the centerline (the so-called core height) is scaled to a �xed value, so that the size of the whole wordis normalized (see �gure 2.8).

CHAPTER 2. THE NPEN++ SYSTEM 12
normalized sequenceoriginal sequenceFigure 2.8: Original word and word after baseline normalization.2.2.2 Feature ExtractionThe purpose of the feature extraction is to enhance the variability which helps todiscriminate between classes. For each data point of the normalized coordinatesequence, a N -dimensional feature vector is calculated. The system uses N =17 features. The general idea of the selected features is to extract low leveltopological information and leave the extraction of high level features to theconnectionist recognizer.Absolute y positionThe lines computed during baseline normalization divide the word into threeareas: upper, medium and lower area (see above paragraph on baseline normal-ization). This information can be fed into the recognizer with the y position ofthe data points. Instead of using the pure y-coordinate the vertical position ofthe coordinate points is expressed relative to the centerline and baseline. The xposition of the input points has been left out of the feature set. Even calculatedrelative to the predecessor point, the x position depends on the word length,which is not normalized during preprocessing. Therefore a feature based on thex position would not be bound as the described y-feature is.Local angle informationThe features described in this section provide information about the directionand the curvature of the trajectory at a given instant of time.Direction: The direction of a stroke is determined by a discrete approxima-tion of the �rst derivatives with respect to the arc length, dxds and dyds , whereds =pdx2 + dy2The approximations can be calculated as:cos �(n) = �x(n)�s(n)sin �(n) = �y(n)�s(n)

CHAPTER 2. THE NPEN++ SYSTEM 13where �x(n) = x(n+ 1)� x(n� 1)�y(n) = y(n + 1)� y(n � 1)�s(n) =p�x(n)2 +�y(n)2(see �gure 2.9).This representation has various advantages: it does not require the com-putation of transcendental functions, the feature values are bound and for asmooth curve the parameters change smoothly. Therefore, it is important thatthe resampling also includes the points where a pen-up/pen-down takes place.
θ()n

x(n-1),y(n-1)

x(n),y(n)

x(n+1),y(n+1)Figure 2.9: Estimation of writing direction.Curvature: As the second derivatives d2xds2 and d2yds2 are not bound, the localcurvature is approximated by the angle between two elementary segments:�(n) = �(n + 1) � �(n � 1) (see �gure 2.10). This angle is also encoded byits cosine and sine. Using the subtraction formulas for sine and cosine thesevalues can be computed as:cos �(n) = cos(�(n + 1)� �(n � 1))= cos �(n+ 1) � cos �(n � 1) + sin �(n + 1) � sin �(n� 1)sin�(n) = sin(�(n + 1)� �(n � 1))= sin �(n + 1) � cos �(n � 1)� cos �(n + 1) � sin �(n � 1)

CHAPTER 2. THE NPEN++ SYSTEM 14
nx(n-2),y(n-2)

x(n-1),y(n-1)

x(n+1),y(n+1)

x(n+2),y(n+2)

x(n),y(n)

φ()Figure 2.10: Estimation of curvature.
2

"a" "u" "g" "y"

1Figure 2.11: Examples for hard to detect di�erences between cursive characters.Context BitmapsAll the features described so far are strictly local in both time and space. Rec-ognizers using only local features showed signi�cant problems in discriminatingbetween cursive letters like \a" and \u" or \g" and \y", which di�er only invery small regions of the character (see �gure 2.11).Since the feature vectors are ordered in time and the points of region 2 werewritten a lot later than the points of region 1 there is no immanent connectionbetween them in the data. Therefore, the recognizer does not obtain any infor-mation on the relative position of those points to each other and the charactersremain indistinguishable. To overcome these problems, the recognizer has toget a notion of the vicinity of each data point. This information can be derivedfrom a grey scale bitmap representation B = b(i; j) of the normalized coordinatesequence. The bitmap is created by counting the number of points (xt; yt) ofthe sequence, which fall into pixel (i; j) (see �gure 2.12).For every data point (xt; yt) a d�d section centered around the correspondingpixel (i; j) is determined. This section is then down sampled to a 3� 3 bitmap.The resulting nine values are the new feature values. These features are stilllocal in space but global in time (see �gure 2.13). Adding these so-called contextbitmaps to the feature set of NPen++ resulted in a 50% error reduction. Theyare able to model temporal long range and spatial short range dependencies asthey occur in pen trajectories.

CHAPTER 2. THE NPEN++ SYSTEM 15
bitmap representationnormalized sequenceFigure 2.12: Example for bitmap representation of normalized coordinate sequence.Hat FeatureAs already mentioned, delayed crosses and dots are removed from the pointsequence. The information on where these points were located is captured bythe binary hat feature. It marks every remaining point of the point sequencewhich was originally covered by a delayed cross or dot (see �gure 2.14).Since removing of dots and crosses is not done in the incremental system,this feature is left out of the feature set of the incremental system.Pen FeatureThe resampling algorithmalso includes the points where pen-ups and pen-downstake place, so that a sequence of points is interpolated between those locations.The binary pen feature indicates which of the data points are is generated by areal pen movement and which are interpolated points between a pen-up and apen-down. An example for a whole feature vector can be found in �gure 2.15.

CHAPTER 2. THE NPEN++ SYSTEM 16

context bitmaps

dxd section bitmaps

normalized sequence

Figure 2.13: Calculation of context bitmaps with d = 9.2.3 The NPen++ recognizerLike in speech recognition, the main problem of recognizing continuous wordsis that character or stroke boundaries are not known (especially if there are nopen lifts or white spaces that indicate these boundaries). The NPen++ recog-nition engine integrates recognition and segmentation of words into a single net-work architecture, the so-called Multi-State Time Delay Neural Network (MS-TDNN), which was originally proposed for continuous speech recognition tasks(see [BHMW93, HW92]). The Time Delay Neural Network (TDNN) [WHH+89]with its time-shift invariant architecture has been applied successfully to on-linesingle character recognition [GAL+91]. The MS-TDNN combines the high ac-

CHAPTER 2. THE NPEN++ SYSTEM 17
word after cross removingoriginal wordFigure 2.14: Original word and word after cross removing. Emphasized part repre-sents the area where the value of the hat feature is 1.curacy pattern recognition capabilities of a TDNN with a non-linear time align-ment algorithm (dynamic time warping) in order to �nd an optimal alignmentbetween stroke and characters in handwritten words. The following sectiondescribes the network architecture, the training procedures and the search tech-niques used in the recognition component of NPen++.2.3.1 Modeling assumptionsLet W = w1; : : : ; wK be a dictionary consisting of K words. Each of thesewords wi is represented as a sequence of characters wi � ci1ci2 : : : cin . Eachcharacter cj itself is modeled by a three state Hidden Markov Model (HMM)cj � q0j q1jq2j (for an introduction to HMMs see [Rab89]). Inside these models,only self-loops qjk ! qjk and state transitions qjk ! qjk+1 are allowed. Theself-loop probability p(qij j qij) and the transition probabilities p(qij j qij�1) areboth set to 12 , while all the other transition probabilities are set to zero. Theidea behind using three states per character is to model explicitly the initial,middle and �nal section of the character. A word wi is then modelled by thesequence of the states of its characters: wi � qi0qi1 : : : qj3k.During recognition of an unknown sequence of feature vectors xT0 = x0 : : : xTthe recognizer has to �nd the word wj 2 W in the dictionary that maximizesthe a posteriori probability p(wi j xT0 ; �) given a �xed set of parameters � andthe feature sequence xT0 . The recognized word then satis�es:wj = argmax wi2W p(wi j xT0 ; �)Using Bayes' rule, the probability p(wi j xT0 ; �) can be expressed asp(wi j xT0 ; �) = p(xT0 j wi; �)P (wi j �)p(xT0 j �)Instead of approximating p(wi j xT0 ; �) directly the MS-TDNN models the like-lihood of the feature vector sequence p(xT0 j wi; �).

CHAPTER 2. THE NPEN++ SYSTEM 18
t-3

0
time

local
absY

context bitm
ap

pen hat

t

T

t+3Figure 2.15: Complete feature vector for the word \able".2.3.2 The MS-TDNN architectureAs stated earlier, the TDNN and the MS-TDNN architectures were originallydeveloped for speech recognition. The objective was to develop a neural net-work able to represent relationships between events in time. The actual featuresor abstractions learned by the neural network should be invariant under trans-lations in time. In order to achieve that every neuron is not only exposed tothe current input, but also to the temporal vicinity (through so-called timedelays). This enables a TDNN unit to relate and compare the current inputto events happening shortly before or afterwards. Another way of seeing thenet is depicted in �gure 2.16. In this case a time window is shifted over thetime varying input and over the activations in the hidden layer as well. Theoutput of the TDNN are activations in the so-called states layer, which can beinterpreted as an estimate of the probabilities of the states qj given the inputwindow xt+dt�d = xt�d : : : xt+d for each time frame t. In order to recognize words,which are sequences of characters, the best sequence through the states in thestates layer has to be found. This is done by the so-called dynamic time warping(DTW) algorithm. The activations from the states layer are simply copied intothe DTW layer. The DTW algorithm �nds an optimal alignment path for eachword and the sum of all activations along this optimal path is taken as the scorefor the word output unit.

CHAPTER 2. THE NPEN++ SYSTEM 19The MS-TDNN is trained with standard back-propagation. In a �rst step,the network is trained in a forced alignmentmode, during which hand-segmentedtraining data is used. The back-propagation here starts at the states layer ofthe front-end TDNN with �xed state boundaries. After a certain number ofiterations, the forced alignment is replaced by a free alignment found by theDTW algorithm. Now training starts at the word level of the MS-TDNN andis performed on unsegmented training data.

CHAPTER 2. THE NPEN++ SYSTEM 20
b

In
p
u
t L

a
y
e
r

H
id

d
e
n
 L

a
y
e
r

S
ta

te
s L

a
y
e
r

a a
b
il

it
y

a
b
le

a
b
o
a
rd

a
b
o
u
n
d

a
b
o
u
t

a
b
o
v
e

z
o
o
m

...

...

...

...

......

a
b

a

c

y

z

b
a

o
u
te

l

Figure 2.16: The Multi-State TDNN architecture used in this work. It comprises 17input units, 40 units in the hidden layer and 78 state output units. There are 7 timedelays in the input layer and 5 time delays in the hidden layer. The representation ofthe search is simpli�ed. See section 2.3.3 for an exact version.

CHAPTER 2. THE NPEN++ SYSTEM 212.3.3 Search TechniqueThe search for the most likely word out of the dictionary consists of two steps:First, the most likely state sequence in every word of the dictionary has to bedetermined and then the word with the highest total score has to be selected.If the search is executed exactly as described one ends up searching through a
at dictionary structure as depicted in �gure 2.17. This is only feasible as longas the number of words in the dictionary is small.
any

iba y

elba

yna

ability

ableFigure 2.17: Flat dictionary structure.Since the run time for a recognition pass scales linearly with the numberof entries in the dictionary, this approach can not be used for building verylarge vocabulary neural network recognizer. For a 100k dictionary, the searchengine would have to evaluate 968; 005 di�erent HMMs. To reduce the numberof di�erent HMMs the organization of the dictionary was changed, extendingthe MS-TDNN to a tree-based TDNN. For each letter a search tree for all wordsstarting with this character is built. The nodes in each tree consist of HMMsrepresenting the individual letters (see �gure 2.18).This technique reduces the ratio of the number of HMMs to the size of thedictionary from 10 for the
at structure to 3. If a 100k dictionary is used, thenumber of di�erent HMMs to be evaluated drops down to 277; 382. In orderto further reduce this number a beam search is performed instead of a searchover all models. This means that all branches whose accumulated scores arebelow a certain threshold (called beam) are pruned. Experiments show thatthe tree search with pruning is about 15 times faster than the
at search. Thisallows running NPen++ in real-time with dictionary sizes up to 100; 000 words[MFW96].

CHAPTER 2. THE NPEN++ SYSTEM 22

any

n

a b l

i

e

y

y

ability

ableFigure 2.18: Tree structured dictionary.

Chapter 3The Run-On SystemIn general, users want computer systems to be fast. This is especially true forinteractive systems, where input and output are interleaved, allowing the user'sinput to depend on earlier output from the same run. In this case, small di�er-ences in response times can decide whether a system is usable or not. The mostobvious way to tackle this problem is to speed up the recognizer. Of course,this can not be done ad in�nitum especially if the system is supposed to handlelarge vocabularies with a high recognition accuracy. If the recognizer itself cannot be made any faster, the next idea is to just start the recognition processearlier. This can only be done by overlapping the user input with the recogni-tion. Thus, the recognizer has to be enabled to do run-on recognition. Beingconvenient for an isolated word recognizer, the ability to do run-on recognitionis almost a must for continuous word recognizers.This chapter is organized as follows. The �rst section describes the basic ar-chitectural concepts of the run-on system. Sections 2 and 3 then show howincremental preprocessing and recognition are done in NPen++.3.1 System ArchitectureIn order to be able to accept user input and to do recognition of the previousinput at the same time the recognizer is split into two separate processes (see�gure 3.1).The �rst process is constantly recording the coordinates of the pen move-ment. After a certain number of data points has been collected (and the rec-ognizer has �nished the processing of the previous input), the data collectingprocess sends the points to the recognition engine, where preprocessing andrecognition is done. An important question here is how the coordinates aregrouped. The optimization of this process has to deal with two con
ictinggoals. First, the recognizer should produce results as early and as often as pos-23

CHAPTER 3. THE RUN-ON SYSTEM 24
above {299.5}

(x3, y3, p3)

(x5, y5, p5)

(x4, y4, p4)

(x1, y1, p1) (x0, y0, p0)

able {340.4}

about {300.2}

Record
Coordinates

Display Result

Recognition
EngineFigure 3.1: Overview of the Run-On System.sible, which implies sending the coordinate bunches as soon as possible (withsmall amounts of coordinates). On the other hand, it only makes sense to starta recognition run if there is enough information in the coordinate sequence,e.g. data points of at least one complete character. Since it usually can notbe determined where a character ends (for cursive script), a simple strategywould be to just put together as much coordinates as possible. The compromiseimplemented in NPen++ is to group the data points according to the numberof local extrema in the sequence. After a certain number of local minima andmaxima is reached the coordinates are passed to the recognizer. The value ofthese thresholds together with the length of the initial sequence is optimized onthe given data set (see section 4.3).As will be shown in section 3.2, incremental preprocessing is not always pos-sible for every coordinate group. First of all the initial coordinate sequenceis processed using the normal methods. Subsequent coordinate bunches haveto ful�ll certain conditions in order to be preprocessed incrementally. In casethe corresponding check fails, the whole previous sequence (including the newdata points) has to be preprocessed and recognized together. If incrementalpreprocessing is possible the new bunch of feature vectors is given to the rec-ognizer. The result of the recognition run is then presented to the user. Figure3.2 depicts this approach for the incremental preprocessing.

CHAPTER 3. THE RUN-ON SYSTEM 25
coordinates
received

new
coordinate
bunch

previously

Run-On Check

Yes

No

?
ok

Check

Preprocessing
Full

Preprocessing
IncrementalFigure 3.2: Preprocessing cycle of the run-on system.

CHAPTER 3. THE RUN-ON SYSTEM 263.2 Incremental PreprocessingSeen in a more abstract way, doing incremental preprocessing means doing pre-processing without knowing the whole word. This already leads to the �rstproblem: scaling. As it is stated in section 2.2, scaling the handwritten wordto a �xed size and therefore eliminating size variations between words is an im-portant preprocessing step. It is very likely that the height of a word is notconstant along its trajectory. By scaling di�erent parts to the same size, whichwould happen if the parts are scaled independently from each other, the varia-tions present in the original word would disappear (remove size variations withinwords). The consequence is a distorted word. An example for this erroneousprocessing can be found in �gure 3.3.
size relations after wrong resizing

bunch 2bunch 1 bunch 1 bunch 2

original size relationFigure 3.3: Example for wrong scaling of the word \center".Therefore, the scaling has to be done relative to the maximum height of theword. All coordinate bunches processed prior to the point of maximal heighthave to be scaled again, which means that the whole preprocessing has to beredone. For the parts of the input processed after this point, the scaling factordetermined earlier has to be applied. In this case the preprocessing can be doneincrementally.The following subsection explains how incremental preprocessing is done for thedi�erent preprocessing steps. Subsection 3.2.2 then describes our approach fordetecting and handling of height changes.3.2.1 Techniques for the various preprocessing functionsLocal TechniquesAs shown in section 2.2, most of the preprocessing algorithms operate locally.Only a very limited number of data points out of the temporal vicinity of thepoint to be processed is involved in the calculation. The fact that not all coor-dinates from the input sequence are available only matters at the end of a givensequence. During incremental preprocessing the points which the algorithm cannot process because of missing corresponding points are stored. As soon as thenext coordinate group is available, these points are simply added at the begin-ning of the new bunch. (see �gure 3.4). The algorithms where this approach ispossible produce the same results for normal and incremental preprocessing. As

CHAPTER 3. THE RUN-ON SYSTEM 27can be concluded from the description in section 2.2 this technique is applica-ble to resampling (see also next section), smoothing and for the local features:y-position, curvature, writing direction and pen indication1
Figure 3.4: Approach for local preprocessing techniques. White dots are alreadyprocessed, black dots could not be processed at the end of the �rst bunch and aretherefore copied to the beginning of the second bunch. The grey dots are auxiliarypoints needed for processing the black dots. The grey and black dots have beenenlarged for better understanding.Context BitmapsIn contrast to the algorithms described in the last section, context bitmapsare local in space, but global in time. They are especially designed to capturetemporal long range dependencies (see �gure 2.2.2). It is obviously impossible toinclude future coordinate points into the calculation of the bitmaps. Therefore,only the data points of the current coordinate bunch and the points collected sofar can be considered. As can be seen in �gure 3.5, the information about theexistence of points in region 2 is not accessible from region 1 at the time whenthe points in that region are processed. For the processing of region 2 on theother hand, the points of region 1 are available.There is no means to compensate for a loss of information of this kind.3.2.2 Detection and Handling of word height changesThe easiest way to measure the height of a word is to simply calculate thevertical distance between the points with minimum and maximum values inthe y coordinate (see absolute word height in �gure 3.6). Unfortunately, this1As the removal of the diacritical marks has been left out in the incremental system, thehat feature is not used.

CHAPTER 3. THE RUN-ON SYSTEM 28
21

Figure 3.5: Example for incomplete context bitmaps occurring during incrementalprocessing.approach fails if the baseline of the word deviates a lot from the horizontal. Inthis case, changes to the absolute word height (in terms of the distance justmentioned) are not necessarily related to true word height changes (measuredorthogonal to the baseline). An example for these cases can be found in �gure3.6. Therefore, we made the decision to use the word core height as a criterionto detect word height changes. Besides being invariant against rotation of theword, the core height is also more robust against very small variations in theword height, which can be tolerated for the matters of scaling.
true w

ord height

absolute w
ord heightFigure 3.6: Example for a case where absolute word height and true word heightdi�ers.This approach only works if the core height is not constantly changingthroughout the word. Figure 3.7 shows that after a certain point the changes tothe core height are very small. This follows our expectations, as the true word

CHAPTER 3. THE RUN-ON SYSTEM 29height is not changing any more after the highest and the lowest points of theword are reached.
0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400 450 500
c
o

re
 h

e
ig

h
t

position of core height calculation [x coordinate]

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300

c
o

re
 h

e
ig

h
t

position of core height calculation [x coordinate]Figure 3.7: Graphs showing the core height for words starting with capital letters(left) and small letters (right) respectively.The approach taken in NPen++ can be described as follows (see also �gure3.2). The baselines and the core height are calculated for the �rst coordinatebunch. Every further group of coordinates is added to the points collected sofar and the core height of the whole sequence is determined. If the di�erencebetween this core height and the previously calculated core height exceeds a cer-tain threshold, the whole sequence together is preprocessed again. If this is notthe case, the previously �xed core height and baselines are used for the prepro-cessing of the new coordinate bunch (for resampling and baseline normalization).The threshold used to decide on whether a new full preprocessing of thecoordinates collected so far is necessary or not is very crucial. If it is assignedto a low value the number of full preprocessings performed while processing aword overweight the number of incremental preprocessings. For a high thresholdvalue the opposite is true. The e�ect of this threshold on the overall systemperformance is analyzed in section 4.2.3.3 Incremental RecognitionThe changes to the recognition engine are a lot less extensive than the changesto the preprocessing. In order to perform incremental recognition, the neuralnetwork had to be enhanced by the ability to add frames to the various layers.In each forward pass of the net, the time windows are shifted to the very end

CHAPTER 3. THE RUN-ON SYSTEM 30of the available input and the last feature vectors and activations are stored.Then the new feature frames are just appended to the stored vectors and thewindows are shifted out of the position where they stopped at the end of thelast pass. Figure 3.8 depicts this strategy. The neural net was trained withnormally preprocessed training data (see 4.1 for a description of the data usedfor training).The search component had to be enabled to �nd the single best path out ofthe active paths at the end of the last search and to issue the characters alongthis path. The fact that the search is done along a dictionary tree can be usedto perform word completion. If the tree does not branch o� after the node withthe highest score at the end of the search run, the whole word is emitted andnot just the beginning. As can be seen in chapter 4 in a considerable amountof cases, this technique saves the user from writing the whole word2.

2The work described in this section was predominantly done by Stefan Manke.

CHAPTER 3. THE RUN-ON SYSTEM 31

Second Coordinate BunchFirst Coordinate Bunch

Second Coordinate BunchFirst Coordinate Bunch

Figure 3.8: Incremental version of the TDNN.

Chapter 4Evaluation of the SystemThis chapter describes the various tests conducted with the run-on system. Theexact results of the presented tests can be found in appendix A.4.1 Setup for the Experiments4.1.1 Training of the Neural NetThe neural net we used for the experiments was trained on approximately18300 samples written by 191 di�erent writers. The writers were only pro-vided with minimal instructions. The training set contains all types of writingstyles, namely cursive, hand-printed and mixtures of both. As stated earlier,the neural net was trained on normally preprocessed data.4.1.2 Test EnvironmentAll tests performed with the run-on system use the same test set. It consistsof 2345 words written by 45 di�erent writers. The set was build from testdata with which the normal NPen++system is evaluated. None of the writersin the test set contributed to the training data. The tests were done usinga 50; 000 word dictionary with lower and upper case letters. It was selectedrandomly from the ARPAWall Street Journal Task (WSJ), which was originallyde�ned for speech recognition evaluations. The test data consists of coordinatesequences of whole words. In order to test the incremental system the coordinatesequence is chopped into bunches following the strategy described in section 3.1.The parameters controlling this grouping and their optimization is described insection 4.3. 32

CHAPTER 4. EVALUATION OF THE SYSTEM 334.2 Recognition Performance of the Run-OnSystemAs described in section 3.2.2, the value of the core height threshold is very im-portant, since it determines the ratio between the number of full preprocessingsand the number of incremental preprocessings. This can be seen in �gure 4.1.
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

nu
m

be
r

of
 p

re
pr

oc
es

si
ng

s

core height threshold

full preprocessings
incremental preprocessings

Figure 4.1: Number of full and incremental preprocessings plotted against the wordcore height threshold. Refer to table A.1 for exact values.If the threshold value is raised up 0:1 the number of full preprocessingsapproaches 1. This is the lower boundary because the �rst coordinate bunch isalways fully preprocessed. The core height threshold also a�ects the average xposition of the last full preprocessing as shown in �gure 4.2.In order to determine the recognition capability of the run-on system, twodi�erent kind of tests are conducted. The �rst test examines the incrementalpreprocessing, excluding the in
uence of the incremental recognition. This isdone by simply putting together the individually preprocessed bunches to get thefeature vector of the whole word. The whole vector is then recognized simply asthe feature vector of a conventionally preprocessed word would be recognized.The results of these experiments are shown in �gure 4.3. As expected therecognition rate drops with raising values of the core height threshold.In the second set of experiments, the e�ects of the incremental recognitionare included. Every coordinate bunch determined by the splitting routine isgiven to the recognizer and processed according to the preprocessing mode (fullor incremental recognition). The recognition rates achieved at the di�erentpoints of the input sequence are shown in �gures 4.4 and 4.5 (again dependingon the core height threshold).

CHAPTER 4. EVALUATION OF THE SYSTEM 34
100

150

200

250

300

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x
po

si
tio

n
of

 la
st

 fu
ll

pr
ep

ro
ce

ss
in

g

core height thresholdFigure 4.2: x position of the last full preprocessing plotted against the word coreheight threshold. The average length of the words in the test set is 270:5. Refer totable A.2 for exact values.For the �rst set of graphs only the words which are correctly recognizedwhen processed like in the �rst experiment were taken into account. It mightbe the case that the recognizer gets on the wrong path towards the end of theword after following the right character sequence before, but usually one wouldexpect the recognizer to be o� all the way through if it recognizes the wrongword while processing the whole feature vector. This can also be concludedfrom the second set of graphs where all words are considered for the recognitionrates. There the accuracies are signi�cantly lower. The average length of thesections between the points where the recognition rates are measured is 60 forboth sets of graphs.The shape of the graphs in �gure 4.4 are very similar to each other. Therecognition rate for the �rst recognizer run is signi�cantly higher than the ratefor the second one, due to the fact that the �rst run is always done with fullpreprocessing. After this �rst break the rate rises because more and more infor-mation is available. The maximal accuracy depends on the core height threshold.It falls with raising values of that parameter (as expected). For the graphs in�gure 4.5 the situation is not as homogeneous as it was just described. Thee�ects sketched for the �rst set of graphs get washed out by the high numberof wrong recognition results incorporated in the second set of graphs.During these recognition experiments the number of word completions wasalso determined. For all tested systems the completion succeeded for approxi-mately 36% of the correctly recognized words. On average, the correct resultwas found after 74% of the word was written. The word completion rate can beexpected to be even higher if the dictionary size is smaller.

CHAPTER 4. EVALUATION OF THE SYSTEM 35

60

65

70

75

80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

w
or

d
ac

cu
ra

cy
 [%

]

core height thresholdFigure 4.3: Word accuracies of the incremental system as they are achieved at di�erentvalues of the core height threshold. See table A.3 for exact values.

CHAPTER 4. EVALUATION OF THE SYSTEM 36

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

core height threshold 0.03

core height threshold 0.0

core height threshold 0.08

core height threshold 0.04 core height threshold 0.06

core height threshold 0.1

core height threshold 0.02

core height threshold 0.01

Figure 4.4: Overview of the intermediate recognition results for di�erent core heightthresholds if only the correctly recognized words are taken into account. The exactvalues can be found in table A.4.

CHAPTER 4. EVALUATION OF THE SYSTEM 37
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

core height threshold 0.0

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7

w
or

d
ac

cu
ra

cy
 [%

]

number of recognition run

core height threshold 0.03

core height threshold 0.08

core height threshold 0.04 core height threshold 0.06

core height threshold 0.1

core height threshold 0.02

core height threshold 0.01

Figure 4.5: Overview of the intermediate recognition results for di�erent core heightthresholds if all words are taken into account. The exact values can be found in A.5.

CHAPTER 4. EVALUATION OF THE SYSTEM 384.3 System selection and parameter optimiza-tionAs shown in the last section, the task of choosing one system, which meanschoosing one core height threshold, involves optimization of at least two con-
icting values, namely:� recognition accuracy� ratio of full / incremental preprocessingsAs a compromise between a system with high recognition accuracy and asystem with a high number of incremental preprocessings we selected the systemwith a 0:03 core height threshold. This recognizer combines a recognition rateof 70:23% with a reasonable ratio of full and incremental preprocessings (1:38versus 2:25).For this setup, we optimized the parameters controlling the grouping of thecoordinates. During the previously described tests we used default values. Theparameters are:� minimal length of the �rst coordinate bunch� minimal length of any further sequence� number of minima and maxima per sequenceIn order to keep the computational costs within reasonable limits, we assumethese parameters to be independent. Therefore, the following graphs are onlysupposed to give an impression on how the parameters are related to wordaccuracy and preprocessing ratio. Figures 4.6 , 4.7 and 4.8 show the whole wordrecognition accuracies and the ratio between the number of full and incrementalpreprocessings depending on the said parameters. This ratio should be lowsince one of the aims is to have a high number of incremental preprocessings(compared to the number of full preprocessing). Following the optimizationgoals, we selected the system using:� minimal length of the �rst coordinate bunch: 70� minimal length of further sequences: 30� number of extrema per sequence: 2This system reaches a word accuracy of 70:6% while performing 1:42 full and2:35 incremental preprocessing on average.

CHAPTER 4. EVALUATION OF THE SYSTEM 39
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

50 60 70 80 90 100 110

w
o

rd
 a

c
c
u

ra
c
y
 [

%
]

minimal length of first sequence [points]

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

50 60 70 80 90 100 110

ra
ti
o

 f
u

ll/
in

c
re

m
e

n
ta

l
p

re
p

ro
c
e

s
s
in

g
s

minimal length of first sequence [points]Figure 4.6: Graphs showing the word accuracy (left) and the ratio between the num-ber of full and incremental preprocessings (right) depending on the minimal length ofthe �rst coordinate bunch.4.4 TimingsIn order to determine the speed-up gained by using incremental preprocessingand recognition instead of full preprocessing and full recognition, we measuredthe time the system spent in those modules. We used the recognizer describedin the last section and determined how long it takes to process a word usingfull preprocessing and full recognition for all coordinate bunches versus applyingincremental preprocessing and incremental recognition whenever possible. Theincremental system only needs 54:1% of the time of the full system (averagedover 1560 words). Test runs with an interactive application also showed, thatthis speed-up reaches the user-level.4.5 DiscussionThe results given in this chapter show that it is possible to perform run-on recog-nition with NPen++. The system we presented achieves a recognition accuracyof 70:2% on a 50k dictionary. Compared to a system with full preprocessingand full recognition this result constitutes a loss of 7:2% in word accuracy. Con-sidering the limited information the incremental system gets while processinga word and the fact that the neural network was not trained on incrementallypreprocessed data, this result is very encouraging.

CHAPTER 4. EVALUATION OF THE SYSTEM 40
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

10 20 30 40 50 60 70 80

w
o

rd
 a

c
c
u

ra
c
y
 [

%
]

minimal length of sequence [points]

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60 70 80

ra
ti
o

 f
u

ll/
in

c
re

m
e

n
ta

l
p

re
p

ro
c
e

s
s
in

g
s

minimal length of sequence [points]Figure 4.7: Graphs showing the word accuracy (left) and the ratio between the num-ber of full and incremental preprocessings (right) depending on the minimal length ofall further coordinate bunches.
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

1 1.5 2 2.5 3 3.5 4 4.5 5

w
o
rd

 a
c
c
u
ra

c
y
 [

%
]

minimal number of extrema within sequence

0.4

0.6

0.8

1

1.2

1.4

1 1.5 2 2.5 3 3.5 4 4.5 5

ra
ti
o
 f

u
ll/

in
c
re

m
e
n
ta

l
p
re

p
ro

c
e
s
s
in

g
s

minimal number of extrema within sequenceFigure 4.8: Graphs showing the word accuracy (left) and the ratio between the num-ber of full and incremental preprocessings (right) depending on the minimal numberof extrema for all further coordinate bunches.

Chapter 5Summary5.1 SummaryWe showed that it is possible to do run-on recognition with the NPen++on-linehandwriting recognition system. We changed the system architecture and allparts (preprocessing, recognition, search) in order to enable them to performincremental processing. The system we built achieved a recognition accuracy of70:2% on a 50k dictionary. For 36% of the correctly recognized words the resultwas already found before all coordinate points were passed to the system (usingword completion). The run-on system showed a signi�cant speed up comparedto a system performing full preprocessing and full recognition on the coordinatebunches.5.2 Future WorkThe major aim for the future is the improvement of the recognition accuracy. Weachieved the results presented in this report by using a neural network recognizerfor data which deviates signi�cantly from the data the net was trained on.This can also be concluded from the fact that the recognition accuracy dependson the core height threshold. This threshold basically controls the amount ofdeviation the incrementally preprocessed data has from the \optimal" data,which is the normally preprocessed data. Therefore, the next step will be totrain the recognizer on incrementally preprocessed data. We especially hopethat the strong dependency on the core height threshold can be removed or atleast weakened. We also plan to integrate run-on recognition into the continuousversion of NPen++. 41

Appendix ADetailed Test ResultsNbr full preproc.core height threshold0.00 1.010.005 1.470.01 1.580.015 1.550.02 1.490.025 1.420.03 1.380.035 1.330.04 1.290.045 1.240.05 1.220.055 1.200.06 1.180.065 1.150.07 1.140.075 1.120.08 1.110.085 1.090.09 1.080.095 1.070.1 1.06
Nbr incr. preproc.core height threshold0.00 0.00.005 0.740.01 1.320.015 1.680.02 1.930.025 2.110.03 2.250.035 2.360.04 2.440.045 2.520.05 2.550.055 2.600.06 2.640.065 2.660.07 2.700.075 2.720.08 2.740.085 2.760.09 2.780.095 2.790.1 2.81Table A.1: Number of full (left) and incremental (right) preprocessings depend-ing on the core height threshold. 42

APPENDIX A. DETAILED TEST RESULTS 43
Position of last full preprocessingcore height threshold0.00 275.230.005 256.690.01 235.760.015 216.370.02 204.280.025 193.440.03 182.340.035 174.820.04 167.270.045 160.110.05 156.660.055 152.390.06 148.050.065 144.740.07 140.010.075 138.130.08 135.210.085 131.300.09 127.000.095 124.320.1 121.64Table A.2: Point of last full preprocessing depending on core height threshold.

APPENDIX A. DETAILED TEST RESULTS 44
Word accuracycore height threshold0.00 77.390.005 76.490.01 75.090.015 73.860.02 72.790.025 71.560.03 70.230.035 69.990.04 68.770.045 68.210.05 67.580.055 67.020.06 66.650.065 66.310.07 65.900.075 65.300.08 64.620.085 63.930.09 63.630.095 63.200.1 62.90Table A.3: Word accuracy depending on core height threshold.

APPENDIX A. DETAILED TEST RESULTS 45Word accuracyNumber of recognition runcore height 0.0 1 0.542 0.543 0.574 0.645 0.696 0.737 0.81core height 0.01 1 0.552 0.533 0.564 0.635 0.686 0.757 0.84core height 0.02 1 0.552 0.523 0.564 0.655 0.666 0.767 0.77core height 0.03 1 0.572 0.523 0.564 0.665 0.666 0.757 0.78core height 0.04 1 0.582 0.533 0.564 0.675 0.666 0.807 0.80core height 0.05 1 0.592 0.523 0.564 0.635 0.666 0.767 0.73

Word accuracyNumber of recognition runcore height 0.06 1 0.592 0.523 0.554 0.615 0.646 0.747 0.74core height 0.07 1 0.602 0.523 0.544 0.595 0.626 0.717 0.72core height 0.08 1 0.602 0.523 0.534 0.605 0.616 0.707 0.74core height 0.09 1 0.612 0.523 0.544 0.615 0.626 0.717 0.74core height 0.1 1 0.612 0.533 0.544 0.605 0.626 0.727 0.71Table A.4: Intermediate recognition results for di�erent core height thresholdsif only the correctly recognized words are taken into account.

APPENDIX A. DETAILED TEST RESULTS 46Word accuracyNumber of recognition runcore height 0.0 1 0.472 0.453 0.464 0.515 0.536 0.587 0.65core height 0.01 1 0.472 0.423 0.444 0.495 0.496 0.567 0.59core height 0.02 1 0.472 0.413 0.424 0.465 0.436 0.527 0.52core height 0.03 1 0.472 0.403 0.404 0.455 0.416 0.507 0.52core height 0.04 1 0.472 0.393 0.394 0.425 0.406 0.487 0.48core height 0.05 1 0.472 0.383 0.384 0.395 0.456 0.477 0.49

Word accuracyNumber of recognition runcore height 0.06 1 0.472 0.373 0.364 0.375 0.376 0.437 0.48core height 0.07 1 0.472 0.373 0.354 0.355 0.366 0.417 0.47core height 0.08 1 0.472 0.373 0.344 0.355 0.366 0.407 0.42core height 0.09 1 0.472 0.373 0.344 0.355 0.356 0.397 0.40core height 0.1 1 0.472 0.373 0.334 0.345 0.346 0.387 0.39Table A.5: Intermediate recognition results for di�erent core height thresholdsif all words are taken into account.

List of Figures2.1 Diagram of the input format : 72.2 Overview of the NPen++- System : : : : : : : : : : : : : : : : : 82.3 Examples for variations in handwriting : : : : : : : : : : : : : : : 92.4 Examples for variations in writing speed : : : : : : : : : : : : : : 92.5 Example for Resampling : 102.6 Word before and after smoothing : : : : : : : : : : : : : : : : : : 102.7 Example for word baselines : 112.8 Word after baseline normalization : : : : : : : : : : : : : : : : : 122.9 Writing direction : 132.10 Curvature : 142.11 Confusable cursive characters : 142.12 Example for bitmap representation : : : : : : : : : : : : : : : : : 152.13 Calculation of Context Bitmaps : : : : : : : : : : : : : : : : : : : 162.14 Visualization of hat feature : 172.15 Complete feature vector : 182.16 MS-TDNN architecture : 202.17 Flat dictionary structure : 212.18 Tree structured dictionary : 223.1 Overview of the Run-On System : : : : : : : : : : : : : : : : : : 243.2 Preprocessing cycle of the Run-On system : : : : : : : : : : : : : 253.3 Example for wrong scaling : 263.4 Local preprocessing techniques : : : : : : : : : : : : : : : : : : : 273.5 Example for incomplete context bitmaps : : : : : : : : : : : : : : 283.6 Di�erent ways of word height calculation : : : : : : : : : : : : : : 283.7 Graph of core height : 293.8 Incremental version of the TDNN : : : : : : : : : : : : : : : : : : 314.1 Number of full and incremental preprocessings : : : : : : : : : : 334.2 Point of last full preprocessing : : : : : : : : : : : : : : : : : : : 344.3 Word accuracies of the incremental system : : : : : : : : : : : : : 354.4 Overview of intermediate recognition results I : : : : : : : : : : : 364.5 Overview of intermediate recognition results II : : : : : : : : : : 3747

LIST OF FIGURES 484.6 Graphs for parameter minimal initial length : : : : : : : : : : : : 394.7 Graphs for parameter minimal length of further sequences : : : : 404.8 Graphs for parameter minimal number of extrema in further se-quences : 40

List of TablesA.1 Number of full and incremental preprocessings : : : : : : : : : : 42A.2 Point of last full preprocessing depending on core height threshold 43A.3 Word accuracy depending on core height threshold : : : : : : : : 44A.4 Intermediate recognition results on correct words : : : : : : : : : 45A.5 Intermediate recognition results on all words : : : : : : : : : : : 46

49

Bibliography[BHMW93] C. Bregler, H. Hild, S. Manke, and A. Waibel. Improving connectedletter recognition by lipreading. In Proceedings of the ICASSP-93,Minneapolis, April 1993.[BL94] Y. Bengio and Y. LeCun. Word normalization for on-line handwrit-ten word recognition. In Proceedings of the ICPR-94, Jerusalem,October 1994.[GAL+91] I. Guyon, P. Albrecht, Y. LeCun, W. Denker, and W. Hubbard. De-sign of a neural network character recognizer for a touch terminal.Pattern Recognition, 24(2), 1991.[HW92] P. Ha�ner and A. Waibel. Multi-state time delay neural network forcontinous speech recognition. In Advances in Neural InformationProcessing Systems (NIPS-4). Morgan Kaufman, 1992.[MB94] S. Manke and U. Bodenhausen. A connectionist recognizer for on-line cursive handwriting recognition. In Proceedings of the Interna-tional Conference on Acoustic, Speech and Signal Processing, 1994.[MBPV93] P. Morasso, L. Barberis, S. Pagliano, and D. Vergano. Recognitionexperiments of cursive dynamic handwriting with self-organizingnetworks. Pattern Recognition, 26, 1993.[MFW94] S. Manke, M. Finke, and A. Waibel. Combining bitmaps with dy-namic writing information for on-line handwriting recognition. InProceedings of the International Conference on Pattern Recogni-tion, 1994.[MFW95a] S. Manke, M. Finke, and A. Waibel. npen++: A writer indepen-dent, large vocabulary on-line cursive handwriting recognition sys-tem. In Proceedings of then International Conference on DocumentAnalysis and Recognition. IEEE Computer Society, 1995.50

BIBLIOGRAPHY 51[MFW95b] S. Manke, M. Finke, and A. Waibel. The use of dynamic writinginformation in a connectionistic on-line cursive handwriting recog-nition system. In Advances in Neural Information Processing, num-ber 7. MIT Press, Cambridge (MA), 1995.[MFW96] S. Manke, M. Finke, and A. Waibel. A fast search technique forlarge vocabulary on-line handwriting recognition. In InternationalWorkshop on Frontiers in Handwriting Recognition, Colchester,England, 1996.[OWM92] K. Odaka, T. Wakahara, and H. Murase. On-line handwritingrecognition. Proceedings of the IEEE, 80(7), 1992.[Rab89] L.R. Rabiner. A tutorial on hidden markovmodels and selected ap-plications in speech recognition. Proc. IEEE, 77(2):257{286, Febru-ary 1989.[Sch93] L. Schomaker. Using stroke- or character-based self-organizingmaps in the recognition of on-line, connected cursive script. PatternRecognition, 26, 1993.[WHH+89] A. Waibel, T. Hanazawa, G. Hinton, K. Shinao, and K. Lang.Phoneme recognition using time-delay neural networks. IEEETransactions on Acoustics, Speech and Signal Processing, March1989.[YMS92] K. Yamamoto, S. Mori, and C. Y. Suen. Historical review of ocrresearch and development. Proceedings of the IEEE, 80(7), 1992.

