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Abstract
In this work, we propose an algorithm for acoustic source

localization based on time delay of arrival (TDOA) estimation.
In earlier work by other authors, an initial closed-form approxi-
mation was first used to estimate the true position of the speaker
followed by a Kalman filtering stage to smooth the time se-
ries of estimates. In the proposed algorithm, this closed-form
approximation is eliminated by employing a Kalman filter to
directly update the speaker position estimate based on the ob-
served TDOAs. In particular, the TDOAs comprise the obser-
vation associated with an extended Kalman filter whose state
corresponds to the speaker position. We tested our algorithm
on a data set consisting of seminars held by actual speakers.
Our experiments revealed that the proposed algorithm provides
source localization accuracy superior to the standard spherical
and linear intersection techniques. Moreover, the proposed al-
gorithm, although relying on an iterative optimization scheme,
proved efficient enough for real-time operation.

1. Introduction
Most practical acoustic source localization schemes are based
on time delay of arrival estimation(TDOA) for the follow-
ing reasons: Such systems are conceptually simple. They are
reasonably effective in moderately reverberant environments.
Moreover, their low computational complexity makes them
well-suited to real-time implementation with several sensors.

Time delay of arrival-based source localization is based on
a two-step procedure:

1. The TDOA between all pairs of microphones is esti-
mated, typically by finding the peak in a cross correlation
or generalized cross correlationfunction [1].

2. For a given source location, the squared-error is calcu-
lated between the estimated TDOAs and those deter-
mined from the source location. The estimated source
location then corresponds to that position which mini-
mizes this squared error.

If the TDOA estimates are assumed to have a Gaussian-
distributed error term, it can be shown that the least squares
metric used in Step 2 provides the maximum likelihood (ML)
estimate of the speaker location [2]. Unfortunately this least
squares criterion results in a nonlinear optimization problem
that can have several local minima. Several authors have pro-
posed solving this optimization problem with standard gradient-
based iterative techniques. While such techniques typically
yield accurate location estimates, they are typically computa-
tionally intensive and thus ill-suited for real-time implementa-
tion [3, 4].

For any pair of microphones, the surface on which the
TDOA is constant is a hyperboloid of two sheets. A second
class of algorithms seeks to exploit this fact by grouping all mi-
crophones into pairs, estimating the TDOA of each pair, then

finding the point where all associated hyperboloids most nearly
intersect. Several closed-form position estimates based on this
approach have appeared in the literature; see Chan and Ho [5]
and the literature review found there. Unfortunately, the point of
intersection of two hyperboloids can change significantly based
on a slight change in the eccentricity of one of the hyperboloids.
Hence, a third class of algorithms was developed wherein the
position estimate is obtained from the intersection of several
spheres. The first algorithm in this class was proposed by Schau
and Robinson [6], and later came to be known asspherical in-
tersection. Perhaps the best known algorithm from this class
is the spherical interpolationmethod of Smith and Abel [7].
Both methods provide closed-form estimates suitable for real-
time implementation.

Brandsteinet al [4] proposed yet another closed-form ap-
proximation known aslinear intersection. Their algorithm pro-
ceeds by first calculating a bearing line to the source for each
pair of sensors. Thereafter, the point of nearest approach is
calculated for each pair of bearing lines, yielding a potential
source location. The final position estimate is obtained from a
weighted average of these potential source locations.

In the algorithm proposed here, the closed-form approxi-
mations used in prior approaches is eliminated by employing
an extended Kalman filter to directly update the speaker posi-
tion estimate based on the observed TDOAs. In particular, the
TDOAs comprise the observation associated with an extended
Kalman filter whose state corresponds to the speaker position.
Hence, the new position estimate comes directly from the up-
date formulae associated with the Kalman filter. Similar ap-
proaches have been proposed in the past by Dvorkin and Gan-
not [8] for acoustic source localization, and by Duraiswamiet
al for a combined audio-video localization system based on a
particle filter [9].

The balance of this work is organized as follows. In Sec-
tion 2, we review the process of source localization based on
time-delay of arrival estimation. In particular, we formulate
source localization as a problem in nonlinear least squares es-
timation, then develop an appropriate linearized model. Sec-
tion 3 summarizes a less well-known variant of the Kalman fil-
ter, known as the iterated extended Kalman filter. Section 4
presents a simple model for speaker motion, then discusses how
the development in the preceding sections can be combined to
develop an acoustic localization algorithm capable of tracking
a moving speaker. Section 5 presents the results of our initial
experiments comparing the proposed algorithm to the standard
techniques.

2. Source Localization
Consider thei-th pair of microphones, and letmi1 andmi2

respectively be the positions of the first and second microphones
in the pair. Letx denote the position of the speaker inR3. Then
thetime delay of arrival(TDOA) between the two microphones



of the pair can be expressed as

T (mi1,mi2,x) =
‖x−mi1‖ − ‖x−mi2‖

s
(1)

wheres is the speed of sound. Denoting
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allows (1) to be rewritten as

Ti(x) = T (mi1,mi2,x) =
1

s
(di1 − di2) (2)

where

dij =
p

(x − mij,x)2 + (y − mij,y)2 + (z − mij,z)2

= ‖x−mij‖ (3)

is the distance from the source to microphonemij . Equation (2)
is clearly nonlinear inx = (x, y, z). In the coming devel-
opment, we will find it useful to have a linear approximation.
Hence, we can take a partial derivative with respect tox on
both sides of (2) and write
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Taking partial derivatives with respect toy andz similarly, we
find
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We can approximateTi(x) with a first order Taylor series

expansion about the last position estimatex̂(t − 1) as

Ti(x) ≈ Ti(x̂(t − 1)) + ∇xTi(x)(x− x̂(t − 1))

= Ti(x̂(t − 1)) + ci(t)(x− x̂(t − 1)) (4)

where we have defined the row vector

ci(t) = [∇xTi(x)]T =
1
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·

»
x−mi1

di1
− x−mi2
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–T

(5)

Equation (4) is the desired linearization.
Source localization based on a maximum likelihood (ML)

criterion [2] proceeds by minimizing the error function

ε(x) =

N−1X
i=0

1

σ2
i

[τ̂ i − Ti(x)]2 (6)

where τ̂ i is the observed TDOA for thei-th microphone pair
and σ2

i is the error covariance associated with this observa-
tion. The TDOAs can be estimated with a variety of well-
known techniques [1, 10]. Perhaps the most popular method
involves the generalized cross correlation (GCC), which can be
expressed as

R12(τ) =
1

2π

Z ∞

−∞

X1(e
jωτ )X∗

2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )| ejωτ dω (7)

For reasons of computational efficiency,R12(τ) is typically cal-
culated with an inverse FFT. Thereafter, an interpolation is per-
formed to overcome the granularity in the estimate correspond-
ing to the sampling interval [1].

Substituting the linearization (4) into (6) and introducing a
time dependence provides

ε(x; t) ≈
N−1X
i=0

1

σ2
i

[τ̄ i(t)− ci(t)x]2 (8)

where

τ̄ i(t) = τ̂ i(t)− Ti(x(t − 1)) + ci(t)x̂(t − 1) (9)

for i = 0, . . . , N − 1. Let us define

τ̄ (t) =

2664
τ̄0(t)
τ̄1(t)

...
τ̄N−1(t)

3775 τ̂ (t) =

2664
τ̂0(t)
τ̂1(t)

...
τ̂N−1(t)

3775
and

T(x̂(t)) =

2664
T0(x̂(t))
T1(x̂(t))

...
TN−1(x̂(t))

3775 C(t) =

2664
c0(t)
c1(t)

...
cN−1(t)

3775 (10)

so that (9) can be expressed in matrix form as

τ̄ (t) = τ̂ (t)− [T(x(t − 1))−C(t)x̂(t − 1)] (11)

Similarly, defining

Σ = diag
ˆ
σ2

0 σ2
1 · · · σ2

N−1

˜
(12)

enables (8) to be expressed as

ε(x; t) = [τ̄ (t)−C(t)x]T Σ−1 [τ̄ (t)−C(t)x] (13)

In past work, the criterion (6) was minimized for each time
instant t, typically with a closed-form approximation to the
true minimum [6, 7, 5, 4]. Thereafter, some authors have pro-
posed using a Kalman filter to smooth the position estimates
over time [4, 11]. In this work, we propose to incorporate the
smoothing stage directly into the estimation. This is acom-
plished as follows: First we note that (13) represents anonlin-
ear least squares estimation problem that has been appropriately
linearized; we can associatêτ (t) with the observationvector
appearing in a Kalman filter such as we will encounter in Sec-
tion 3. Moreover, we can define a model for the motion of the
speaker, in the form typically seen in theprocess equationof
a Kalman filter. Thereafter, we can apply the standard Kalman
filter update formulae directly to the given recursive estimation
problem without ever having recourse to a closed-form approx-
imation for the speaker position. It is worth noting that a similar
approach was used by Duraiswamiet al in developing an algo-
rithm for combined audio-video source localization based on a
particle filter [9].

To see more clearly how this approach can be implemented,
we briefly review a variation of the Kalman filter in Section 3.

3. Iterated Extended Kalman Filter
Let x(t) denote thestateof a Kalman filter at timet, and let
y(t) denote the associated observation. Moreover, define a tran-
sition matrixF(t + 1, t) which specifies how the state evolves
in time, and functionalC(t,x(t)) which specifies how the state
is related to the current observation. The Kalman filter is then
described by theprocessandobservationequations:

x(t + 1) = F(t + 1, t)x(t) + ν1(t) (14)

y(t) = C(t,x(t)) + ν2(t) (15)



whereν1(t) andν2(t) are theprocessandobservation noise
respectively. By assumption,ν1(t) andν2(t) are zero mean
with covariances matricesQ1(t) andQ2(t).

Let x̂(t|Yt−1) denote the predicted estimated state of a
Kalman filter using all the observationsYt−1 up to timet − 1.
The innovationis defined as the difference between the obser-
vationy(t) and thepredictionC(t, x̂(t|Yt−1)) at timet:

α(t, x̂(t|Yt−1)) = y(t)−C(t, x̂(t|Yt−1)) (16)

Using the innovation and theKalman gainGf (t,x(t|Yt−1)),
the state estimate can be updated according to [12,§10]

x(t|Yt) = x̂(t|Yt−1) + Gf (t,x(t|Yt−1)) α(t,x(t|Yt−1))
(17)

The details of the recursive calculation ofGf (t,x(t|Yt−1))
can be found in Haykin [12,§10].

Jazwinski [13,§8.3] describes aniterated extended Kalman
filter (IEKF), in which (16–17) are replaced with thelocal iter-
ation,

α(t, ηi) = y(t)−C(t, ηi) (18)

ζ(t, ηi) = α(t, ηi)−C(ηi) [x̂(t|Yt−1)− ηi] (19)

ηi+1 = x̂(t|Yt−1) + Gf (t, ηi)ζ(t, ηi) (20)

whereC(ηi) is the linearization ofC(t, ηi) aboutηi. The
local iteration is initialized by setting

η1 = x̂(t|Yt−1) = F(t, x̂(t − 1|Yt−1))

Note thatη2 = x̂(t|Y) as defined in (17). Hence, if the lo-
cal iteration is run only once, the IEKF reduces to an extended
Kalman filter. Normally (18–19) are repeated, however, until
there are no substantial changes betweenηi andηi+1. Both
Gf (t, ηi) andC(ηi) are updated for each local iteration. After
the last iteration, we set̂x(t|Yt) = ηf . Jazwinski [13,§8.3]
reports that the IEKF provides faster convergence in the pres-
ence of significant nonlinearities in the observation equation,
especially when the initial statex(1|Y0) is far from the optimal
value.

4. Speaker Tracking with the Kalman Filter
In this section, we discuss the specifics of how the linearized
least squares position estimation criterion (13) can be recur-
sively minimized with the iterated extended Kalman filter pre-
sented in the prior section. We begin by associating the TDOA
estimateτ (t) with the observationy(t). Moreover, we rec-
ognize that the linearized observation functionalC(t) required
for the Kalman filter is given by (5) and (10) for our acoustic
localization problem. Furthermore, we can equate the TDOA
error covariance matrixΣ in (12) with the observation noise
covarianceQ2(t). Hence, we have all relations needed on the
observation side of the Kalman filter. We need only supplment
these with an appropriate model of the speaker’s dynamics to
develop an algorithm capable of tracking a moving speaker, as
opposed to merely finding his position at a single time instant.
This is our next task.

Consider the simplest model of speaker dynamics, wherein
the speaker is “stationary” inasmuch as he moves only under
the influence of the process noiseν1(t). The transition matrix
is thenF(t+1|t) = I. Assuming the process noise components
in the three directions are statistically independent, we can write

Q1(t) = σ2 T 2I (21)

whereT is the time since the last state update. Although the
audio sampling is synchronous for all sensors, it cannot be as-
sumed that the speaker constantly speaks, nor that all micro-
phones receive the direct signal from the speaker’s mouth; i.e.,

the speaker sometimes turns so that he is no longer facing the
microphone array. As only the direct signal is useful for local-
ization [14], the TDOA estimates returned by those sensors re-
ceiving only the indirect signal reflected from the walls should
not be used for position updates. This is most easily done by
setting a threshold on the GCC (7), and using for source lo-
calization only those microphone pairs returning a peak in the
GCC above the threshold [14]. This implies that no update at all
is made if the speaker is not speaking. Alternatively, a partial
update can be made based only on the prediction

X̂(t + 1|Yt) = F(t, X̂(t|Yt−1)

The nonlinear functionalC(t,x(t)) corresponds to the
TDOA model

T(t,x(t)) =

2664
T0(x(t))
T1(x((t))

...
TN−1(x(t))

3775
where the individual componentsTi(x(t)) are given by (2–3).
The linearized functionalC(x(t)) is given by (5) and (10). As
explained in [12], a numerically stable version of the Kalman
filter based on the Cholesky decomposition can be readily de-
veloped.

Although the IEKF with the local iteration (18–20) was
used for the experiments reported in Section 5, the localization
system ran in less than real time on a Pentium Xeon proces-
sor with a clock speed of 3.0 GHz. This is so because during
normal operation very few local iterations are required before
the estimate converges. The local iteration compensates for the
difference between the original nonlinear least squares estima-
tion criterion (6) and the linearized criterion (8). The difference
between the two is only significant during the starting phase,
when the estimated position is far from the true speaker loca-
tion; once the speaker position has been acquired to a reason-
able accuracy, the linearized model (8) matches the original (6)
quite well. The use of such a linearized model can be equated
with theGauss-Newton method, wherein higher order terms in
the series expansion of the criterion function are neglected. The
connection between the Kalman filter and the Gauss-Newton
method is well-known, as is the fact that the convergence rate
of the latter is superlinear if the error̂τ i − Ti(x) is small near
the optimal solutionx = x∗. Further details can be found in
Bertsekas [15,§1.5].

5. Experiments
The test set used to evaluate the algorithms proposed here
contains approximately three hours of audio and video data
recorded during seven seminars by students and faculty at the
University of Karlsruhe (UKA) in Karlsruhe, Germany. Prior to
the start of the seminars, four video cameras in the corners of
the room had been calibrated with the technique of Zhang [16].
The location of the centroid of the speaker’s head in the images
from the four calibrated video cameras was manually marked
every 0.7 second. Using these hand-marked labels, the true po-
sition of the speaker’s head in three dimensions was calculated
using the technique described in [17]. These “ground truth”
speaker positions are accurate to within 10 cm.

As the seminars took place in an open lab area used both
by seminar participants as well as students and staff engaged
in other activities, the recordings are optimally-suited for eval-
uating acoustic source localization and other technologies in a
realistic, natural setting. In addition to speech from the seminar
speaker, the farfield recordings contain noise from fans, com-
puters, and doors, in addition to cross-talk from other people



Algorithm RMS Error
Azimuth (deg) Depth (cm)

SX 24.6 148
SX + Kalman filter 20.4 145

LI 17.6 234
LI + Kalman filter 13.3 207

IEKF 11.4 119

Table 1: Experimental results of source localization- and track-
ing algorithms

Algorithm RMS Error
Azimuth (deg) Depth (cm)

IEKF 11.4 119
IEKF with adaptive threshold 8.64 65

Table 2: IEKF with and without adaptive threshold

present in the room. For these initial experiments, the semi-
nars were recorded with an sixteen-element, linear array with
an inter-element spacing of 4 cm.

Table 1 presents the results of a set of experiments compar-
ing the new IEKF algorithm proposed in this work, to the the
spherical intersection (SX) method of Schau and Robinson [6],
as well as the linear intersection (LI) technique of Brandsteinet
al [4].

The SX method used three microphones of the array (mic-
number 0, 2 and 4) with a distance of 8.1 cm between a pair
to make an initial estimate of the speaker’s position. The LI
and IEKF techniques, on the other hand, made use of the same
set of 12 microphone pairs. These pairs were formed out of
the microphone array by dividing the array into two 8-channel
subarrays and taking each possible pair of microphones with an
inter-element distance of 8.1 cm . In all cases, the TDOAs were
estimated using the generalized cross correlation [1].

The results shown in Table 1 summarize the position esti-
mation error over the 14 segments of the CHIL seminar data.
The root mean square (RMS) errors for azimuth and depth were
obtained by comparing the true speaker positions obtained from
the video labels with the position estimates produced by the sev-
eral acoustic source localization algorithms. Position estimates
from the SX and LI methods lying outside the physical borders
of the room were omitted.

Without any smoothing, the source localization estimates
returned by both the LI and SX methods are very inaccurate.
The LI method provides particularly poor estimates in depth.
Kalman filtering improved the position estimates provided by
both the SX and LI methods, yet the average RMS distance
from the true source location remained large. The new IEKF
approach outperformed both the SX and LI methods for both az-
imuth and depth. We attribute this superior performance largely
to the elimination of the initial closed-form estimate associated
with the LI and SX methods, and its inherent inaccuracy.

The result of the IEKF could be further improved by imple-
menting an adaptive threshold as proposed by [14]. The total
gain is about 30 percent in terms of azimuth and about 40 per-
cent in depth as shown in Table 2.
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