
 1

Universität Karlsruhe Carnegie-Mellon

 University

Bulgarian Speech Recognition and
Multilingual Language Modeling

von Aneliya Mircheva

Studienarbeit

am Institut für Theoretische Informatik
Prof. Dr. Alex Waibel

Fakultät für Informatik, Universität Karlsruhe

Betreuer:

Dr. Tanja Schultz
Dipl.-Inf. Matthias Paulik

Tag der Anmeldung: 23.12.2005
Tag der Abgabe: 21.03.2006

 2

 3

 4

CONTENT

1. Introduction..8

1.1 TASKS AND RESULTS � AN OVERVIEW ...8

1.2 JANUS ...9

2. The Bulgarian Language ... 11

2.1 DISTRIBUTION, AFFILIATIONS, AND GENERAL CHARACTERISTICS.............11

2.2 HISTORY..13

2.3 ALPHABET ...14

2.3.1 SCRIPT ENCODING... 15

2.4 PHONETICS AND IPA ..15

2.4.1 VOWELS ... 16

2.4.2 SEMIVOWELS AND DIPHTHONGS.. 17
2.4.3 CONSONANTS ... 17

2.4.4 GRAPHEME-TO-PHONEME MAPPING .. 18

2.5 MORPHOLOGY AND GRAMMAR ..20

2.5.1 NOMINAL MORPHOLOGY... 21

2.5.2 ADJECTIVE AND NUMERAL INFLECTION AND PRONOUNS.. 22
2.5.3 VERBAL MORPHOLOGY AND GRAMMAR ... 23

2.6 LEXIS ..24

2.7 CONCLUSIONS ...25

3. Data Collection...26

3.1 TEXT DATA ..26

3.2 DATA PROCESSING ..27

3.3 RECORDING TOOLS..29

3.4 THE SPEAKERS..31

3.5 RECORDING ACTION...32

 5

3.6 ADDITIONAL DATA COLLECTION...33

4. Basics of Speech Recognition .. 36

4.1 SIGNAL PREPROCESSING AND FEATURE EXTRACTION37

4.2 ACOUSTIC-PHONETIC MODELING..39

4.3 LANGUAGE MODELING..41

4.4 DECODING AND PERFORMANCE MEASUREMENT.....................................42

5. Experiments and Results... 44

5.1 THE ACOUSTIC MODEL ...44

5.1.1 PRONUNCIATION DICTIONARY... 45
5.1.2 JANUS DATABASE.. 47

5.1.3 INITIALIZATION OF THE RECOGNIZER.. 47
5.1.4 TRAINING A CONTEXT INDEPENDENT SYSTEM .. 49

5.1.5 TRAIN A CONTEXT DEPENDENT SYSTEM.. 51

5.2 THE LANGUAGE MODEL..53

5.2.1 BULGARIAN LANGUAGE MODELS... 53
5.2.1.1 TEXTS AND VOCABULARIES.. 54

5.2.1.2 BULGARIAN LANGUAGE MODELS BUILT WITHOUT INTERPOLATION......................... 57
5.2.1.3 BULGARIAN LANGUAGE MODELS BUILT VIA INTERPOLATION 58

5.2.2 RUSSIAN LANGUAGE MODELS AND MIXED MODELS .. 60

5.2.2.1 TEXTS AND VOCABULARIES.. 60

5.2.2.2 OVERLAPPING AND COVERAGE... 61

5.2.2.3 MIXED LANGUAGE MODELS WITHOUT INTERPOLATION... 69

5.2.2.4 MIXED INTERPOLATED LANGUAGE MODELS BUILT VIA INTERPOLATION.................. 71

5.3 OBTAINED WORD ERROR RATES ..73

5.3.1 DECODING .. 73

5.3.2 RESULTS .. 74

6. Summary ..77

References and Literature... 84

 6

List of Figures

Figure 1 Distribution of all Slavic languages in Europe and in northern Asia [Wiki06]12
Figure 2 Alphabet and pronunciation of the letters with English examples [FAQ06]...............14
Figure 3 IPA table for vowels [Mad84]...16
Figure 4 Consonants, affricates and semivowel [Mad84] ..18
Figure 5 Grapheme-to-phoneme mapping (idea from [Wiki06]) ...19
Figure 6 Mapping rules � examples ..20
Figure 7 Nouns � examples...23
Figure 8 Simple speech recognizer [Sch00] ..37
Figure 9 The Janus-Dictionary..46
Figure 10 Example from the database ...48
Figure 11 Questions about the phonemes ..52
Figure 12 Frequency lists..64
Figure 13 Self- and cross-coverage ...65
Figure 14 Self-coverage of Russian text and coverage of Bulgarian training text by the Russian

vocabulary ..66
Figure 15 Self-coverage of Russian text and coverage of Bulgarian whole text by the Russian

vocabulary ..67
Figure 16 Self-coverage of Bulgarian training text and coverage of the Russian text by the

training vocabulary ...68
Figure 17 Self-coverage of Bulgarian whole text and coverage of Russian text by the Bulgarian

whole vocabulary..68

 7

List of Tables

Table 1 Basic information about the collected for the recordings text data27
Table 2 Speakers information ...31
Table 3 Information about recorded data...32
Table 4 Recordings...33
Table 5 The two Bulgarian texts used in language modeling and the whole text (both training

and additional) ..54
Table 6 Bulgarian vocabularies used in language modeling ..55
Table 7 OOV Rates estimated on the development and the evaluation texts using different

Bulgarian vocabularies..56
Table 8 Perplexities and OOV rates of 6 different language models estimated on both

development and evaluation text ...57
Table 9 Perplexities and OOV rates of nine Bulgarian interpolated language models estimated

on the development text ..59
Table 10 Common vocabularies and coverage of Bulgarian data (estimated using the Russian

text and two Bulgarian texts)...61
Table 11 Common vocabularies and coverage of Bulgarian data...62
Table 12 Common vocabularies and coverage of Russian text data (estimated using five

different Bulgarian vocabularies and the Russian text) ..63
Table 13 Language models built on Russian text data with different vocabularies...................70
Table 14 Language models built on Bulgarian text data with different vocabularies................70
Table 15 Mixed language models created via interpolation ...71
Table 16 All language models used for decoding ..72
Table 17 Experiment to tune the Bulgarian speech recognizer - WER.....................................74
Table 18 Experiment with Bulgarian and mixed language models � WER estimated on

evaluation data (only Bulgarian vocabularies are used) ...75
Table 19 Experiment with Bulgarian and mixed language models � WER on evaluation data

(Bulgarian and Russian vocabularies are used)..76

 8

1. Introduction

The following report describes the work at the interAct on Bulgarian

speech recognition, including the collection of data, training a Bulgarian
speech recognizer and experimenting with Russian text data to improve
the recognition. It also gives an overview of the unique traits of Bulgarian
language, introduces the main issues of speech recognition, and presents
the results.

1.1 Tasks and Results � an Overview

The field of speech recognition aims to convert speech signals into
written word sequences. There are many applications where speech
recognition cannot only be helpful but is also necessary. Different
implementations of speech recognizers are used increasingly around the
world. Examples are dictation systems, translation systems, information
retrieval systems, telephone services, control devices, identification
systems, learning programs and many more. In short, recognizers are
used whenever communication is involved.

The large number of applications indicates even larger variability in
the definition of the speech recognition task. We may want a system to
work well not only with command words, but also with continuous speech;
not only with read speech sequences but also with spontaneous speech.
Another example is that we may not be happy with a system that works
only with vocabulary for a specific task or only in a quiet environment, but
we may want it to work with large vocabulary or in a noisy environment.
One of the major challenges of speech recognition is the variability of
speech: two identical utterances, spoken by the same person may result
in two different speech signals. An important issue is the ability of the
system to recognize accurately even if there are some bigger differences
in the pronunciation like dialects or disabilities.

 9

Different chapters of this work describe the characteristics of

Bulgarian language, how text and speech data have been collected and
preprocessed and how a Bulgarian recognizer for continuous speech has
been initialized and trained. Language modeling for the created
recognizer is reviewed in detail and its performance is evaluated. About
21.38 hours (1283.12 minutes) of speech data is collected from 77 native
speakers in Bulgaria. The speakers are reading text, which has been
collected from national and international economical and political articles
from online newspapers. The data is later divided into training,
development, and evaluation data for different purposes. The training set
is used to build and train the acoustic model of the recognizer, the
development set to adjust the parameters for the decoding phase, and the
evaluation set is used to test the performance of the final system. Word
Error Rate (WER) measures how many percent of the words in a
sentence are falsely recognized, and is used as a measure for the
performance of the recognizer. The best average WER for case sensitive
Bulgarian recognition on the development data is 24.84% and on the
evaluation data is 26.57%.

A studied topic is how can text written in a language close to
Bulgarian improve the language modeling for Bulgarian and thus improve
the speech recognition, too. This research addresses mostly languages
that have very few available data. For such languages, it is difficult to build
a stable recognizer and perform good recognition. This report presents
results of experiments, where language models are created via
interpolation between Bulgarian and Russian models.

1.2 Janus

Janus [WA-W+94] is developed at the Interactive System
Laboratories at Carnegie Mellon University and the University of Karlsruhe
since the late '80s and can be described as a programmable system,
which consists of several modules � the main modules are speech
recognition, parsing and discourse analysis. The programming language
of Janus [WA-W+94] is C and its shell is programmed in Tcl/Tk. The shell
is programmed to use also some additional specific object classes (for
example dictionary) and their methods.

 10

To build the Bulgarian recognizer, the speech recognition module of
the speech-to-speech translation system Janus [WA-W+94] is used. It is
based on the Janus Recognition Toolkit (JRTk) [FGH+97]. The speech
recognition module is language independent and allows loading and
working with texts and speech in different languages. This makes it easy
to adapt the system to new domains. Recognition with Janus [WA-W+94]
can already be performed for many languages (English, Japanese,
German, Spanish, Korean, Chinese, Russian, Mandarin, and Thai).
Translation with Janus [WLL97] is performed into German, English,
Spanish, Japanese, Korean, Chinese, Arabic, Thai, Egyptian, Hindi, and
French.

 11

2. The Bulgarian Language

In this chapter, we introduce into the Bulgarian language - from its

distribution over its phonetic, up to its morphology and lexis. We will also
explain which characteristics of the language affect Bulgarian speech
recognition. Most of the linguistic information in this chapter is citation of
the available linguistic information in Wikipedia [Wiki06], the free
encyclopedia.

2.1 Distribution, Affiliations, and General
Characteristics

The Bulgarian language is a member of the Indo-European family of

languages. This family includes more than 443 estimated languages
[CC93], and contains the Slavic languages, the Romance languages
(French, Italian, Spanish, Portuguese, and Romanian), the Germanic
languages (German, English, Swedish, Norwegian, Dutch, Danish), and
others, such as Greek, Albanian, Armenian, Sanskrit, Persian and so on.
The group of the Slavic languages is distributed over more than 250
million people in Eastern and Central Europe, most of the Balkan
Peninsula, and in northern Asia (see its distribution in Figure 1) and it is
divided into three branches as shown in the following list.

The group of Slavic languages [CC93]:

• East Slavic: Russian, Ukrainian, Belarusian and Rusyn;

• South Slavic is subdivided into:

• eastern group - Bulgarian and Macedonian;
• western group - Slovenian, Serbian, Croatian, and Bosnian

(the last three languages in this group are often combined by
Slavicists together into the Serbo-Croatian language);

 12

• West Slavic is subdivided into:

• Czech and Slovak;
• Upper and Lower Sorbian;
• Polish, Pomeranian/ Kashubian and extinct Polabian.

Figure 1 Distribution of all Slavic languages in Europe and in northern Asia
[Wiki06]

As displayed in the list and in Figure 1, Bulgarian is a Southern
Slavic language. Its distribution is estimated to be about 12 millions
speakers mainly in Bulgaria, but also in Ukraine, Macedonia, Serbia,
Turkey, Greece, Romania, Canada, USA, Australia, Germany, and Spain
[Omn05].

Bulgarian is part of the Balkan linguistic union [Wiki06], which
includes the mutually intelligible Macedonian language and the closely
related Serbian, Romanian, and Albanian. Most of these languages share
some characteristics, like definite article (the form of a suffix joined to the

 13

noun or to its adjective), the lack of a verb infinitive and a complicated
verb system as result of further development of the proto-Slavic verb
system (there are various verb forms to express non-witnessed, retold,
and doubtful action).

These characteristics also set the language apart from other Slavic
languages like Slovenian, Ukrainian, and Russian. Another difference
between Bulgarian and most other Slavic languages is that Bulgarian has
almost completely dropped the numerous case forms of the noun. It uses
position and prepositions (like English) to indicate grammatical
relationships in a sentence instead of cases (like Russian). The Bulgarian
language lacks definite rules for stress (just like all other Slavic languages
except the West Slavic languages and Macedonian). Therefore, the
accent of every word must be learned individually. Despite these
differences, Bulgarian closely resembles the other Slavic languages,
especially with regard to grammar [Wiki06].

2.2 History

The development of the Bulgarian language can be divided into
several historical periods [CC93]. The prehistoric period (essentially proto-
Slavic) occurred between the Slavonic invasion of the eastern Balkans
and the mission of St. Cyril and St. Methodius to Great Moravia in the
860s. Old Bulgarian (9th to 11th century, also referred to as Old Church
Slavonic) was the language used by St. Cyril, St. Methodius and their
disciples to translate the Bible and other liturgical literature from Greek.

Middle Bulgarian (12th to 15th century) was a language of rich
literary activity and major innovations. During the Middle Bulgarian period,
the language underwent dramatic changes, losing the Old Slavonic case
system, but preserving the rich verb system (while the development was
exactly the opposite in most other Slavic languages) and developing a
definite article.

The Modern Bulgarian Period started in the 15th century, but the
modern literary language, which is quite different from Old Bulgarian,
formed only during the 19th century. One of the main changes Bulgarian
underwent in its sound system and in the number of letters in its alphabet

 14

[Wiki06]. You can find information about the Bulgarian alphabet and script
in the next section of this chapter.

2.3 Alphabet

The first alphabet used was the 'Glagolitic' alphabet [Wiki06]. The
brothers� disciples created the �Cyrillic� alphabet, from the name of Cyril.
The Cyrillic alphabet is mainly based on the Greek alphabet,
supplemented by new graphemes to render special Slavonic phonemes.
The original Cyrillic alphabet has contained 44 letters for 44 sounds but
after the dramatically change by the 19th century of the Bulgarian sounds
system, which started using fewer sounds, the number of letters used has
been reduced from 44 to 32. The alphabet used after the reform in 1945
contained the same 32 letters as the previous one with the exception of
(called "double e") and (called "yus"). Thus, the modern Bulgarian
alphabet has 30 letters [Wiki06]. Figure 2 shows each grapheme of the
Bulgarian language, its pronunciation, and an example (for English
speakers).

Figure 2 Alphabet and pronunciation of the letters with English examples
[FAQ06]

 15

Notes to Figure 2:

ю (yu) = [u] after a palatalized consonant and я (ya) = [a] after a
palatalized consonant (see section 2.4 of this chapter).

2.3.1 Script Encoding

There are many possible encodings for representing the Bulgarian

alphabet in computers. Maybe the most widely used are the UTF-8 and
the Unicode encoding systems. In the presented work, we will make use
of the UTF-8 encoding system, which fortunately is well supported by the
Janus Speech Recognition Toolkit [FGH+97].

2.4 Phonetics and IPA

Most letters in the Bulgarian alphabet stand for one specific sound
and that sound only [Mad84]. Three letters stand for the single expression
of combinations of sounds, namely щ [St], ю [yu] and я [ya]. Two sounds
do not have separate letters assigned to them and are expressed by the
combination of two letters, namely дж [dZ] and дз [dz] (in this chapter,
anything written in [and] is a phoneme according to the grapheme-to-
phoneme mapping table in Figure 5 in subsection 2.4.4).

In the Bulgarian spoken language, many of the consonants can be
softened depending on the next letter in the word. The resulting
palatalized consonants are considered as separate phonemes and will be
described later in this section. The phoneme set we were using for
building the Bulgarian speech recognizer consists of 45 phonemes - 6
vowels, 1 semivowel, 19 hard consonants, 15 palatalized consonants, 2
diphthongs, and 2 additional consonants. In this paper and in our work on
building the recognizer, we will use a letter or a pair of letters to notate
each of these phonemes. Detailed descriptions of the phonemes and their
corresponding notation with Roman letters can be found in subsection
2.4.4.

 16

2.4.1 Vowels

Figure 3 illustrates the set of IPA phonemes used to represent the

six vowels in Bulgarian. All vowels are relatively lax, as in most other
Slavic languages, and unlike the tense vowels as, for example, in the
Germanic languages.

Figure 3 IPA table for vowels [Mad84]

Notes to Figure 3:

You can find IPA sets for Bulgarian, where instead of the open back
�α�, the open central sound �a� is used for the phoneme [a].

When the vowels are unstressed, they tend to be shorter, and

weaker compared to when they are stressed, the corresponding pairs of
open and closed vowels approaching each other with a tendency to
merge, although the coalescence is not always complete [Wiki06]. The
variation of the norm seems to be socially conditioned: on the one hand,
the relative absence of reduction is intuitively associated with certain
types of low-status (provincial, especially West Bulgarian, or Romani-
influenced) speech. On the other hand, the awareness of the distinctions
is naturally perceived as a sign of literacy and education. The merger is,
at least in non-dialectal pronunciation, totally accomplished for [a] and [Y]
in all positions (except, occasionally and for some speakers, in a syllable
immediately preceding another [a]). Unstressed [o] also tends to be
pronounced like [u] (the difference is either minimal or nonexistent in pre-
stress position and totally absent after stress), but the status of that

 17

coalescence is less clear, perhaps because post-stress [u] is not very
common in the first place. The considerable reduction of [e]
notwithstanding, similar coalescence of [e] and [i] is not allowed in formal
speech and is definitely regarded as a provincial (East Bulgarian) feature;
rather, unstressed and above all post-stress [e] might occasionally
approach a more front form of [Y] [Wiki06].

2.4.2 Semivowels and Diphthongs

Bulgarian possesses one semivowel: [j], equivalent to the English
<y> in yes. The [j] always immediately precedes or follows a vowel. The
semivowel is most usually expressed graphically by the letter й, as, for
example, in най [n a j] ("most"). There are two diphthongs [yu] and [ya]
which represent the letters ю and я in the phoneme set and if one of them
follows a consonant in the word, it palatalizes the consonant, and
transforms itself respectively into the phoneme [u] or [a], for example бял
(b ya l) [bj a l] ("white") [Wiki06]. In different papers, instead as [yu] and
[ya], the diphthongs are notated as [ju] and [ja]. In this work, we will use
the notation [yu] for ю and [ya] for я.

2.4.3 Consonants

In this project, we use 19 hard and 15 softened consonants, and 2
affricates. You can see all 36 of them and the 1 semivowel, in the IPA
table in Figure 4. We only use the affricates [dz] and [dZ], which can be
seen in our text data, and ignore other two affricates ([dzj] and [xj]), which
occur very rarely, mostly in foreign names.

The Bulgarian consonants may be divided into pairs

(voiced<>voiceless). The contrast 'voiced vs. voiceless' is neutralized in
word-final position, where often the consonants are pronounced as
voiceless (as in most Slavic languages, German, etc.); this neutralization
is, however, not reflected in the spelling [Wiki06].

Hard and Palatalized Consonants

Some of the Bulgarian consonants ([b], [v], [g], [d], [z], [k], [l], [m],
[n], [p], [r], [s], [t], [f], [ts]) can have both a normal, "hard" pronunciation, as
well as a "soft", palatalized one. For the rest of the consonants ([S], [tS],
[x] and [Z] no palatalizing is applied.

 18

The softness of the palatalized consonants is indicated always in
writing in Bulgarian. A consonant is palatalized if:

 * it is followed by ь;

 * it is followed by the letters я (ya) or ю (yu);

(the phonemes [ya] and [yu] are used in all other cases) [Wiki06]

The IPA table in Figure 4 shows all of the 19 hard consonants, the

15 palatalized consonants, the 2 affricates, and the 1 semivowel, used to
represent the Bulgarian acoustic.

Figure 4 Consonants, affricates and semivowel [Mad84]

2.4.4 Grapheme-to-phoneme Mapping

We perform grapheme-to-phoneme mapping for all of the 45
Bulgarian sounds. We define explicit rules, which:

 19

• allow us to write down any Bulgarian (Cyrillic) word with Roman
letters and convert it back into the same word written in Cyrillic any
time we want to;

• map a specific IPA sound to each of the 45 phonemes we want to

use for acoustic modeling;

• make it easy to find the corresponding match for a Bulgarian
phoneme in the phoneme set of other languages, and even
generate its pronunciation for further training of the Bulgarian
acoustic model [Sch04];

• give us an easy notation form of the phonemes.

In Figure 5, you can find the letters and combinations of letters

which we use to indicate the different phonemes. All phonemes are
written with lower case letters except for 5 phonemes, which are or
contain upper case letters ([Z], [dZ], [S], [tS] and [Y]). This guarantees
consistency when converting to and from Roman letters. The notation will
be used to represent phonemes in this report too. Any phonemes
sequence in this report will be written in brackets [and].

Figure 5 Grapheme-to-phoneme mapping (idea from [Wiki06])

 20

There are several additional rules, which we apply during mapping

the words to phoneme sequences. The letters [yu] and [ya] are mapped to
the phonemes [yu] and [ya] if they do not follow a consonant in the word.
If they follow a consonant, this consonant is replaced by its corresponding
softened consonant and [yu] and [ya] themself are substituted respectively
by the phonemes [u] and [a]. The letter "er malyk" softens the consonant it
follows, and just like [yu] and [ya] after a consonant, this consonant is
replaced by its corresponding softened one but this time the letter "er
malyk" will not be substituted by any phoneme in the phoneme set. The
letter (St) is not mapped to a separate phoneme in our work, but is divided
into the phonemes [S] and [t]. One single phoneme [dz] or [dZ] results
from each of the sequences of letters (d z) and (d Z). In Figure 6, you can
find examples for each of these rules.

Figure 6 Mapping rules � examples (see Figure 5)

2.5 Morphology and Grammar

The parts of speech in Bulgarian are divided in 10 different types,
which are categorized in two broad classes: mutable and immutable
[Wiki06]. The difference is that mutable parts of speech vary
grammatically, whereas the immutable ones do not change, regardless of

 21

their use. The five classes of mutable are nouns, adjectives, numerals,
pronouns, and verbs. Syntactically, the first four of these form the group of
the noun or the nominal group. The immutable are adverbs, prepositions,
conjunctions, particles, and interjections. Verbs and adverbs form the
group of the verb or the verbal group.

2.5.1 Nominal Morphology

Nouns, adjectives, and pronouns are inflected for grammatical
gender, number, case (to a very limited extent), and definiteness in
Bulgarian. Adjectives and adjectival pronouns agree with nouns in number
and gender. See Figure 7 for examples.

Nominal Inflection

 Gender

There are three grammatical genders in Bulgarian: masculine,
feminine and neuter [Wiki06]. The gender of the noun can largely be
determined according to its ending. The vast majority of Bulgarian nouns
ending in a consonant (zero ending) are masculine (for example, град
(city), син (son), мъж (man)). Feminine nouns include almost all nouns
that have the endings (а/ я) (жена (woman), дъщеря (daughter)) and
most nouns with zero ending expressing quality, degree or an abstraction,
including all nouns ending on ост/ ест (мъдрост (wisdom), прелест
(loveliness)). Another, much smaller group of feminine nouns is the one of
irregular nouns with zero ending which define tangible objects or concepts
(кръв (blood), кост (bone)). Nouns ending in е, о are almost exclusively
neuter (дете (child), езеро (lake)). The same applies to a limited number
of loan words ending in и, у, and ю (цунами (tsunami), меню (menu)).

Number

Two numbers are distinguished in Bulgarian - singular and plural

[Wiki06]. The most typical plural ending for feminine nouns is и, which is
appended to the word upon dropping the singular ending а/ я. Plural
forms of neutral and masculine nouns use a variety of suffixes, the most
typical of which are а/ я (both require dropping of the singular endings
e/o) and та for neutral nouns and е, и and ове for masculine nouns.
Exceptions, irregular declension and alternative plural forms are, however,
very common for all three genders.

 22

Case

Vestiges are well preserved only in the personal pronouns and the

masculine personal interrogative pronoun кой (who), which have
nominative, accusative and dative forms [Wiki06]. Vocative forms are still
in use for masculine and feminine nouns (not for neuter), but endings in
masculine nouns are determined solely according to the stem-final
consonant of the noun. In other cases, the proto-Slavonic case system
has been replaced by prepositional and other syntactic constructions.

Definiteness

In modern Bulgarian, definiteness is expressed by a definite article

which is postfixed to the noun (indefinite: човек, man; definite: човекът,
the man) or the first nominal constituent of definite noun phrases
(indefinite: добър човек, a good man; definite: добрият човек, the good
man), much like in the Scandinavian languages or Romanian. There are
four singular definite articles: ът/ ят for masculine nouns that are
grammatical subjects, а/ я for masculine nouns that are grammatical
objects, та for feminine nouns, and to for neuter nouns. The two
masculine definite articles may also be considered as two grammatical
forms of the same article. The plural definite articles are те for masculine
and feminine nouns, and та for neuter nouns. When postfixed to
adjectives the definite articles are ят/я for masculine, та for feminine, to
for neuter and те for plural nouns [Wiki06].

2.5.2 Adjective and Numeral Inflection and
Pronouns

Both adjective and numeral agree in gender and number with the

noun they are appended to [Wiki06]. They may also take up the definite
article as explained above. Pronouns may vary in gender, number,
definiteness and are the only parts of the speech that have retained case
inflections. Some groups of pronouns exhibit three cases: nominative,
accusative, and dative, although dative is often substituted by accusative
constructions. The distinguishable types of pronouns include the following:
personal, relative, reflexive, interrogative, negative, indefinitive,
summative, and possessive.

 23

Figure 7 Nouns � examples

2.5.3 Verbal Morphology and Grammar

Bulgarian adverbs coincide with the neuter singular form of the
corresponding adjectives and are only syntactically distinguishable from
the latter [Wiki06]. Verb forms, however, vary in aspect, mood, tense,
person, number and sometimes gender and voice.

Finite Verbal Forms

Finite verbal forms are simple or compound and agree with subjects
in person (first, second and third) and number (singular, plural) in
Bulgarian. In addition to that, past compound forms using participles vary
in gender (masculine, feminine, neuter) and voice (active and passive) as
well as aspect (perfective/aorist and imperfective) [Wiki06].

 24

Aspect

Bulgarian verbs express lexical aspect: perfective verbs signify the

completion of the action of the verb and form past aorist tenses [Wiki06].
In Bulgarian, there is also grammatical aspect. Three grammatical aspects
are distinguishable: neutral, perfect and pluperfect. The neutral aspect
comprises the three simple tenses and the future tense. The pluperfect
aspect is manifest in tenses that use double or triple auxiliary "be"
participles like the past pluperfect subjunctive. Perfect tenses use a single
auxiliary "be".

Mood

In addition to the four moods shared by most other European

languages - indicative, imperative, subjunctive, and conditional - in
Bulgarian there is one more to describe past unwitnessed events - the
renarrative mood.

Tense

There are three grammatically distinctive positions in time present,

past and future, which combine with aspect and mood to produce a
number of formations. There are more than 30 different tenses across
Bulgarian's two aspects and five moods.

2.6 Lexis

The native lexical terms in Bulgarian (both from proto-Slavonic and
from the Bulgar language), account for 70% to 75% of the word-stock of
the language [Wiki06]. The remaining 25% to 30% are loanwords from a
number of languages, as well as derivations of such words. The
languages which have contributed most to Bulgarian are Latin and Greek
(mostly international terminology), and to a lesser extent French and
Russian. The numerous loanwords from Turkish (and, via Turkish, from
Arabic and Persian) which were adopted into Bulgarian during the long
period of Ottoman rule have been substituted largely with native terms or
borrowings from other languages. As in much of the rest of the world,
English has had the greatest influence on Bulgarian over recent decades
[Wiki06].

 25

2.7 Conclusions

We will find the defined rules for Romanization and grapheme-to-
phoneme mapping very useful, since one of the important characteristics
of initialization of the recognizer is the use of multilingual phoneme set
through the Spice Toolkit [Sch04] to generate initial codebooks and to
write initial labels (see subsection 5.1.3 in chapter 5).

The fact that most letters in the Bulgarian alphabet stand for one
specific sound and that sound only, makes our task much easier than if
we had to deal with big differences in the pronunciation of the letters in
different word contexts. There are still many words to be found, where a
voiced consonant is spoken as voiceless in a word-end position or even
somewhere in the middle of a word. We will not make use of this
characteristic in the current version of the recognizer.

A challenge to deal with, are the many flexions of the words
expressed by gender, number, gender specific suffixed definite articles
and huge amount of verbal forms. This leads to a large number of
different words in a given text and to many of them, which may have
never been seen in other texts even when the text deals with the same
topic.

 26

3. Data Collection

To build a speech recognizer, requires a large amount of data to
train the recognizer to understand continuous speech. Speakers read
written sentences and both text and speech are recorded into the
computer. In this section, you will find detailed description of the whole
text and speech collection process, which is associated with the training of
our speech recognizer. First, we are going to introduce what kind of text
data was collected, preprocessed into suitable formats, and other relevant
details about our recording process.

3.1 Text Data

Text data from national and international political and economic
articles from Bulgarian newspapers was the primary source for this
project. One of the reasons to choose this kind of articles is the present
availability of text and speech data in the same domain in other
languages, which are collected by students during the work at the Global
Phone project [SW01], [Sch02]. Thus, the possibility of occurrences of
analogical words in the other language was high and a it presented a
good opportunity for comparison at different levels. Besides this, an
important characteristic of this domain is that it guarantees the use of a
large range of words and allows us to collect more text data because such
sources are released every day.

We collect speech data from 77 native speakers and each one of
them read up to 100 - 120 sentences. The author downloaded and
preprocessed over 10,000 sentences from 350 articles, which are chosen
from the online editions of three national Bulgarian newspapers.

 27

These are the newspapers:

• "Banker" (http://www.banker.bg/)
• "Kesh" (http://www.cash.bg)
• "Sega" (http://www.segabg.com/)

Each of the articles has been stored in a separate text file with a

name containing the newspaper's name, its edition, and main part of the
article's name. Table 1 illustrates basic information about the collected
text data. No detailed information is given for the number of words and
vocabulary of the collected text at that time, but will be provided later in
this chapter.

Table 1 Basic information about the collected for the recordings text data

3.2 Data Processing

The first processing of the text data aimed to guarantee a consistent
reading of the sentences by all speakers. The domain of the articles
causes many occurrences of abbreviations, acronyms, foreign words
(written in Roman) and digits. In the unprocessed text data many of the
abbreviations do not always end by a dot as expected, acronyms are used
mostly for parties and institutions, and some of them are written in
Roman. Sometimes the same acronym is written in two different ways.
Most of the foreign words are names of institutions or specific day-to-day

http://www.banker.bg/
http://www.cash.bg/
http://www.segabg.com/

 28

English words. Digits describe not only an amount or a year, but also a
specific amount (money, percentage, etc).

To make the reading simple for everyone, many of the abbreviations
are decomposed into the origin words which they present, but due to their
number, variability, and lack of time to prepare, many of them are written
the way they should be spoken letter by letter (for example ABC ->
ABeCe). It is important here that all words with the same meaning to be
read in the same way. To guarantee the reading of foreign words (written
in Roman) by all speakers consistently, they are substituted by an
equivalent words written by Cyrillic letters. We do not want our text data to
contain any digits so all the numbers in the data are substituted by their
corresponding words. Thus, consistency in reading is assured by
replacing words and representing the meaning of the digits. The use of
digits in our database and dictionaries is excluded.

All the text data is collected into one text file and few scripts are
written in Python and Tcl to make the transformation faster and more
consistent. A large number of changes are made manually, because of
the differences in text units, used only once or twice in the entire text data
or text units which have to be mapped to the same words written in
different ways.

In order to make the text data more suitable for reading by the
speakers, many text files are created, each of them contains 120
sentences written one sentence per line. These files are loaded in the
Data Collection Toolkit (DCT), designed by Tanja Schultz, and described
in the subsection 3.3 of this chapter. Difficulty with the separation of the
sentences on a single line was the occurrences of dots not only to remark
the end of a sentence, but also to remark the end of an abbreviation in the
text (not all the abbreviations).

Unfortunately, the author was not aware of all requirements for the
further use of the text data in Janus [WA-W+94] at the time of data
collection, and many of the changes ended up conflicting with these
requirements. In the end, there was not enough time for more processing
before the recording of speakers. A second processing of the data is
performed after the recording of speakers in order to clean the text data
and make it more appropriate and useful for building the Bulgarian speech
recognizer with the Janus Speech Recognition Toolkit (JRTk) [FGH+97].

During the second processing, many changes are made to correct
the lower and upper case writing of words with the goal that only the

 29

names in our text data should begin with an upper letter and some
abbreviation should contain only upper letters too. Most of the difficulties
here came because all of the words in the beginning of sentences are
written with in upper case but not all of them are names. Some of the
changes are also caused by previously made changes by the author; for
example mapping of an abbreviation to words, or by the occurrences of
titles written all in upper case letters. The process of making corrections in
the case is expedited by creating a list of all words, which contain at least
one upper case letter. All of the first words in the sentences are excluded
and for the rest we assume that they are all names. We create another
list, which contains only the first words of all sentences and if any of them
do not occur in the first list, we rewrite it with lower case letters. After this,
the remaining words with an upper case are corrected one by one and the
most errors are removed.

At that time, all of the abbreviations, which are rewritten for better
readability (for example ABC -> ABeCe) on one hand contain both upper
and lower case, and on the other hand are not correctly written words -
not even correctly written abbreviations. This is why many of them are
rewritten into their origin, which requires special consideration when we
later build a phoneme dictionary with them.

All of the punctuation is removed with exception of some of the "-"
characters, which are part of a word. The corresponding difficulty here is
the occurrence of "-", which denotes a break in the thought but not a part
of a word. Difficulty by cleaning the text data is also the occurrence of
some type-errors in the articles, which are probably made by the authors
of the newspaper articles.

3.3 Recording Tools

The speakers are recorded directly into a laptop using the Data
Collection Toolkit (DCT), created by Tanja Schultz. This toolkit loads text
files, records sentence after sentence and allows different settings. The
first three menus deal with the collecting of data and rest of the menus are
optional. The Toolkit is made to prepare the preliminary files, required by
the Janus Speech Recognition Toolkit [FGH+97].

 30

The first menu - TEXT - simply loads text files. For each of the
speakers multiple files can be loaded. For our goal, the sentences in the
file should be written on a single line with one empty line between them.
Thus, the Toolkit will load sentence after sentence in the order as
provided by the texts.

The second menu - SPEAKER - enrolls new or load known speaker.
For each new speaker a datasheet should be filled, which
contains demographics of the speaker (name, age, gender, job, dialect
and others) and of the recording environment. A Consent Form is included
and the speakers have to agree with it in order to participate.

The third menu - RECORDING - performs the recording sentence
by sentence. After recording of a sentence, it can be listened and
cancelled if a mistake occurs or something happens. The sentence can be
skipped too. In the moment of agreeing with a spoken sentences and
displaying of the next one, files are being written into a chosen in the
Toolkit SETTING menu directories. These directories contain a file for
each speaker named by a number with the ending .dat and folders for
speakers containing other folders for each of the spoken sentences. The
last folder contains two files with the same name but with different
extension: .adc for the recorded speech and .trl for the transcription of the
spoken sentence. A file 'index' is also stored with the number of
recordings per speaker.

The optional menus in SETTINGS allow us to choose the number of
sentences per speaker (default is 200). In our case, this number is set to
120. Another setting enables us to switch on and off the checkADC ability
(if ON - each of the sentences is checked for quality and there is an
opportunity first to listen to the spoken sentence before agreeing with it
and go to the next one). In our case, this option is switched to ON.
Further, we can change the audio format - sampling rate, recording
channels, encoding, and byte order. We are working with a sample rate of
16 kHZ, "mono" recording channel, "Lin16" encoding and little Endian byte
order. In this menu, we can also choose the recording directory, which is
set for us by default.

 31

3.4 The Speakers

Seventy-seven speakers are recorded for twelve days in the cities

Sofia and Pazardzhik. Almost all of them come from the west or the
central part of Bulgaria. Table 2 shows statistic, containing the number of
males, females, and speakers over and under 35 years, smokers, and
nonsmokers). The table contains also the average number of spoken
sentences, words, and minutes for every speaker.

Table 2 Speakers information

Almost all of them are speakers of true Bulgarian and do not have a
dialect. The majority owns a degree and consists of well educated
participants. The speakers are mainly graduated students, construction
engineers, and teachers. During the recordings, information about each of
them was collected and recorded into special �speaker� files. This kind of
information is known that it might influence the speech. The speakers
were allowed to remind anonymous if they want to and not to give their
real names, but only few of them have chosen that option.

 32

3.5 Recording Action

Almost 22 hours of speech data are collected in Bulgaria during the
twelve days of recording action. Almost all of the recordings are
performed in middle-sized rooms with a middle level of noise. Interesting
point to note is that the speed and the loudness of reading vary widely for
each of the speakers.

During the reading, most of the speakers get somehow nervous just
because of the fact that they are recorded and thus they make many
mistakes. Another reason for why they make mistakes is that many of the
sentences happened to be long and with difficult vocabulary, which the
people do not use every day in conversations. Further reason for the
mistakes is the duration of recording. Even with breaks available, most of
the speakers are not used to reading for such long durations. This
mistakes are made mostly by adding or changing an entire word in the
text, reading part of the word not correctly or just interrupting the reading
because a feeling of making a mistake. The average duration of reading
by one speaker was about 35-40 minutes. A best reading is performed by
a lawyer, and by all of the teachers, but even they make mistakes. Table 3
shows the main information about the recordings.

Table 3 Information about recorded data

The above-described data is further divided into three groups. The
proportion of the number of speakers in the different sets is approximately
8:1:1. The selection of the speakers for each of the groups also tries to

 33

guarantee the same proportion in the number of male and female
speakers, and in the number of nonsmokers and smokers. Initial,
proportion based on the age was desired, but unfortunately, it was not
achieved because of wrong assumption for the age of some speakers.
The biggest speaker set contains the data, which is to be used to build
and train the speech recognizer, and includes 63 speakers. The second
one contains the development data - data, which will be used to tune the
parameters of the recognizer, after we already have one. The third group
is used for the evaluation of the performance of the speech recognizer.
Each of the smaller groups contains seven speakers. You can find
detailed information about the speakers and the recordings in each of
these groups in Table 4.

Table 4 Recordings

3.6 Additional Data Collection

Later, additional text data is needed to build language models for
the recognizer (see section 4.3). This additional data should not contain
any of the text data that has been already collected. Very appropriate is
the text data provided by the BulTreeBank project [SOK+02]. Thus, our
additional text data is taken from the database of this project, after kind
approval by Kiril Simov, a maintainer. The BulTreeBank project is based
at the Linguistic Modeling Laboratory (LML), Institute for Parallel

 34

Processing, Bulgarian Academy of Sciences and is funded by the
Volkswagen Stiftung, Federal Republic of Germany under the program
"Cooperation with Natural and Engineering Scientists in Central and
Eastern Europe". The main objective of BulTreeBank project [SOK+02] is
to create a high quality set of syntactic structures of Bulgarian sentences
within the framework of HPSG (Head-Driven Phrase Structure Grammar).
Ideally, the tree bank should contain samples of all the syntactic
structures of the language. These sentences should serve as templates
for future corporate development, could become the basis for the
development of a more comprehensive test suite for NLP applications,
and can be used as a source for grammar extraction and for linguistic
research.

What we use from the BulTreeBank database are e-newspaper
articles in the same topic as the previously collected text data. We extract
these articles from the following e-newspapers, provided by the
BulTreeBank project:

• "Sega" (http://www.segabg.com/), editions: from January to
December 2002.

• �Standart� (http://www.standartnews.com/), editions: from
January to December 2002

The additional text data contains about 8.5 millions of running words

and 248.993 vocabulary words. This data is not clean in the meaning of
the previously described cleaning of text data by removing digits, symbols,
punctuation, abbreviations and acronyms. In addition, the upper case
words in the beginning of the sentences are rarely names. Some of the
scripts used to clean the previous data are applied to the additional text
data too. Due to the big amount and variability of the additional data, there
are more changes in the text to be made in order to have fully clean text
data. Unfortunately, the time-costly nature of cleaning the text does not
allow us to make these changes. In addition, only vocabulary is extracted
from xml dictionary files in the BulTreeBank database. The so extracted
vocabulary contains 13.924 words.

The additional text data is used not only to create language models,

but also to extend the training dictionary built on the previously collected
training data. Thus, new and much bigger training dictionaries are
created, using both training and additional text data and the BulTreeBank
dictionary files. These extended dictionaries contain the pronunciations of
the words and are used in the decoding process (see section 4.4). The
use of extended dictionaries simply means that when looking for a word in
the dictionary, the probability to find it will be greater. Since many words

http://www.segabg.com/
http://www.standartnews.com/

 35

from both development and evaluation sets are not seen in the training
set, a search in the training dictionary built only on this training set will
perform worse than a search in an extended dictionary.

The use of extended dictionaries for decoding with Janus[WA-W+94]

requires their vocabularies not to contain the specific for Janus symbols.
Section 5.1 gives more details on the extended vocabularies and
dictionaries built using the additional data.

 36

4. Basics of Speech Recognition

Speech recognition has the aim to produce an accurate written
output from a human speech input. To find the best word sequence for a
given utterance, a set of the n most likely written word sequences is
computed, and one with the highest probability is chosen to be a
representation of what was spoken. The probabilistic theory has been
found to be most suitable to give a definition of this problem in the
practice. The fundamental equation of speech recognition is:

 (3.1)

What this equation says, is that to find the most likely word
sequence W* for an observed acoustic event (given utterance X has been
spoken), we need to maximize the product of P(X|W) and P(W). P(X|W) is
the probability to observe the signal X if it's known that the written word
sequence W was spoken and is called acoustic model. P(W) is the a-
priory probability for the written word sequence W to be spoken and is
called �language model�. To maximize this product we need an efficient
search for a word sequence W* and this is an assignment for a so-called
decoder. Solving of these three problems is the main challenge of
automatic speech recognition. Their basics are explained in this chapter
[Sch00].

Figure 8 shows a simple structure of the components of a speech
recognizer. Besides an acoustic and a language model, we need a
component for extraction of the features from the speech signal. The
basics of this process, called signal preprocessing, are explained in first

 37

section of this chapter. A pronunciation dictionary contains all the words
that can be recognized, and is the word source for producing a hypothesis
of what has been said. Once all these components are available, the
decoder finds the best hypothesis, containing a word sequence w1w2...wn.

Figure 8 Simple speech recognizer [Sch00]

4.1 Signal Preprocessing and Feature
Extraction

Some preprocessing is required before we use the speech signal for

recognizing. Its goal is to extract specific information from the acoustic
signal, which is crucial for speech recognition. We are looking for a
compact but also complete description of the signal, which will allow us to
make a proper classification of the speech data for further analysis.

First, discretization of the signal is performed. There are several
benefits of working with a set of time discrete classification vectors. This
allows us to represent the signal in a digital way, to work with less data
and with less space capacity. When we have a discrete signal, we easily
can transform it or extract the relevant information that characterizes the
speaker, the utterances, and the environment effects.

We achieve an accurate representation of the speech sounds used
for speech recognition through a 16-bit A/D conversion with a sample rate

 38

of 16 kHz. This sample rate is chosen considering the Shannon theorem
[Sha49], which says that the sampling frequency must be greater than at
least twice the input signal bandwidth in order to be able to reconstruct the
original perfectly from the sampled version. Any human sound can be
reconstructed with a sampling rate of 20 kHz, but to represent the human
speech we do not need a sampling rate greater than 16 kHz.

Next, we do a spectral analysis of the quantized signal, which has
the main goal to reduce the data used. After we assume that for minor
interval (5ms to 30 ms), the signal is stationary, at every 10ms starting
from the beginning of the speech signal we take out 16ms of it. To take an
interval out we multiply the whole signal with a special function with a
finite bandwidth. We will use the Hamming function but there are also
other functions that can be used such as the Hanning or the Gaussian
function. For each of the extracted intervals we use the Fast Fourier
Transformation (FFT) approach to compute its spectrum. Computing the
FFT for an interval of the speech longer than the used offset assures a
better use of each of our intervals' borders.

After we use the FFT onto each of the 256 sample coefficients, we end up
with 129 spectral coefficients. In our computation, we do not use the
phase spectrum, because it has turned out not to be important for the
recognition since the information it gives us is not crucial for the
understanding of the speech in real situations. Next step toward the
reduction of the data is done based on applying Mel-Scaling which is
filtering that imitate the different sensibility of the ear to high and low
frequencies. This filtering reduces the number of coefficients in each of
the vectors from 129 to 30 Mel-Scale coefficients. We transform these
coefficients again with a Fourier transformation into 30 Cepstral
coefficients. In speech recognition, we are usually interested in the first 13
cepstral coefficients with the first often being omitted in favor or a more
robust energy measure. Mel Frequency Cepstral Coefficient (MFCC)
features have more or less been adopted by the speech processing
society as standard. MFCCs models the basilar membrane by a mel
scaled frequency axis, and turns the convolution with the vocal tract into a
sum by using the cepstrum instead of the spectrum. The first and second
temporal derivatives of the cepstrum, called the delta and delta-delta
coefficients respectively help give an estimate of the temporal variations in
the signal. To improve the speech recognition rate vectors representing
the delta and delta-delta normally augment the feature vectors [Fur86].

Once we extract the named features in the preprocessing phase, we
can use methods for reducing the feature dimension even more. One of

 39

these methods is called Linear Discriminate Analysis (LDA) and it
transforms the extracted feature vectors by the multiplication with an
estimated matrix called LDA-matrix. This method reduces the
dimensionality and at the same time keeps crucial features for maximally
discriminating between the classes, built by similar features. The
variability of the vectors as well as their class affiliation is considered, the
average variance inside the classes is minimized, and the variance
between the classes is maximized [Sch00].

4.2 Acoustic-phonetic modeling

Subject of the acoustic modeling is to find the probability to observe
the signal X if it is known that the word sequence W was spoken.

Different units of speech can be used to model it [Sch00]. When it comes
to recognizing continuous speech, usually phonemes and subphonemes
are used. The phonemes are very flexible units of speech. In most of the
languages, only 30 to 50 phonemes are enough to represent the words in
this language. Sounds as entities in a linguistic system (as the smallest
units that distinguish a minimal word pair, e.g. pin vs. bin) are termed
phonemes [Sch05]. It is a small enough unit, so it is supposed to occur in
a lot of the speech data used to build the recognizer. Usually three
subphonemes are used to represent the dynamic in a phoneme. In regard
of the co-articulation, polyphone can be used instead of phoneme, which
is the phoneme in a defined context of other phonemes next to it. In the
same way, subpolyphones can be built from subphonemes. To overcome
the huge number of the resulting subpolyphones and thus to use more
speech data to train the acoustic models, generalized subpolyphones are
built by grouping of context dependant models. The process is called
agglomeration and there are different algorithms to perform it [YW94]. In
this work, top down clustering with Entropy � criteria is used.

The Hidden Markov Model (HMM) [Rab89] has been found to be

very suitable to model the dynamic and variability of the speech
expressed by its acoustic units. A HMM is composed by a set of states,
called HMM-states, a likelihood distribution, which indicates the probability
for an HMM state to be the beginning state of a state sequence. HMM
also contains a matrix with probabilities for the transition of each of the
states into another, and of a matrix with emission probabilities, which is

 40

the probability for an output to be observed when a state is entered. It also
contains a set of symbols, which can be emitted [Sch00]. A HMM is called
discrete if the matrix with emission probabilities consists of probability
tables, containing discrete values. A HMM is continuous if instead of
probability tables there are probability densities. Usually an emission
probability is modeled as a Gaussian mixture distribution [Sch00]:

 (3.2)

,where Lj is the number of defined distributions in the state Sj and the
Gaussian distribution Gauß(x |µ, ∑) with mean vector µ and a covariance
matrix ∑ is defined as:

 (3.3)

The mean vectors µjl and the variances ∑jl are called a codebook of
a model and the weights coefficients are called mixture weights. If each of
the states of the HMM has its own probability density with own mean
vectors, variances and weights, then it is a fully continuous HMM. If a
couple of states shares the same Gaussian distribution and still each of
them has its own mixture weights, then the HMM is semi continuous.

There are three main problems to be solved in the acoustic
modeling [Sch00]. The first of them is the evaluation problem. The answer
it gives is what is the probability for a given HMM to produce a certain
observation sequence and is the solution is achieved by a so called
Forward algorithm. The second problem - the decoding problem, is to find
the path of states, which is most likely to have produced the certain
observation sequence. The Viterbi algorithm provides its solution. The last
one is the optimization problem or how to find a parameter for the model
of the word w, such that the probability of producing the certain sequence
to be maximized. Here the Forward-Backward algorithm is applied.

 41

4.3 Language Modeling

There are two main methods for estimating a language model -
linguistically, by imitating the syntactic structure of a language, and
statistically, by using big text corpora to evaluate a-priori probabilities for
the occurring words sequences in this text. Mostly we refer to a statistic
language modeling, which aims to estimate the probability P(W) for a
word sequence, without to consider any acoustic information about the
words [Sch00]. Sometimes combination between it and the lingual method
are made, in order to overcome some limitations of the coded text
corpora.

An approach called n-gram is widely used to model language. The
a-priory probability is given by [Sch00]:

 (3.4)

Time and space, necessary to compute these probabilities, are
reduced by different methods. In general, a function on w1 to wi-1 has to be
estimated, which tries to combine somehow different sequences into
classes. Usually the length of the considered word sequences is limited to
3 words. This technique has been proven to provide as good performance
as if there were no limitation. Thus, there are bigrams and trigrams
(sequences of 2 or 3 words). This is how a trigram probability is estimated
[Sch00]:

 (3.5)

Even considering this limitation in the number of words in a
sequence, there is usually not enough text data to compute stable and
accurate probabilities for many of the occurring trigrams. There are two
main techniques to overcome this problem - discounting and backing-off.
The discounting approach decreases the probability of the most likely
trigrams and distributes the discounted probability over the most unlikely
trigrams. The backing-off method takes rather the probability of the

 42

corresponding bigram and multiplies it with a factor estimated on the
excluded and on the middle word to guarantee the sum of the trigram
probabilities is 1.

There is a measurement for how good a language model is, called
perplexity. Perplexity measures how many different words are likely to
come after a certain word according to the language model. Perplexity of
the language model is the average perplexity, computed on all of the
words in the text data. Usually the language model with the lower
perplexity is the better one, when different language models for a given
text are compared.

4.4 Decoding and Performance Measurement

Once both acoustic P(X|W) and language model P(W) are
estimated, the product of them has to be maximized in a process called
the search, or decoding (see next section). The probabilities of both
models are combined with the aim to produce the most likely word
sequence, which represents what has been said. The combining usually
has to be parameterized to achieve a better-weighted end model. A
parameter z is used to give a weight to the language model and a
parameter q, called word penalty, normalizes the different lengths of the
observed word sequences [Sch00]:

 (3.6)

Both parameters z and q are adjusted manually.

An output of the decoding is an end hypothesis containing a word

sequence and made by the speech recognizer in order to represent the
speech with written words. There is an approach, called One-Stage-
Dynamic-Time-Warping, which combines the Viterbi algorithm for
decoding of a single word with an algorithm, which finds the best
segmentation for single words in a sequence. This segmentation is
performed by building a sequence on an optional coupled word model
instead of a sentence model. A sequence path is built considering the

 43

acoustic likelihood of a word to descend into another word, and the text
information about the context, given by the language model. To keep the
complexity of the search for best sequence paths in normal time and
space dimensions, there is a technique to examine only the most likely
word transitions, called Pruning [Sch00]. Not only of the best path, but
also of the best N paths can be estimated, which allows further processing
to obtain even more accurate word sequence path.

Once a hypothesis, containing a word sequence is computed, there
is need to estimate how good the recognition is. There is a measurement
called Word Error Rate (WER), which considers how many words has
been substituted (N sub), inserted (N ins), or deleted (N del) in the process of
matching of the hypothesis to the reference sequence (what has really
been said).

 (3.7)

N is the number of all words in the reference sequence, which is
usually a sentence. This measure considers the whole words, but there
are also other measurement methods, which estimate the performance of
the recognition based for example on phonemes. We used WER for our
experiments.

 44

5. Experiments and Results

In the previous chapters, the Bulgarian language and the basics of
speech recognition have been introduced. A set of 45 phonemes is
chosen to represent the Bulgarian sounds in our recognizer (see chapter
2). Text and speech data is collected and preprocessed in order to meet
specific requirements (see chapter 3). The introduced basics of speech
recognition (see chapter 4) will help better understand how the Bulgarian
speech recognizer is now trained, developed and evaluated. This chapter
gives detailed description of different experiments regarding not only
Bulgarian data, but also Russian data.

The first section describes the steps of creating and training the

Bulgarian acoustic model. This includes building a pronunciation
dictionary and database in Janus, initializing and training the acoustic
model. The second section gives detailed information about creating
language models using both Bulgarian and Russian data. Russian data is
added to determine how the text data from a similar language enhances
the Bulgarian language models, and thus, the performance of the
Bulgarian speech recognizer. To understand the influence of Russian, the
overlap of vocabularies and coverage of texts between Russian and
Bulgarian are estimated. The third section presents decoding and
performance evaluation of the recognizer using different language
models. Both context independent and context dependent systems are
built. Recognition experiments are made later using only the context
dependent system.

5.1 The Acoustic Model

The basics of acoustic modeling are briefly introduced in section 4.2.
The created phoneme set (see Figure 5) contains all Bulgarian acoustic
sounds, which are now trained using the collected training speech data

 45

and its corresponding training transcriptions. In order to do this, a training
pronunciation dictionary based on the training vocabulary and a Janus
database are created. The initialization and optimization process of
acoustic codebooks is performed via a tool called SPICE [Sch04] and via
the Janus Speech Recognition Toolkit [FGH+97].

5.1.1 Pronunciation Dictionary

 Once ADC and transcription files of the spoken utterances are
collected via the Data Collection Toolkit (DCT), a training vocabulary and
a training pronunciation dictionary are built. First, a Tcl script is created to
extract a vocabulary from the training text set. Before extracting this
training vocabulary, it might be very helpful to spend some time cleaning
the training text again. Since the shell of Janus [WA-W+94] uses Tcl
commands, an appropriate approach is to assure that the vocabulary
used to create a pronunciation dictionary does not contain any symbols
(quotes, braces ...), which are specific to Tcl. Their absence helps
avoiding problems with Janus. The only symbol left in the training
vocabulary is the dash symbol. It might be part of words in some cases,
namely when two words are combined into one. Another issue of cleaning
the vocabulary is to avoid the occurrence of the same word written in
different ways. Exceptions are those words, which can be correctly written
in both upper and lower case notation.

A Perl script is adapted (see annex A) and used to build a training

pronunciation dictionary (also called a �phoneme dictionary�). The script is
executed on the previously extracted training vocabulary. The phoneme
sequence is added to each of the words in the vocabulary. This dictionary
is a user readable file with a specific structure (see Figure 9). The
sequences contain only phonemes defined in the phoneme set for
Bulgarian (see section 2.4). In summary, the phoneme set contains 45
phonemes � 6 vowels, 1 semivowel, 19 hard consonants, 15 palatalized
consonants, 2 diphthongs and 2 additional consonants.

 The phoneme sequences are created according to a set of mapping
rules, which are defined in the Perl script. The number of the mapping
rules is 190. These rules represent the grapheme-to-phoneme
relationship model (see Figure 5 in subsection 2.4.4) and all its variations
caused by the occurrences of case sensitive words. Since there are
acronyms in the training text data, more rules are applied to denote their
correct pronunciation in the training pronunciation dictionary. Thus, 16
more rules for 16 acronyms are defined. In the end, 206 rules (190

 46

grapheme-to-phoneme mapping rules + 16 rules for acronyms) are used
to create the training pronunciation dictionary.

As already mentioned, extended dictionaries are built later using the
additional data. The same Perl script used to build the training dictionary
is later used to build these extended dictionaries. To provide correct
pronunciations for 52 more acronyms, 52 new acronym rules are added to
the Perl script. Thus, the script that is used to create extended dictionaries
using not only the training data but also the additional data, consists of
258 mapping rules (190 grapheme-to-phoneme mapping rules + 68 rules
for acronyms).

Figure 9 The Janus-Dictionary

 The string �WB� (word boundary) is called a tag and is used to
indicate the first and the last phoneme in a word. There are also other
tags, used to identify syllable boundaries, or stress for example, but they
are not used in this dictionary. A tagged phoneme can contain not only the
name of the phoneme but also the phoneme itself, followed by one or
more tag names. Three more entries are added to the dictionary: a filler
word SIL, which indicates silence and two specific symbols for Janus, �(�
and �)�, which indicate the begin and the end of the utterance. In Janus
[WA-W+94] the whole structure is saved as a so-called Dictionary object.

 47

The Perl script used to create the pronunciation dictionary can be
easily adjusted to first �romanize" the Cyrillic words and then map them to
phoneme sequences. Janus [WA-W+94] now supports the UTF-8 format,
used to represent Cyrillic. This is why Cyrillic letters can be used in the
pronunciation dictionary without first converting them to Roman letters.
Instead of �romanizing" the letters, the Perl script attaches �CZ_� to the
phoneme, which has been created via the mapping rules. This is exactly
where �romanizing� can be performed. The next step simply adds the
phoneme sequences to their corresponding words in the dictionary.

The training pronunciation dictionary used to train the acoustic
model is based on the training vocabulary, which contains 20,233 words.
Thus, the training dictionary contains 20,236 (20,233 + 3) entries. The
extended vocabularies and dictionaries used for language modeling and
for decoding are presented later in this chapter (subsection 5.2.1).

5.1.2 Janus Database

To simplify the use of the collected speech, text and speaker data, a
Janus database is created. Its goal is to provide an easy way of accessing
all the collected information. The database is created in Janus [WA-W+94]
by a Janus-script, which simply extracts and structures the information
already provided by the Data Collection Toolkit (DCT). Thus, instead of
dealing with the large amount of files created by the Data Collection
Toolkit, only four files that represent the Janus database are used. Two of
them - utt.idx and utt.dat � contain the information about the utterances
(transcriptions, utterance ID, etc.) and the other two - spk.idx and spk.dat -
describe the speakers. The .idx files store indices that increase the
performance of database queries and the .dat files contain the database
itself. In Janus [WA-W+94], these files are represented by a so-called
Database object. Figure 10 shows the content of the two .dat files.

5.1.3 Initialization of the Recognizer

To initialize a context independent Bulgarian recognizer, a
bootstrapping technique is applied. The idea behind this is to use an
already existing acoustic model and map it properly to the acoustic parts
of speech chosen to represent the Bulgarian language. Since this is the
first Bulgarian recognizer to be built at the ISL, initial weights (codebooks,
distributions) from another language are needed. During the GlobalPhone
project, a multilingual recognizer has been created for multiple languages.
Its acoustic model contains phonemes that can be mapped to the

 48

Bulgarian phonemes. Thus, each of the Bulgarian phonemes is manually
mapped to a phoneme used in the multilingual recognizer. The initially
created acoustic model is based on the HMM approach and provides
weights for the set of 45 Bulgarian phonemes. In this model, each of the
phoneme is divided into 3 subphonemes (begin, middle and end of the
phoneme is modeled as a separated part of speech). A silence phoneme
is also included in the phoneme set and is modeled as a middle
subphoneme. The final set contains 136 subphonemes (135
subphonemes and the silent subphoneme).

Figure 10 Example from the database

A new powerful toolkit called SPICE (Speech Processing -
Interactive Creation and Evaluation) [Sch04] introduces an easy technique
to bootstrap a system for both experienced and non-experienced users. A
user-friendly graphical interface contains a set of IPA tables that contain
all the phonemes used to create the multilingual recognizer [SW01],
[Sch02]. The toolkit provides an easy way to listen to each of the
phonemes in order to find the most appropriate if several choices are
available. The desired phonemes are then simply selected from the tables

 49

and given labels, which will be used as phoneme names in the system. If
there are phonemes not included in the SPICE toolkit, they can be
manually added without much effort.

The mapping of Bulgarian to multilingual phonemes is very good.

The reason is that some phonemes used to build and train the multilingual
recognizer come from languages acoustically close to Bulgarian, like
Croatian, Russian, and Polish. The SPICE toolkit [Sch04] provides the
initial weights for the Bulgarian speech recognizer. The 128 Gaussian
mixture distributions, a 3-state HMM structure, and a fully continuous
architecture characterize the initial Bulgarian system. A set of description
files for the system is created as part of the initialization. One of these files
contains a list of the 136 subphonemes in the phoneme set (PhoneSet),
another one contains a detailed list of the 136 codebooks (codebookSet).
The 136 mixture-weight distributions are also listed in file (distribSet). A
simple context-querying decision tree is stored in file named distribTree. It
contains questions about only the central phone, and one leaf node for
each of the 136 distributions (distribTree).

Another issue when initializing the recognizer is the assignment of

labels. Labels are mappings from frames to subphonemes and they show
the recognizer what has been said at what time. Instead of using
randomly defined labels, the initial labels for Bulgarian are computed
based on the existing multilingual recognizer through a Viterbi algorithm
[Sch00]. Thus, the initialization of the Bulgarian speech recognizer is
finalized. The next step is training the recognizer. It is performed in
several iterations, where computing new labels means optimization of the
mapping of frames to subphonemes. The new labels are then used in the
training iterations, which are known to improve the acoustic model of the
speech recognizer.

5.1.4 Training a Context Independent System

The initialized Bulgarian speech recognizer now undergoes a
training iteration. Multiple Janus-scripts are edited and executed in order
to train the context independent system. The paths to all of the important
files in the system are written into the so-called description file (desc.tcl).
The desc.tcl file is used not only during the training of the recognizer, but
also during the decoding. It is very useful, because it allows the
initialization of all relevant files at once. Depending on the training step,
the paths of the actual codebooks, distributions and labels are edited.

 50

Using the labels.tcl script, labels of the speech are written into files.
Since the given transcriptions of the utterances are used, the Viterbi
algorithm does not perform real recognition.

 The mean.tcl script initializes mean vectors, which will help to
cluster the feature vectors into classes (see the samples� explanation and
the k-means algorithms). The already described Linear Discriminative
Analysis is applied (see section 4.1). Every feature vector is multiplied
with the LDA matrix and is transformed into a 43-dimensional vector. The
LDA matrix is dependent on the acoustic model and has to be recomputed
if the model changes. The computation of the new feature vectors is done
via the script lda.tcl.

Once the labels are available and dimension reduction via LDA is

performed, a subphoneme is assigned to every frame of the training data.
Extracting samples is a technique where for every frame of the training
data, each of the feature vectors is assigned to exactly one subphoneme.
The stored vectors will be further used by the k-means algorithm to
initialize Gaussian mixture distributions, or the so-called codebooks. The
number of collected sample vectors is previously defined and is stored in
a separate file for each of the subphonemes. The extraction of the sample
vectors is done via the script samples.tcl.

For each one of the subphonemes the initial 128 distributions are

computed from the sample vectors via the k-means algorithms, executed
in the script kmeans.tcl. Clustering into 128 classes is performed,
whereas every sample vector is assigned to a class, new mean vectors
are computed for each class, and sample vectors are assigned again. In
the end, a codebook for every class is created, based on its mean vector
and its covariance matrix. The system is context independent and the
number of codebooks (136) is equal to the number of modeled
subphonemes. Each phoneme is presented by three subphonemes, which
indicate begin (-b), middle (-m) and end (-e) of the phoneme. The SIL-
phoneme is the only exception, because it is represented only by one
subphoneme (SIL-m).

The next step is performed by the execution of the script train.tcl.

The codebooks and distributions are optimized with the Viterbi algorithm
or with a kind of Forward-Backward algorithm. This step is performed 6
times one after another and every time new parameters replace the old
ones. After the codebooks are optimized, new labels are written. Then,
the same sequence of scripts is performed again (means.tcl, lda.tcl,
samples.tcl, kmeans.tcl and train.tcl).

 51

5.1.5 Train a Context Dependent System

 The trained context independent acoustic model only takes into
account the phonemes (or subphonemes), but not their context (their
neighbor-phonemes). In practice, the same phoneme is pronounced
differently in a different context. Fortunately, the big amount of collected
Bulgarian speech assures obtaining a better and more precise acoustic
model when considering the context of phonemes. Considering the whole
word as context of a single phoneme is too costly. An acoustic model that
takes into account all possible different phonemes as context of a given
phoneme needs huge amount of data and time resources. There are
restrictions to be made in order to gain optimal performance of the training
steps for the given amount of Bulgarian training data. This is why a
�bright� and a �weight� of the context is defined, and different contexts are
grouped into classes.

 This grouping into classes is called clustering and is performed by
answering questions about the phoneme and its context (respectively for
a subphoneme). The system of questions can be seen in Figure 11. The
questions are taken from an already existing system for another language.
Further improvement of the acoustic model can be achieved by adding
questions that reveal the specific characteristics of Bulgarian phonemes,
for example, questions about palatalized consonants.

A phoneme, which is modeled depending on its context, is called a
polyphone. In the Bulgarian recognizer, the maximum context bright is
defined to be two, which means that the considered polyphone is called
pentaphone. In Janus notation [WA-W+94] it looks like this:

{A B C D E} -2 +2

This sequence describes the context of the considered phoneme C
(called central phoneme), namely its left context containing the phonemes
A and B, and its right context containing the phonemes D and E. In Janus
[WA-W+94] there is a restriction about the context. Any context of a
phoneme can contain only one phoneme of the next word.

 52

Figure 11 Questions about the phonemes

The polyphones are collected into a tree structure. The polyphone

tree grows with processing the whole training data, while Janus [WA-
W+94] extracts polyphones from it. First, only questions about the central
phoneme of the polyphones are answered and the number of leaves of
the tree structure is equal to the number of phonemes. To each leaf, a
basket that contains all polyphones that have the corresponding phoneme
(the one stored in that leaf) as a central phoneme is attached. After
building this tree, previously defined questions about different contexts of
the phonemes are answered and the polyphones in the baskets attached
to the leaves are further assigned � the tree grows. The splitting ends
when there are no more good enough splits for our needs (in our system a
maximum split count of 1000 was defined for the polyphones). The same
is done respectively when dealing with subphonemes.

The script Ptree.tcl is executed in Janus [WA-W+94] to collect and

count the subpolyphones. The script train.tcl is used to train their models
and cluster.tcl builds the cluster tree structure. Split.tcl performs a
divisive agglomeration to split the models into a set of classes. For the
Bulgarian recognizer 2000 models are used. The training sequence of
scripts is executed again (means.tcl, lda.tcl, samples.tcl, kmeans.tcl and
train.tcl) but this time for the 2000 models of the new context dependent
system. This last step is performed twice. The first time, the number of

 53

Gaussian distributions is left unchanged and one 128-codebooks-final-
system is created. For the second system, the number of Gaussian
distributions is decreased to 64 and thus, the model complexity is reduced
too, which decreases resource consumption.

5.2 The Language Model

In section 4.3, two different approaches in language modeling are
introduced. To build language models for the Bulgarian speech
recognizer, a statistical approach is used. Different n-gram language
models are built based on both Bulgarian and Russian text data using
different vocabularies. First, Bulgarian language models are created with
the aim to evaluate the performance of the recognizer using only
Bulgarian. Next, Russian data is added to build new mixed language
models and the change of performance is studied. This section is divided
into three subsections. The first one gives detailed information about the
texts and vocabularies used to create Bulgarian language models. It also
presents the values of important characteristics (OOV, Perplexity) of the
Bulgarian language models, which are used to compare the different
language models. The second subsection introduces the Russian text
data and the estimated overlap and coverage between the Russian text
and the Bulgarian text. This subsection also presents the created mixed
language models (Bulgarian and Russian) and compares them. The last
subsection describes the experiments performed using the acoustic model
and different language models and the achieved improvements in the
performance of the Bulgarian speech recognizer.

5.2.1 Bulgarian Language Models

The first half of the experiments to be performed requires the use of

language models, which have been created based only on Bulgarian data.
In this work, different n-gram language models differ from each other only
in text and vocabulary used. These two factors affect the quality of the
language model as well as the performance of the Bulgarian recognizer
when using this language model. To help understand of how the language
models are affected by the change of text and vocabulary, their detailed
description is provided. In addition, unique notation for different texts and
vocabularies is provided to simplify their use in this work.

 54

5.2.1.1 Texts and vocabularies

There are two Bulgarian texts that are considered in language

modeling. The first one is the text used to train the acoustic model. In this
work, it is called the training text. The second is the text collected from the
BulTreeBank project, called the additional text. Each of the Bulgarian
language models is based on one of these texts or is created as
interpolation of such language models. Table 5 displays both training and
additional text with information about the contained running words and the
size of the directly extracted vocabulary. In the training text, a word occurs
about 6 times in average, and in the additional text, this number is 34.5.
Of course, different words in the texts occur much more often than other.
These are mostly prepositions and connectives. In order to estimate
coverage between the Bulgarian and the Russian texts, both training and
additional texts are combined into a text, which is called whole text. It is
also shown in the table.

Table 5 The two Bulgarian texts used in language modeling and the whole text
(both training and additional)

The vocabulary of the training text (the training vocabulary) is clean

and it is used as a vocabulary in both language modeling and decoding.
The vocabulary of the additional text is not clean; it contains many digits,
symbols, and foreign words, because of lack of time for manual
processing of the huge text data. Since such words are not of interest and
may cause problems while working with Janus, they are simply ignored.
This is done by cleaning the additional vocabulary.

The cleaned additional vocabulary is now used to extend the

training vocabulary. Extended vocabularies are needed in language
modeling when using the additional text. They also improve the decoding
(more words can be found and recognized). To create the first extended

 55

vocabulary, the BulTreeBank XML-vocabulary (13.924 words, see section
3.6) is added to the cleaned additional vocabulary. Then, the training
vocabulary is added, and the result is the first extended vocabulary. The
number of occurrences of each of the words in the extended vocabulary is
estimated based on the Bulgarian whole text (training and additional).
There are many words (about half of the extended vocabulary), which
have been seen only once in the Bulgarian text. Those words are likely to
be not relevant for the recognition performance. Thus, a new vocabulary
is created that excludes those words. From the first extended vocabulary
only those words are collected, which have occurred at least twice in the
text data. Thus, the recognition during decoding is supposed to perform
faster, without a noticeable difference in its precision. Special developed
Tcl scripts do the extraction of vocabularies and the estimation of
frequency lists of vocabulary.

Later, both extended vocabularies are used to produce their

corresponding extended pronunciation dictionaries, which are needed for
decoding. Both dictionaries are created via the Perl script that was
previously used to create the training pronunciation dictionary. To the
rules in this script, 52 more rules for acronyms are added (see subsection
5.1.1). Table 6 shows all three Bulgarian vocabularies, which are used to
build Bulgarian language models, namely the training, the big (extended)
and the small (extended) vocabulary. The table contains also a brief
description of each vocabulary. The number of words in the small
vocabulary is about half the size of the big one. As already mentioned,
this means that almost half of the words in the big vocabulary have been
seen only once in the whole text.

Table 6 Bulgarian vocabularies used in language modeling

 56

The same vocabularies are used for language modeling and for
decoding. Decoding is performed on both development and evaluation
texts and a so-called Out of Vocabulary rate (OOV) is estimated for both
of them. For a given text and given vocabulary, it computes the
percentage of the text (regarding its running words), that is not covered by
the given vocabulary. An OOV rate of zero means that all words in the text
can be found in the given vocabulary. Since the development and the
evaluation text are to be decoded, it is interesting to know how both texts
are covered by different vocabularies. A lower OOV rate means that the
used vocabulary is better for the given text and the created language
model is better. Table 7 shows computed OOV rates. The three presented
vocabularies are the training, the small and the big vocabulary. OOV is
estimated for both development and evaluation texts.

Table 7 OOV Rates estimated on the development and the evaluation texts
using different Bulgarian vocabularies

The results in Table 7 show that a big amount of words in both
development and evaluation texts is not covered by the training
vocabulary. Thus, these words are likely not to be recognized, if the
training dictionary for decoding is used. Compared to the training
vocabulary, the two extended vocabularies (small and big) have much
lower OOV rates estimated on both texts. This simply means that a better
recognition is expected, if the small or the big dictionary is used for
decoding. The OOV rate is one of the main characteristics of every
created language model, just like the perplexity (see section 4.3 of
chapter 4). The decision which language model is better is based mainly
on these two parameters � the perplexity and the OOV rate.

All three presented vocabularies � training, small and big � are
relevant for further experiments. All of the three presented texts are
relevant as well:

 57

o The additional text is used only to create interpolated
language models

o The training text is used to create different language
models, to decode and to compute coverage and
overlapping regarding Russian text

o The whole text is used only to compute coverage and
overlapping regarding Russian text

5.2.1.2 Bulgarian language models built

without interpolation

The Bulgarian n-gram language models are created via a special
script, which allows the user to specify different parameters. Text,
vocabulary, discounting parameter (see section 4.3 of chapter 4), and
silence word are specified for the language models. Table 8 contains only
Bulgarian models built without any interpolation between them. It shows
the perplexity and the OOV rates of six different Bulgarian language
models.

Table 8 Perplexities and OOV rates of 6 different language models estimated on
both development and evaluation text

 The first two columns of Table 8 specify the text and the vocabulary
used to create the language model. As already mentioned, two texts
(training and additional) and three vocabularies (training, small, big) are

 58

used. The number of running words in both texts and the size of the
vocabularies are also given. Each line of the table represents one
language model. The perplexity and the OOV rate of each six of them are
given in the right half of the table. Both are estimated on the development
and the evaluation text. The number of running words and the size of
vocabulary for each of these texts is also given. The table reveals that
language models with a lower OOV rate have a higher perplexity. In
addition, the values estimated on the evaluation text are higher than the
values based on the development text. Since the parameters of the
recognizer are tuned regarding the development text, this will most likely
result into a worse performance of recognition during evaluation. To try to
improve the perplexity and the OOV rate, interpolated language models
are created afterwards.

5.2.1.3 Bulgarian language models built via
interpolation

Interpolation of language models is a technique that often produces

new language models with lower perplexity and OOV values. First, a
procedure is used to compute the best interpolation weights for the two
models that are to be interpolated. These weights will create a language
model with a perplexity as low as possible. The technique, which is used
to estimate these weights, first assigns equal weights to both language
models. Iteratively, the initial perplexity is computed and better weights
are estimated. After each of the iteration steps, the perplexity of the
current interpolated language model decreases. When there is no longer
a significant difference between the last one and the newly estimated
perplexity, the best weights have been found. Table 9 shows nine
interpolated Bulgarian language models.

The first and the last columns show the two language models, which

are about to be interpolated. Each of the language models described in
the first column is estimated on the training text. The difference between
these models is in the different vocabularies used to create them. Each of
the language models described in the last column is estimated on the
additional text. Again, the difference lays in the vocabularies used to
create the language models. Each line in the first and the last column
represents a different language model. Interpolation is performed between
each two language models in a line. The optimal interpolation weights that
have been estimated for each of the interpolations are given in the second
and in the fifth column. The perplexity and the OOV rate are estimated

 59

based only on the development data and are shown in the third and the
fourth column of the table.

Table 9 Perplexities and OOV rates of nine Bulgarian interpolated language
models estimated on the development text

All the interpolated language models have better perplexity values
and OOV rates compared to the original not interpolated language
models. Because of the limited time, only few language models are used
to evaluate the performance of the recognizer. Most suitable are the fifth
and the ninth interpolated language models. They are further used
because of the common vocabulary used by both original language
models. The first of them is an interpolation between two language
models, where both of them use the small vocabulary. The interpolation
model is called Bulgarian interpolation using small vocabulary. The
second is an interpolation between two models, where both of them use
the big vocabulary. This interpolation model is called Bulgarian
interpolation using big vocabulary. The perplexity values of both the
interpolated language models are one of the best compared to the rest of
the interpolated models. Their OOV rates are much lower than any model
using only training vocabulary.

 60

5.2.2 Russian Language Models and Mixed
Models

In the previous subsection, different Bulgarian language models

have been created. Some of them are now interpolated with Russian
language models. More non-interpolated language models are also
created using mixed vocabularies. This subsection is organized like the
previous one. First, the Bulgarian and the Russian texts and vocabularies
are introduced. Then, the created interpolated and not interpolated
language models are presented. In addition, the overlapping of vocabulary
and the coverage of text are estimated for both languages. The goal is to
study the dimension of common words in both languages and to study
how this affects the language modeling and the performance of the
recognizer.

5.2.2.1 Texts and vocabularies

The Bulgarian training and additional texts, which have been

described in subsection 5.2.1.1, are used to create some of the Russian
language models and to interpolate them with Bulgarian models. The
Bulgarian whole training text (both training and additional in one) is used
only to estimate the coverage and overlapping between both languages.
To see the details about all three Bulgarian texts, see Table 5 in
subsection 5.2.1.1. The same subsection (see Table 6) contains
information about the three Bulgarian vocabularies, which are now used to
create Bulgarian-Russian language models. The development and the
evaluation texts and vocabularies (see table 4) are used to estimate OOV
rates of the language models and for decoding. In addition, they are used
to estimate more common vocabularies between Bulgarian and Russian.
During the Global Phone project [SW01], [Sch02] Russian text data has
been collected from five e-newspapers. All these Russian articles are now
added into one text file. The text has:

17.079.155 running words

and
539.055 vocabulary words.

 Few vocabularies have been created using Russian language.
There is only one of them, which is later used to estimate the performance
of the recognizer. As already said, the unclean Russian vocabulary
contains 539.055 words. A new vocabulary is now created that includes
both the cleaned Russian vocabulary and the Bulgarian training

 61

vocabulary. To suit the needs of Janus and to correspond to the Bulgarian
set of phonemes, the Russian vocabulary is cleaned from words that
contain any symbols, which are not part of the phoneme set of Bulgarian.
The so created vocabulary is needed to find out if any improvement using
Russian vocabulary in language modeling and decoding is achieved. It
contains 377.787 words and is simply called �clean RU+training�
vocabulary. Again, a pronunciation dictionary corresponding to the �clean
RU+training� vocabulary is created. It is later used for decoding (following
the principle of using the same vocabulary in the language model that will
be used in the decoding too). Multiple common vocabularies are
estimated using the Russian text and different Bulgarian texts and
vocabularies. They are all presented in the next subsection but only one is
used to create a language model later. This is the vocabulary presented in
the last row of Table 11. It contains all the common words between the
Russian text and the Bulgarian big vocabulary and its size is 25.717.

5.2.2.2 Overlapping and coverage

Different Bulgarian texts and vocabularies are now compared to the
Russian text. The number of words in different common vocabularies as
well as the coverage of Bulgarian texts by Russian (and visa versa) is
estimated. Vocabularies are sometimes not clean. For example, they may
contain false written words, which might be then included in the
overlapping vocabulary or used to cover text. To find out if any false
written words are relevant for overlapping or coverage, the type of the
most frequently occurring common words is studied too.

Table 10 Common vocabularies and coverage of Bulgarian data (estimated
using the Russian text and two Bulgarian texts)

 62

Table 10 shows the results of comparing the Bulgarian and Russian
text. More information about the Bulgarian texts can be found in the
subsection 5.2.1.1. The third column shows the size of common
vocabulary. The fourth column is the coverage of each of the Bulgarian
texts using the corresponding common vocabulary. The fifth and the six
columns represent the cleaned common vocabulary and the coverage of
the Bulgarian texts when using this vocabulary. The last column simply
gives information about the size of the cleaned common case-insensitive
vocabularies. None of the sizes has decreased dramatically. The goal of
this comparison is to show the high percentage of coverage of the
Bulgarian data by Russian. The coverage by the manual cleaned common
vocabulary (between the Russian and the Bulgarian whole texts) is only a
little bit smaller than the coverage by the unclean common vocabulary.
This means that the number of all unreal words among the covered words
is so small that it does not affect the coverage statistics.

Table 11 Common vocabularies and coverage of Bulgarian data

Table 11 represents the common vocabularies and coverage of

different Bulgarian texts by the Russian vocabulary. Compared to the
previous table, the used vocabularies are now no longer directly extracted
from the text, but they are already extracted and cleaned vocabularies
(see subsection 5.2.1.1). This table contains also information about the
upper-case common vocabularies and how many words in the Bulgarian
texts are covered by them. Again, the size of common case-insensitive
vocabularies is given. The size of the covered Bulgarian text as
documented in Table 11 is not significantly different from size of covered

 63

Bulgarian text as shown in Table 10. This strengthens the conclusion that
the coverage of Bulgarian texts by Russian is about 50 percents even if
the unreal words have been excluded. The presented statistic about the
common uppercase vocabularies tries to define a maximum for the
number of names in the common vocabularies by simply assuming that
this number is less than the number of uppercase vocabulary.
Respectively, the coverage of Bulgarian texts by the corresponding
vocabulary is also estimated.

Table 12 Common vocabularies and coverage of Russian text data (estimated
using five different Bulgarian vocabularies and the Russian text)

Table 12 shows the coverage of Russian data by different Bulgarian
vocabularies (see values from the last column). As can be observed, the
amount of covered Russian text is very big, no matter which Bulgarian
vocabulary is used. These results are not necessarily important for this
work, but they are very interesting for further studies regarding the
Bulgarian and the Russian language. The topic of such study might be the
improvement of a Russian recognizer using Bulgarian data in the
language modeling.

 The values discussed in the previous tables indicate that a huge
amount of Bulgarian texts is covered by the given Russian vocabulary.
The following figures demonstrate the process of coverage of texts. To

 64

understand the values in the figures, the way they have been created has
to be explained.

To understand the values in the figures, their estimation is now explained.
A Perl script has been executed on both Bulgarian and Russian texts in
order to compute the self-coverage of a text by its own vocabulary and the
coverage of another text by the vocabulary of the first one. Four files
have been created. Two of them have the ending .freq and represent two
frequency lists. Figure 12 shows the frequency lists created during the
estimation of the self-coverage of Russian and the coverage of the
Bulgarian training text by the Russian vocabulary. The first list contains all
the vocabulary words in the Bulgarian training text with the number of their
occurrences in the same text. The second list shows all the words of the
Russian training text with the number of their occurrences in the same
text. Both lists start with the word with the highest number of occurrences.
All words shown in the lists (all having a highest number of occurrences)
are real words. In the Bulgarian list, all words differ from each other. In the
Russian list, there are two pairs of words that are written twice � once with
an uppercase and once with a lowercase letter. In both lists, the difference
in number of occurrences of two words next to each other in the list is
decreasing very fast. This means that if contained in the Russian
vocabulary, the first words in the Bulgarian list will have the biggest
responsibility for the high coverage of Bulgarian text by Russian. This is
exactly what happening now, because many of the first words in both lists
are the same words and have the same meaning.

Figure 12 Frequency lists

 65

The next two files created with the execution of the coverage script
have the extensions .self and .cross. The first one is the self-coverage of
the Russian text by its own vocabulary. For the list of Russian vocabulary,
shown in the last figure, the percent of coverage of Russian text by a
single word is now added to the previous one. In the end, 100% of
coverage of Russian text by its own vocabulary is achieved. These
percentage values build the first line in the figure. The second file (.cross)
consists of values that represent the coverage of Bulgarian training text by
the Russian vocabulary. For each of the words in the Russian list, the
percentage of coverage of Bulgarian text by a single Russian word is
added to the previous one. The values build the second line in the figure.
Figure 13 shows both lists containing the values of the self- and cross-
coverage for the discussed Russian and the Bulgarian training text.

Figure 13 Self- and cross-coverage

With this background, the following four figures can be understood

more easily. In Figure 14, the illustrated coverage of Bulgarian training
text by the Russian vocabulary is 50.38%. Only about fifteen common
words, which are most often seen in the Bulgarian training text, cover
about 25% from it. All these words are real words - prepositions and
connectives (on, and, for, to, etc).

 66

Figure 14 Self-coverage of Russian text and coverage of Bulgarian training text
by the Russian vocabulary

 Figure 15 illustrates the 50,85% coverage of Bulgarian whole text by
the Russian vocabulary. Both figures are very similar to each other, but
they are still not the same. This is because the words that have the
highest number of occurrences in both Bulgarian texts are more or less
the same. Only about 125000 running words from about 3 million common
running words in the Bulgarian whole text contain numbers or symbols,
and thus, they do not play a relevant role in the coverage.

 67

Figure 15 Self-coverage of Russian text and coverage of Bulgarian whole text by
the Russian vocabulary

 The next two figures (Figure 16 and Figure 17) show the coverage
of the Russian text by the two different Bulgarian texts. The values are
lower than the previously estimated coverage values, but they are still
high for two different languages. The Bulgarian training text covers about
24% of the Russian text. The Bulgarian whole text covers about 41% of
the Russian text.

 68

Figure 16 Self-coverage of Bulgarian training text and coverage of the Russian
text by the training vocabulary

Figure 17 Self-coverage of Bulgarian whole text and coverage of Russian text by
the Bulgarian whole vocabulary

 69

The good results of the study of common vocabularies and

coverage between Bulgarian and Russian motivate towards experiments
with Russian data in the language modeling. However, the context of
words in the texts has not been explored yet. Until now, the common
vocabularies and running words have been considered without thinking
about the context, within they occur. Now, the number of common
bigrams and trigrams in the Bulgarian whole text and the Russian text is
estimated. Tcl scripts are created in order to estimate these numbers.

The Bulgarian whole text (training + additional, 8.718.099 running

words) and the Russian text (17.079.155 running words), contain:

• 27.324 common unigrams
• 50.444 common bigrams
• 8.277 common trigrams

As mentioned, 24.304 of the unigrams do not contain any digits or
Roman letters. Among those, 20.518 words are uniquely case-insensitive.
The results in coverage of Bulgarian whole text using both vocabularies
do not differ significantly � the number of covered running words is about
50%. The number of common bigrams between both Bulgarian whole text
and Russian text is 50.444. Among those, 6.700 bigrams contain digits or
unreal words. This does not necessarily mean that the bigrams with digits
do not make sense. It means that most likely at least 40.000 bigrams
contain only real words. The number of common trigrams in both
Bulgarian and Russian texts is also high (8.227). About 2.500 of them
contain digits. Again, this does not mean that these trigrams do not make
any sense. The rest of the trigrams seem to be real combinations of
words. It can be concluded that there is not only a big amount of common
words but also a similarity in the way that sentences in both languages
are constructed.

5.2.2.3 Mixed language models without

interpolation

First, four language models are created using the Russian text and

four different vocabularies. These vocabularies are shown in Table 13,
where the perplexity and the OOV rate estimated on the development text
set is also given.

 70

Table 13 Language models built on Russian text data with different vocabularies

These four language models are just examples of models, which are

based only on Russian text. Their goal is to show that the use of such
models in the Bulgarian speech recognition is not appropriate. Again, the
lower perplexity indicates the higher OOV rate. The lowest perplexity is
achieved when the big vocabulary and the Russian text are used.
However, the so estimated perplexity for this language model is too high.
The bottom line is that the perplexity of the language models that are
created based on the Russian text is too high and it does not make sense
to use any of these language models for Bulgarian speech recognition
(without any further interpolation � see next subsection).

Next, a language model based only on Bulgarian training text is

created. It is built on a mix of clean Russian and Bulgarian training
vocabulary. This is made in order to compare the new language model
with the one based on the same Bulgarian training text, but using only
Bulgarian training vocabulary. Table 14 shows both language models.

Table 14 Language models built on Bulgarian text data with different
vocabularies

 71

 The first language model, which uses only Bulgarian training text
data, can also be seen in Table 8. The perplexity of the second language
model is now higher, but the OOV rate decreases after the clean Russian
vocabulary has been added. This might lead to a better recognition. This
is why these two language models will be later used in the decoding and
the performance of the recognizer will be reported.

5.2.2.4 Mixed interpolated language models
built via interpolation

To create interpolated language models that make use of Russian

text and/or vocabulary, the interpolation technique described in subsection
5.2.1.3 is applied. Table 15 contains the four interpolated language
models.

Table 15 Mixed language models created via interpolation

The first and the last columns represent the two language models,

which are to be interpolated. In the middle of the table, the perplexity and
the OOV rate of the new language model is given. Again, it is estimated
on the development text. The language models in the first column are
already described in the previous subsections. The language models in

 72

the last column are only created with the goal to be used for interpolation.
All of them are created based on the Russian text and using the same
vocabulary, which is used in the corresponding language model in the first
column. The idea is to interpolate language models, which have been
created using the same vocabulary and to use this vocabulary later in the
decoding. Thus, the performances of Bulgarian and mixed language
models can later be compared. In all of the presented interpolations, it is
easy to see that the Russian language models do not play significant role
in the interpolation even though the number of common uni-, bi- and
trigrams is high. The interpolation weights of the language models based
on Russian data are not given in the table, but they all are under 2%.

In this section many language models have been presented. For

decoding, only the eight models from Table 16 are used. The table
contains a brief description of each of the models and reference to
another table, which gives more information about the model.

Table 16 All language models used for decoding

 73

5.3 Obtained Word Error Rates

The last two sections described how the Bulgarian acoustic model

and different Bulgarian or mixed language models have been created.
Now, decoding is performed and the performance of the Bulgarian speech
recognizer is estimated in a sequence of various experiments. First, the
Bulgarian development text is used to tune the parameters of the
recognizer. Once the parameters are defined, the Bulgarian evaluation
text is used to produce the main values of performance of the recognizer.

5.3.1 Decoding

Section 4.3 contains a brief introduction in decoding. In this work,
decoding has been performed via a Janus-script. The three parameters,
which have to be tuned, are lz, lp and fillPen. The first one � lz �
represents the weight of the language model vs. the acoustic model, the
second one � lp � is the word penalty, which normalizes the different
lengths of the observed word sequences, and the last one � fillPen � is
the filler penalty, which controls the number of occurrences of the filler
word (silence SIL) in the hypotheses. In the same Janus-script the path to
a file is specified that contains the IDs of the speakers in the database,
which participate in the decoding (these can be the people in the
development or in the evaluation set). First, the development set is used
to tune the three parameters and later, the performance of the recognizer
is estimated on the evaluation set. In the decoding-script, the same
description file (desc.tcl) is specified as was used in the training process.
Again, there are paths to adjust in it, but this time, the most important
paths are the paths to the codebooks (acoustic model), to the language
model, to the vocabulary and the dictionary, which we use for decoding
and creating hypotheses.

The decoding script creates a directory, where all final hypotheses

are written into one text file. The hypothesis of each of the sentence is
written onto a different line in this file. The score of each hypothesis (the
minus log of the probability) and the ID of the corresponding sentence are
given too.

After the hypotheses are written into a text file, another Janus-script
is used to compute the word error rate (see section 4.4). The WER is
estimated for every sentence separately and in the end, the mean WER is
computed. A log file is created, which contains each of the hypotheses

 74

and its corresponding original sentence. For every such pair of sentences
the number of inserted, deleted and replaced words, and the WER are
estimated. Again, a mean WER is estimated for all the sentences.

5.3.2 Results

The first experiment aims to find the best parameters (lz/ lp/ filler

penalty) for the Bulgarian speech recognizer. Table 17 presents the final
results of this experiment. The development data is decoded using
different parameters which can be seen in the first column of the table.
The decoding is performed twice for each of the parameter sets (using
two different Bulgarian language models) and the WER is estimated. The
first language model is the �BG Interpol. LM (small voc)� and the second
one is the �BG Interpol. LM (big voc)� - see Table 16. The only difference
between the two language models is the size of vocabularies used to
create them (respectively pronunciation dictionaries used for decoding).
The second one uses all of the available Bulgarian vocabulary (big
vocabulary) and the first one uses only those words that are seen more
than once in the Bulgarian whole text (small vocabulary).

Table 17 Experiment to tune the Bulgarian speech recognizer - WER

The best parameters of the recognizer are different for each of the
two language models. The WERs computed using the second language
model are better on average compared to using the first language model
(even though not significantly). The best WER of all is 24.84% and it is
estimated using the second language model and the parameters (26/ 0/
34). Even if the perplexity of the second language model is higher than
the first one, its OOV rate is lower, which explains its better performance.

 75

The estimated parameters are left unchanged in the second

experiment where six different language models are used to estimate the
performance of the recognizer on evaluation text. All of those language
models have in common that they are created using only Bulgarian
vocabularies. The three well known vocabularies are the training, the
small and the big vocabulary. Three of the six language models are based
on Bulgarian text and three of them on the Bulgarian and Russian texts
together. The idea is to estimate the performance of the recognizer using
each of the three different Bulgarian language models on the evaluation
text and compare it to the performance of the recognizer using the three
corresponding mixed language model (always the same Bulgarian
vocabularies are used). Each of the six language models can be found in
Table 16. The first line of Table 18 shows the results (WER) of the
evaluation using the three different Bulgarian language models (no
Russian at all). Each column indicates the use of a different Bulgarian
vocabulary. The second line shows the results of evaluation using the
three corresponding mixed language models, built using each of the three
Bulgarian vocabularies. All language models are described in section 5.2
of this chapter.

Table 18 Experiment with Bulgarian and mixed language models � WER
estimated on evaluation data (only Bulgarian vocabularies are used)

Table 18 studies how adding Russian text in the language models
without adding its vocabulary influences the performance of recognition.
On the one hand, the tendency of improvement when using a bigger
vocabulary does not change. On the other hand, there is no improvement
when using any of the mixed language models. What can be noticed is
that the difference in WER is smaller when a smaller Bulgarian text and
vocabulary are available in the language model. This is why the next
experiment concentrates on the Bulgarian training text and vocabulary.

 76

Table 19 presents the last experiment performed in this work. Now,
not only Russian text is added in the language models, but also its
cleaned vocabulary (clean RU+training voc). The first line presents the
evaluation of the recognizer using two language models based on the
same Bulgarian training text, but using two different vocabularies. In the
first column always the Bulgarian training vocabulary is used and in the
second � the clean RU+training vocabulary. In the second line, the two
new language models are now based on the Bulgarian training text and
the Russian text together, and the difference between the language
models is again in the vocabulary used. The idea is to study how the
performance of the recognizer is now influenced by the use of Russian
vocabulary. All four language models can be seen in Table 16.

Table 19 Experiment with Bulgarian and mixed language models � WER on
evaluation data (Bulgarian and Russian vocabularies are used)

The results in Table 19 indicate that the use of Russian vocabulary
helps no matter if only Bulgarian text or Bulgarian and Russian texts
together are used to create language models. The best result is achieved
when both Russian text and Russian vocabulary are used. The WER in
this case is 38.938% compared to 41.031% WER when using only
Bulgarian text and vocabulary. In summary, the use of Russian text in the
language model is more appropriate when less Bulgarian text data is
available. However, an improvement of the speech recognition is
achieved when not only the Russian text, but also its vocabulary is used
to create a language model. More detailed experiments have to be
performed to reveal the real power of using mixed language models to
improve the performance of recognition.

 77

6. Summary

Speech recognition is still a major area of research, and the
complexity of algorithms used to create speech recognition systems is
constantly increasing. Sophisticated research is being performed in this
field all over the world and addresses different problems. This report did
not aim at dealing with every detail of the algorithms used to build the
Bulgarian recognizer. It described an entire process - studying the
characteristics of the language, collecting and preparing speech and text
data, initializing and training acoustic models and experimenting with
different Bulgarian and mixed language models. The so created Bulgarian
speech recognizer achieved a best Word Error Rate of recognition of
24.84% estimated on development text and of 26.57% estimated on
evaluation text. In both cases, Bulgarian language models have been
used. Next, a language close to Bulgarian is presented � the Russian
language. Common vocabularies and coverage between both languages
are estimated and analyzed. Mixed language models are created using
different (mixed) texts and vocabularies and a greatest benefit for
Bulgarian recognition is established when using a language model based
on both Russian and Bulgarian texts, and at the same time including the
Russian vocabulary. The large number of common words and common
word sequences in both texts turned out to be more helpful for a smaller
amount of Bulgarian text available. For example, the 41.03% WER
estimated using only Bulgarian is decreased to 38.94% by adding both
Russian text and vocabulary. The achieved results motivate to continue
the research and experiments using more than one language for language
modeling. When further benefits are established, this will allow the
creation of better speech recognizers for languages, which do not have
much text and speech data available.

 78

Annex A

Mapping rules (taken out from the Perl script, which creates a
pronunciation dictionary).

 $word =~ s/AиS/ CZ_e CZ_j CZ_i CZ_e CZ_s /g;
 $word =~ s/BBC/ CZ_b CZ_i CZ_b CZ_i CZ_s CZ_i /g;
 $word =~ s/DHL/ CZ_d CZ_i CZ_e CZ_j CZ_ch CZ_e CZ_l /g;
 $word =~ s/EADS/ CZ_e CZ_a CZ_d CZ_e CZ_e CZ_s /g;
 $word =~ s/GPS-ът/ CZ_dzh CZ_i CZ_p CZ_i CZ_e CZ_s CZ_Y CZ_t /g;
 $word =~ s/GPS/ CZ_dzh CZ_i CZ_p CZ_i CZ_e CZ_s /g;
 $word =~ s/GSM/ CZ_dzh CZ_i CZ_e CZ_s CZ_e CZ_m /g;
 $word =~ s/IBM/ CZ_a CZ_j CZ_b CZ_i CZ_e CZ_m /g;
 $word =~ s/IDS/ CZ_a CZ_j CZ_d CZ_i CZ_e CZ_s /g;
 $word =~ s/IQ/ CZ_a CZ_j CZ_k CZ_ju /g;
 $word =~ s/MG/ CZ_e CZ_m CZ_dzh CZ_i /g;
 $word =~ s/Siemens/ CZ_s CZ_i CZ_m CZ_e CZ_n CZ_s /g;
 $word =~ s/PR/ CZ_p CZ_i CZ_a CZ_r /g;
 $word =~ s/SBS/ CZ_e CZ_s CZ_b CZ_i CZ_e CZ_s /g;
 $word =~ s/SMS-и/ CZ_e CZ_s CZ_e CZ_m CZ_e CZ_s CZ_i /g;
 $word =~ s/i-България/ CZ_i CZ_b CZ_Y CZ_l CZ_g CZ_a CZ_r CZ_i CZ_ja
/g;
 $word =~ s/БЗНС-Обединен/ CZ_b CZ_e CZ_z CZ_e CZ_n CZ_e CZ_s CZ_e
CZ_o CZ_b CZ_e CZ_d CZ_i CZ_n CZ_e CZ_n /g;
 $word =~ s/ЕООД-та/ CZ_e CZ_o CZ_o CZ_d CZ_e CZ_t CZ_a /g;
 $word =~ s/ЕООД/ CZ_e CZ_o CZ_o CZ_d CZ_e /g;
 $word =~ s/БГНЕС/ CZ_b CZ_e CZ_g CZ_e CZ_n CZ_e CZ_s /g;
 $word =~ s/ВМРО/ CZ_v CZ_e CZ_m CZ_e CZ_r CZ_e CZ_o /g;
 $word =~ s/БЗНС/ CZ_b CZ_e CZ_z CZ_e CZ_n CZ_e CZ_s CZ_e /g ;
 $word =~ s/НДСВ/ CZ_e CZ_n CZ_d CZ_e CZ_s CZ_e CZ_v CZ_e /g;
 $word =~ s/НСБОП/ CZ_n CZ_e CZ_s CZ_e CZ_b CZ_o CZ_p /g;
 $word =~ s/РДВР-Добрич/ CZ_r CZ_e CZ_d CZ_e CZ_v CZ_e CZ_r CZ_e CZ_d
CZ_o CZ_b CZ_r CZ_i CZ_ch /g;
 $word =~ s/РДВР/ CZ_r CZ_e CZ_d CZ_e CZ_v CZ_e CZ_r CZ_e /g;
 $word =~ s/РМД-тата/ CZ_e CZ_r CZ_e CZ_m CZ_e CZ_d CZ_e CZ_t CZ_a
CZ_t CZ_a /g;
 $word =~ s/ЕАД-та/ CZ_e CZ_a CZ_d CZ_e CZ_t CZ_a /g;
 $word =~ s/МТел/ CZ_e CZ_m CZ_t CZ_e CZ_l /g;
 $word =~ s/ДРОМ/ CZ_d CZ_e CZ_r CZ_o CZ_m /g;
 $word =~ s/КНСБ/ CZ_k CZ_a CZ_n CZ_e CZ_s CZ_e CZ_b CZ_e /g;
 $word =~ s/Логос-ТМ/ CZ_l CZ_o CZ_g CZ_o CZ_s CZ_t CZ_i CZ_e CZ_m /g;
 $word =~ s/СССР/ CZ_s CZ_e CZ_s CZ_e CZ_s CZ_e e CZ_r /g;

 79

 $word =~ s/ЕАД/ CZ_e CZ_a CZ_d CZ_e /g;
 $word =~ s/РМД/ CZ_e CZ_r CZ_e CZ_m CZ_d CZ_e /g;
 $word =~ s/БМД/ CZ_b CZ_e CZ_e CZ_m CZ_d CZ_e /g;
 $word =~ s/БСП/ CZ_b CZ_e CZ_s CZ_e CZ_p CZ_e /g;
 $word =~ s/БТА/ CZ_b CZ_e CZ_t CZ_e CZ_a /g;
 $word =~ s/БТВ/ CZ_b CZ_i CZ_t CZ_i CZ_v CZ_i /g;
 $word =~ s/БТР-и/ CZ_b CZ_e CZ_t CZ_e CZ_e CZ_r CZ_i /g;
 $word =~ s/БТР/ CZ_b CZ_e CZ_t CZ_e CZ_e CZ_r /g;
 $word =~ s/ВиК/ CZ_v CZ_e CZ_i CZ_k CZ_a /g;
 $word =~ s/ДДС/ CZ_d CZ_e CZ_d CZ_e CZ_s CZ_e /g;
 $word =~ s/ДЗИ/ CZ_d CZ_e CZ_z CZ_e CZ_i /g;
 $word =~ s/ДЗУ/ CZ_d CZ_e CZ_z CZ_e CZ_u /g;
 $word =~ s/ДНК/ CZ_d CZ_e CZ_e CZ_n CZ_k CZ_a /g;
 $word =~ s/ДПС/ CZ_d CZ_e CZ_p CZ_e CZ_s CZ_e /g;
 $word =~ s/БДЖ/ CZ_b CZ_e CZ_d CZ_e CZ_zh CZ_e /g;
 $word =~ s/ДСБ/ CZ_d CZ_e CZ_s CZ_e CZ_b CZ_e /g;
 $word =~ s/ЕНП/ CZ_e CZ_n CZ_e CZ_p CZ_e /g;
 $word =~ s/МВР/ CZ_m CZ_e CZ_v CZ_e CZ_r CZ_e /g ;
 $word =~ s/МВФ/ CZ_m CZ_e CZ_v CZ_e CZ_f CZ_e /g;
 $word =~ s/МПС/ CZ_m CZ_e CZ_p CZ_e CZ_s CZ_e /g;
 $word =~ s/НСИ/ CZ_n CZ_e CZ_s CZ_e CZ_i /g;
 $word =~ s/ОДС/ CZ_o CZ_d CZ_e CZ_s CZ_e /g;
 $word =~ s/ОМО/ CZ_o CZ_m CZ_e CZ_o /g;
 $word =~ s/ОНД/ CZ_o CZ_e CZ_n CZ_d CZ_e /g;
 $word =~ s/ООД/ CZ_o CZ_o CZ_d CZ_e /g;
 $word =~ s/ООН/ CZ_o CZ_o CZ_n CZ_e /g;
 $word =~ s/ПЗУ/ CZ_p CZ_e CZ_z CZ_e CZ_u /g;
 $word =~ s/ЦРУ/ CZ_tsh CZ_e CZ_r CZ_e CZ_u /g;
 $word =~ s/СДС/ CZ_s CZ_e CZ_d CZ_e CZ_s CZ_e /g;
 $word =~ s/ЖП/ CZ_zh CZ_e CZ_p CZ_e /g;
 $word =~ s/ДП/ CZ_d CZ_e CZ_p CZ_e /g;
 $word =~ s/ТВ/ CZ_t CZ_i CZ_v CZ_i /g;
 $word =~ s/ТМ/ CZ_t CZ_i CZ_e CZ_m /g;
 $word =~ s/АП/ CZ_a CZ_p CZ_e /g;
 $word =~ s/БА/ CZ_b CZ_e CZ_a /g;
 $word =~ s/Ч/ CZ_ch /g;
 $word =~ s/ч/ CZ_ch /g;
 $word =~ s/ДЗ/ CZ_dz /g;
 $word =~ s/Дз/ CZ_dz /g;
 $word =~ s/дз/ CZ_dz /g;
 $word =~ s/ДЖ/ CZ_dzh /g;
 $word =~ s/Дж/ CZ_dzh /g;
 $word =~ s/дж/ CZ_dzh /g;
 $word =~ s/Щ/ CZ_sh CZ_t /g;
 $word =~ s/щ/ CZ_sh CZ_t /g;
 $word =~ s/Ц/ CZ_tsh /g;
 $word =~ s/ц/ CZ_tsh /g;
 $word =~ s/Ш/ CZ_sh /g;
 $word =~ s/ш/ CZ_sh /g;
 $word =~ s/Ж/ CZ_zh /g;

 80

 $word =~ s/ж/ CZ_zh /g
 $word =~ s/БЮ/ CZ_bj CZ_u /g;
 $word =~ s/БЯ/ CZ_bj CZ_a /g;
 $word =~ s/БЬО/ CZ_bj CZ_o /g;
 $word =~ s/Бю/ CZ_bj CZ_u /g;
 $word =~ s/Бя/ CZ_bj CZ_a /g;
 $word =~ s/Бьо/ CZ_bj CZ_o /g;
 $word =~ s/бю/ CZ_bj CZ_u /g;
 $word =~ s/бя/ CZ_bj CZ_a /g;
 $word =~ s/бьо/ CZ_bj CZ_o /g;
 $word =~ s/ВЮ/ CZ_vj CZ_u /g;
 $word =~ s/ВЯ/ CZ_vj CZ_a /g;
 $word =~ s/ВЬО/ CZ_vj CZ_o /g;
 $word =~ s/Вю/ CZ_vj CZ_u /g;
 $word =~ s/Вя/ CZ_vj CZ_a /g;
 $word =~ s/Вьо/ CZ_vj CZ_o /g;
 $word =~ s/вю/ CZ_vj CZ_u /g;
 $word =~ s/вя/ CZ_vj CZ_a /g;
 $word =~ s/вьо/ CZ_vj CZ_o /g;
 $word =~ s/ГЮ/ CZ_gj CZ_u /g;
 $word =~ s/ГЯ/ CZ_gj CZ_a /g;
 $word =~ s/ГЬО/ CZ_gj CZ_o /g;
 $word =~ s/Гю/ CZ_gj CZ_u /g;
 $word =~ s/Гя/ CZ_gj CZ_a /g;
 $word =~ s/Гьо/ CZ_gj CZ_o /g;
 $word =~ s/гю/ CZ_gj CZ_u /g;
 $word =~ s/гя/ CZ_gj CZ_a /g;
 $word =~ s/гьо/ CZ_gj CZ_o /g;
 $word =~ s/ДЮ/ CZ_dj CZ_u /g;
 $word =~ s/ДЯ/ CZ_dj CZ_a /g;
 $word =~ s/ДЬО/ CZ_dj CZ_o /g;
 $word =~ s/Дю/ CZ_dj CZ_u /g;
 $word =~ s/Дя/ CZ_dj CZ_a /g;
 $word =~ s/Дьо/ CZ_dj CZ_o /g;
 $word =~ s/дю/ CZ_dj CZ_u /g;
 $word =~ s/дя/ CZ_dj CZ_a /g;
 $word =~ s/дьо/ CZ_dj CZ_o /g;
 $word =~ s/КЮ/ CZ_kj CZ_u /g;
 $word =~ s/КЯ/ CZ_kj CZ_a /g;
 $word =~ s/КЬО/ CZ_kj CZ_o /g;
 $word =~ s/Кю/ CZ_kj CZ_u /g;
 $word =~ s/Кя/ CZ_kj CZ_a /g;
 $word =~ s/Кьо/ CZ_kj CZ_o /g;
 $word =~ s/кю/ CZ_kj CZ_u /g;
 $word =~ s/кя/ CZ_kj CZ_a /g;
 $word =~ s/кьо/ CZ_kj CZ_o /g;
 $word =~ s/ЛЮ/ CZ_lj CZ_u /g;
 $word =~ s/ЛЯ/ CZ_lj CZ_a /g;
 $word =~ s/ЛЬО/ CZ_lj CZ_o /g;
 $word =~ s/Лю/ CZ_lj CZ_u /g;

 81

 $word =~ s/Ля/ CZ_lj CZ_a /g;
 $word =~ s/Льо/ CZ_lj CZ_o /g;
 $word =~ s/лю/ CZ_lj CZ_u /g;
 $word =~ s/ля/ CZ_lj CZ_a /g;
 $word =~ s/льо/ CZ_lj CZ_o /g;
 $word =~ s/МЮ/ CZ_mj CZ_u /g;
 $word =~ s/МЯ/ CZ_mj CZ_a /g;
 $word =~ s/МЬО/ CZ_mj CZ_o /g;
 $word =~ s/Мю/ CZ_mj CZ_u /g;
 $word =~ s/Мя/ CZ_mj CZ_a /g;
 $word =~ s/Мьо/ CZ_mj CZ_o /g;
 $word =~ s/мю/ CZ_mj CZ_u /g;
 $word =~ s/мя/ CZ_mj CZ_a /g;
 $word =~ s/мьо/ CZ_mj CZ_o /g;
 $word =~ s/НЮ/ CZ_nj CZ_u /g;
 $word =~ s/НЯ/ CZ_nj CZ_a /g;
 $word =~ s/НЬО/ CZ_nj CZ_o /g;
 $word =~ s/Ню/ CZ_nj CZ_u /g;
 $word =~ s/Ня/ CZ_nj CZ_a /g;
 $word =~ s/Ньо/ CZ_nj CZ_o /g;
 $word =~ s/ню/ CZ_nj CZ_u /g;
 $word =~ s/ня/ CZ_nj CZ_a /g;
 $word =~ s/ньо/ CZ_nj CZ_o /g;
 $word =~ s/ПЮ/ CZ_pj CZ_u /g;
 $word =~ s/ПЯ/ CZ_pj CZ_a /g;
 $word =~ s/ПЬО/ CZ_pj CZ_o /g;
 $word =~ s/Пю/ CZ_pj CZ_u /g;
 $word =~ s/Пя/ CZ_pj CZ_a /g;
 $word =~ s/Пьо/ CZ_pj CZ_o /g;
 $word =~ s/пю/ CZ_pj CZ_u /g;
 $word =~ s/пя/ CZ_pj CZ_a /g;
 $word =~ s/пьо/ CZ_pj CZ_o /g;
 $word =~ s/РЮ/ CZ_rj CZ_u /g;
 $word =~ s/РЯ/ CZ_rj CZ_a /g;
 $word =~ s/РЬО/ CZ_rj CZ_o /g;
 $word =~ s/Рю/ CZ_rj CZ_u /g;
 $word =~ s/Ря/ CZ_rj CZ_a /g;
 $word =~ s/Рьо/ CZ_rj CZ_o /g;
 $word =~ s/рю/ CZ_rj CZ_u /g;
 $word =~ s/ря/ CZ_rj CZ_a /g;
 $word =~ s/рьо/ CZ_rj CZ_o /g;
 $word =~ s/СЮ/ CZ_sj CZ_u /g;
 $word =~ s/СЯ/ CZ_sj CZ_a /g;
 $word =~ s/СЬО/ CZ_sj CZ_o /g;
 $word =~ s/Сю/ CZ_sj CZ_u /g;
 $word =~ s/Ся/ CZ_sj CZ_a /g;
 $word =~ s/Сьо/ CZ_sj CZ_o /g;
 $word =~ s/сю/ CZ_sj CZ_u /g;
 $word =~ s/ся/ CZ_sj CZ_a /g;
 $word =~ s/сьо/ CZ_sj CZ_o /g;

 82

 $word =~ s/ТЮ/ CZ_tj CZ_u /g;
 $word =~ s/ТЯ/ CZ_tj CZ_a /g;
 $word =~ s/ТЬО/ CZ_tj CZ_o /g;
 $word =~ s/Тю/ CZ_tj CZ_u /g;
 $word =~ s/Тя/ CZ_tj CZ_a /g;
 $word =~ s/Тьо/ CZ_tj CZ_o /g;
 $word =~ s/тю/ CZ_tj CZ_u /g;
 $word =~ s/тя/ CZ_tj CZ_a /g;
 $word =~ s/тьо/ CZ_tj CZ_o /g;
 $word =~ s/Ф/ CZ_fj CZ_u /g;
 $word =~ s/ФЯ/ CZ_fj CZ_a /g;
 $word =~ s/ФЬО/ CZ_fj CZ_o /g;
 $word =~ s/Фю/ CZ_fj CZ_u /g;
 $word =~ s/Фя/ CZ_fj CZ_a /g;
 $word =~ s/Фьо/ CZ_fj CZ_o /g;
 $word =~ s/фю/ CZ_fj CZ_u /g;
 $word =~ s/фя/ CZ_fj CZ_a /g;
 $word =~ s/фьо/ CZ_fj CZ_o /g;
 $word =~ s/ЗЮ/ CZ_zj CZ_u /g;
 $word =~ s/ЗЯ/ CZ_zj CZ_a /g;
 $word =~ s/ЗЬО/ CZ_zj CZ_o /g;
 $word =~ s/Зю/ CZ_zj CZ_u /g;
 $word =~ s/Зя/ CZ_zj CZ_a /g;
 $word =~ s/Зьо/ CZ_zj CZ_o /g;
 $word =~ s/зю/ CZ_zj CZ_u /g;
 $word =~ s/зя/ CZ_zj CZ_a /g;
 $word =~ s/зьо/ CZ_zj CZ_o /g;
 $word =~ s/Я/ CZ_ja /g;
 $word =~ s/я/ CZ_ja /g;
 $word =~ s/Ю/ CZ_ju /g;
 $word =~ s/ю/ CZ_ju /g;
 $word =~ s/А/ CZ_A /g;
 $word =~ s/а/ CZ_a /g;
 $word =~ s/Б/ CZ_B /g;
 $word =~ s/б/ CZ_b /g;
 $word =~ s/В/ CZ_V /g;
 $word =~ s/в/ CZ_v /g;
 $word =~ s/Г/ CZ_G /g;
 $word =~ s/г/ CZ_g /g;
 $word =~ s/Д/ CZ_D /g;
 $word =~ s/д/ CZ_d /g;
 $word =~ s/Е/ CZ_E /g;
 $word =~ s/е/ CZ_e /g;
 $word =~ s/З/ CZ_Z /g;
 $word =~ s/з/ CZ_z /g;
 $word =~ s/И/ CZ_I /g;
 $word =~ s/и/ CZ_i /g;
 $word =~ s/Й/ CZ_J /g;
 $word =~ s/й/ CZ_j /g;
 $word =~ s/К/ CZ_K /g;

 83

 $word =~ s/к/ CZ_k /g;
 $word =~ s/Л/ CZ_L /g;
 $word =~ s/л/ CZ_l /g;
 $word =~ s/М/ CZ_M /g;
 $word =~ s/м/ CZ_m /g;
 $word =~ s/Н/ CZ_N /g;
 $word =~ s/н/ CZ_n /g;
 $word =~ s/О/ CZ_O /g;
 $word =~ s/о/ CZ_o /g;
 $word =~ s/П/ CZ_P /g;
 $word =~ s/п/ CZ_p /g;
 $word =~ s/Р/ CZ_R /g;
 $word =~ s/р/ CZ_r /g;
 $word =~ s/С/ CZ_S /g;
 $word =~ s/с/ CZ_s /g;
 $word =~ s/Т/ CZ_T /g;
 $word =~ s/т/ CZ_t /g;
 $word =~ s/У/ CZ_U /g;
 $word =~ s/у/ CZ_u /g;
 $word =~ s/Ф/ CZ_F /g;
 $word =~ s/ф/ CZ_f /g;
 $word =~ s/Х/ CZ_X /g;
 $word =~ s/х/ CZ_x /g;
 $word =~ s/Ъ/ CZ_Y /g;
 $word =~ s/ъ/ CZ_y /g;

 84

References and Literature

[CC93] Bernard Comrie and Greville G. Corbett. The Slavonic Languages,

London and New York: Routledge, 1993. ISBN 0-415-04755-2.

[CS98] Kenan Carki (Betreuerin: T. Schultz). Entwicklung eines türkischen
Spracherkennungssystems für große Vokabulare. Diplomarbeit, Institut
für Logik, Komplexität und Deduktionssysteme, Lehrstuhl Prof. Waibel,
Universität Karlsruhe, September 1998.

[FAQ06] FAQ about Bulgarian. General Question about Bulgaria. Q30: How are
pronounced Bulgarian letters? Internet, http://get.info.bg/faq/, February
2006.

[FGH+97] M. Finke, P. Geutner, H. Hild, T. Kemp, K. Ries and M. Westphal. The
Karlsruhe-Verbmobil Speech Recognition Engine. In Proceedings of
ICASSP-97. Munich, Germany, 1997.

[Fur86] S. Furui. Speaker-independent isolated word recognition using dynamic
features of speech spectrum. IEEE Trans. ASSP, 1986.

[IPA99] International Phonetic Association. Handbook of the International
Phonetic Association, 1999. ISBN 0-521-63751-1.

[Mad84] I. Maddieson. Patterns of Sounds. Cambridge: Cambridge University
Press. Internet, http://classweb.gmu.edu/accent/nl-ipa/bulgarianipa.html,
1984.

[Omn05] Omniglot � a guide to written language. Bulgarian (Български),
Internet. http://www.omniglot.com/writing/bulgarian.htm, 2005

[Rab89] Lawrence Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Internet,
http://www.caip.rutgers.edu/~lrr/Reprints/tutorial%20on%20hmm%20and
%20applications.pdf , 1989.

[RS98] Jürgen Reichert (Betreuerin: T. Schultz). Spracherkennung im
Chinesischen. Diplomarbeit, Institut für Logik, Komplexität und
Deduktionssysteme, Lehrstuhl Prof. Waibel, Universität Karlsruhe,
Dezember 1998.

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0415047552
http://get.info.bg/faq/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0521637511
http://classweb.gmu.edu/accent/nl-ipa/bulgarianipa.html

 85

[Sch00] Tanja Schultz. Dissertation: Language Independent and Language
Adaptive Speech Recognition (Multilinguale Spracherkennung -
Kombination akustischer Modelle zur Portierung auf neue Sprachen).
2000.

[Sch02] Tanja Schultz. Globalphone: a multilingual speech and text database
developed at Karlsruhe university. In ICSLP-2002, 345-348. 2002.

[Sch04] Tanja Schultz. Towards Rapid Language Portability of Speech
Processing Systems. In Conference on Speech and Language Systems
for Human Communication, Delhi, India. Nov. 2004.

[Sch05] Tanja Schultz. ML-Book. Not published.

[Sha49] C. E. Shannon. Communication in the presence of noise. Proc. Institute
of Radio Engineers, vol. 37, no.1, pp. 10-21. Jan. 1949.

[SOK+02] Kiril Simov, Petya Osenova, Sia Kolkovska, Elisaveta Balabanova,
Dimitar Doikoff, Krassimira Ivanova, Alexander Simov, Milen
Kouylekov. Building a Linguistically Interpreted Corpus of Bulgarian: the
BulTreeBank. In: Proceedings of LREC 2002, pages 1729-1736. Canary
Islands, Spain, 2002.

[SR94] Tanja Schultz (Betreuer: I. Rogina). Akustische Modellierung
sprachlicher und nichtsprachlicher Geräusche. Studienarbeit, Institut für
Logik, Komplexität und Deduktionssysteme, Lehrstuhl Prof. Waibel,
Universität Karlsruhe, Juni 1994.

[ST95] E.G. Schukat-Talamazzini. Automatische Spracherkennung. Verlag
Vieweg Braunschweig/Wiesbaden, 1995.

[SW01] Tanja Schultz und Alex Waibel. Language-independent and language
adaptive acoustic modeling for speech recognition. Speech
Communication, vol. 35, pp. 31-51, 2001.

[SW97] Tanja Schultz and Alex Waibel. Fast Bootstrapping of LVCSR Systems
with Multilingual Phoneme Sets. Proceedings of the 5th European
Conference on Speech Communication and Technology (Eurospeech-
1997), Vol. 1 pp 371--373, Rhodes, Greece, September 1997.

[SW98] Tanja Schultz and Alex Waibel. Das Projekt GlobalPhone: Multilinguale
Spracherkennung. Computers, Linguistics, and Phonetics between
Language and Speech. Proceedings of the 4th Conference on NLP
(Konvens-1998), pp 179-189, Bonn, Germany, October 1998.

[SW98_EN] Tanja Schultz and Alex Waibel. Development of Multilingual Acoustic
Models in the GlobalPhone Project. Proceedings of the 1st Workshop on
Text, Speech, and Dialogue (TSD-1998), pp 311-316, Brno, Czech
Republic, September 1998.

http://www.bultreebank.org/papers/bultreebank_LREC02.ps
http://www.bultreebank.org/papers/bultreebank_LREC02.ps

 86

[SWFeb98] Tanja Schultz and Alex Waibel. Multilingual and Crosslingual Speech
Recognition. Proceedings of the DARPA Broadcast News Transcription
and Understanding, pp 259-262, Lansdowne Virginia, February 1998.

[WA-W+94] M. Woszczyna, N. Aoki-Waibel, F.D. Buo, N. Coccaro, K. Horiguchi,
T. Kemp, A. Lavie, A. McNair, T. Polzin, I. Rogina, C.P. Rose, T.
Schultz, B. Suhm, M. Tomita, A. Waibel. JANUS 93: Towards
Spontaneous Speech Translation. Proceedings of the ICASSP, 1994.

[WGM-TSW] Alex Waibel, Petra Geutner, Laura Mayfield-Tomokiyo, Tanja
Schultz, and Monika Woszczyna. Multilinguality in Speech and Spoken
Language Systems. Proceedings of the IEEE, Special Issue on Spoken
Language Processing, Volume 88(8), pp 1297-1313, August 2000.

[Wiki06] English language version edition of Wikipedia. Bulgarian Language.
Internet, http://en.wikipedia.org/wiki/Bulgarian_language/, February 2006.

[WL90] Alex Waibel, Kai-Fu Lee. Readings in Speech Recognitions. Morgan
Kaufmann Publishers, Inc. San Mateo, California, 1990

[WLL97] Alex Waibel, Alon Lavie, Lori Levin. JANUS: A System for Translation
of Conversational Speech. KI - Kunstliche Intelligenz, 1997.

[WSSSM00] Alex Waibel, Hagen Soltau, Tanja Schultz, Thomas Schaaf, and
Florian Metze. Multilingual Speech Recognition. Verbmobil: Foundations
of Speech-to-Speech Translation. Wolfgang Wahlster (Ed.), Springer
Verlag, 2000.

[WSW98] Martin Westphal, Tanja Schultz, Alex Waibel. Linear Discriminant � A
New Criterion for Speaker Normalization. In ICSLP 1998, Sydney

[YW94] S. J. Young and P. C. Woodland. State clustering in hidden markov
model-based continuous speech recognition. Computer Speech and
Language, vol. 8, no. 4, pp. 369-384, 1994.

