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Abstract

Robust speech recognition in noisy environments can still be seen as
a widely unsolved problem, while being enormously relevant in practice.
For instance, state of the art systems would likely perform unsatisfactory
as speech interface to a ticket machine in a train station or for the task
of answering your emails while driving in a car - because of the presence
of environmental noise.

In recent years particle filter based methods have shown significant
performance improvements in this field of research. One of the most
crucial subjects in particle filter design for clean speech estimation is, to
have an adequate representation of speech (speech model) on which the
particle weight calculation is based. Typically, a general, time invariant
and phoneme independent speech model is used in this place.

First attempts of research into using a time varying, phoneme specific
speech model have already been performed by F. Faubel and M. Wolfel at
Universitat Karlsruhe (TH) and Carnegie Mellon University, USA which
have shown notable gains in word error rate.

This project thesis introduces new approaches to further improve the
particle filter performance by phaneme specific dynamacally tirne varying
speech models. These speech models are based on three different concepts:

1. Building knowledge-driven, heuristic based phoneme clusters

2. Building data-driven, unsupervised hierarchical clustering based
phoneme clusters

3. Considering confusability to build phoneme classes



Deutsche Zusammenfassung

Robuste Spracherkennung in gerauschbehafteten Umgebungen kann heute
immernoch als ein groBtenteils ungelostes Problem betrachtet werden,
obwohl es auBeroderdentlich praxisrelevant ist. Beispielsweise ist zu er-
warten, dass aktuelle Spracherkennungssysteme als Sprachschnittstelle fiir
einen Fahrkartenautomaten im Bahnhof unzureichende Ergebnisse liefern.
Der Grund dafiir ist das Vorhandensein von Hintergrundgerauschen.

In den letzten Jahren erreichten auf Partikelfiltern basierende Ver-
fahren eine signifikante Verbessungungen der Erkennungsleistung auf
diesem Forschungsgebiet. Einer der entscheidendsten Faktoren im Ent-
wurf von Partikelfiltern ist, eine geeignete Reprisentation fiir unver-
rauschte Sprache (Sprachmodell) zu finden, aul der die Berechnung der
Gewichtsfaktoren der Partikel beruht. Typischerweise wird zu diesem
Zweck ein allgemeines, zeitinvariantes und phonemunabhingiges Sprach-
modell verwendet.

Erste Forschungen ein zeitverdnderliches und phonemspezifisches
Sprachmoaodell zu verwenden, wurden bereits von F. Faubel und M. Wlfel
an der Universitdt Karlsruhe (TH) und Carnegie Mellon University, USA
unternommen, die deutliche Verbesserungen der Wortfehlerrate zeigten.

Diese Studienarbeit stellt neue Ansitze vor, um die Leistung von
Partikelfiltern durch phonemspezifische, zeitveranderliche Sprachmodelle
weiter zu verbessern. Diese Modelle hasieren auf drei unterschiedlichen
Konzepten:

1. Erzeugung von Phonemklassen, durch wissens- und heuristik-
basierende Verfahren

[3]

. Erzeugung von  Phonemklassen, durch  datengetriebene,
uniiberwachte, hierarchische Clusterverfahren

3. Betrachtung von Verwechselbarkeit, als Mittel zur Bildung von
Phonemklassen

Eine Reihe von Verfahren wurde implementiert und anhand von
Spracherkennungsexperimenten evaluiert. Trotz deutlicher Variabilitdten
in den gemessenen Ergebnissen, konnte in vielen Fillen die Wortfehler-
rate durch eines der neu vorgeschlagenen Konzepte, im Vergleich zu den
traditionellen Methoden, weiter verbessert werden.
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1 Introduction

The family of algorithms called Particle Filters (PF)s (ak.a. Sequential Monte
Carlo Methods) is well known in various felds of research inclnding Compnter
Science, Signal Processing, Statistics and Econometrics. The reason is, that
it is becoming more and more important to cope with non-linearity and non-
Gaussinanity of dynamic processes that have to be modeled in those felds.
Furthermore, the performance of today’s computers is sufficient to use them in
real-time applications. In research and practice PFs have become most popular
in different kinds of tracking tasks, e.g. persuing the position of airplanes on a
radar [GSS93] or the movement of persons in a video.

In recent times, they also were applied in the field of antomatic speech recog-
nition (ASR), where they can be used for the enhancement of speech features in
noisy environments. It is a generally unsolved problem, that the performance of
ASR systems decrease rapidly, when operating in an environment which is not
completely silent, apart from the speaker’s voice. Obviously, this premise can-
not hold in many real world applications. An analysis of the problematic effects
occurring, when signals are contaminated by noise, can be found in chapter 4
of [Mor96].

Since ASR can be seen as a pattern recognition issue, the problem, which
has to be addressed is, to overcome the discrepancy between the environment,
in which the acoustic models of the ASR system have been trained and the
environmental conditions in which the ASR system has to decode the (noisy)
speech features, afterwards. This mismatch results in a drastic decrease of
recognition performance. Over the years, various kinds of techniques have been
suggested, which try to overcome this drawback.

1.1 Basic components of a statistical speech recognition

system
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Figure 1: Basic ASR system components

Figure 1 shows the typical components of a statistical ASR system. First, the
analog singal is pre-processed in a front-end step, which digitalizes the signal,
reduces the dimension and extracts relevant speech features. These features are
decoded in a following recognition step, which outputs the word sequence with
the best probability. The decoder basically works on three information sources:
First, acoustic models, which provide a conditional probability of speech features
for a given phonetic unit of speech. Second, a dictionary, which maps the
phonetic units to words, which can be recognized and third, a language model
which gives likelihoods for a sequence of words in a specific language.



1.2  Acoustic models - Gaussian Mixture Models

Most state of the art ASR systems represent the acoustic units of speech by
Gaunssian mixture models (GMM)s, which are actually the linear combination
of M single Gaussian distributions:

M M
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=1
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A single multivariate Gaussian distribution of dimension n is defined as
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Where u is the mean vector (centroid), X is the covariance matrix and || is
the determinant. In ASR, usually, diagonal covariance matrices are used for
modeling acoustic speech.

Gaussian mixtures are known to be universal approximators, which means
that any probability distribution can be modeled by a (not necessarily finite)
Gaussian mixture.

1.3 Noise compensation techniques

The term 'stationary noise’ means, that the background noise is assumed to
be a stochastic process, whose probability distribution is fixed over time (e.g.
means and variances are set to be time constant). This assumption of stationary
noise may hold for white noise, which is a random signal with equal energy for
each frequency in the power spectrum, and for colored noise, which alse has a
fixed power distribution (e.g. pink noise's spectral density is proportional to the
reciprocal of the frequency®). However, most of the noise we have to face under
real world conditions, consists of important parts that vary over time (imagine
a car driving past the road, or voices of an auditory in the background). His-
torically, the first noise compensation techniques tried to cope with stationary
noise, since it is much easier to handle compared to non-stationary notse.

Over the time many different noise compensation approaches have been pro-
posed (e.g. model adaption techniques, or hidden Markov model - decomposi-
tion). The technique we use is speech feature enhancement. This method tries
to clean and emphasize classification relevant characteristics of a noisy speech
signal with the goal to retrieve features, which are undistorted, so that the
ASR-decoder is able to process them properly.

It is possible to perform speech feature enhancement in an independent
pre-processing step (offering an easy potential for parallel implementation), or
within the front-end of the ASR system during feature extraction. In both
cases it is not necessary to modify the decoding stage and it does not require
any changes to the acoustic models of the ASR system.

Traditionally, techniques like spectral subtraction or Wiener fillering were
used for speech feature enhancement. However these methods basically only
work for stationary noise compensation. A detailed analysis of traditional meth-
ods and further extensions to these systems can be found in [Eph92].

18(f) = -}-, where f is the frequency.



Considering the problem of speech feature enhancement as Bayesian pa-
rameter estimation, which is also not limited to stationary processes, makes it
possible to apply a series of statistical algorithms to estimate the state of dy-
namical systems. First attempts of research in this field, assumed speech as an
autoregressive (AR) linear process, polluted by white noise. Therefore [PB87)
proposed to estimate the linear prediction (LP) coefficients and noise variances
and then apply a Kalman filter (KF) to get an estimate of the clean signal, But
there are fundamental problems using LP, since it is known to unsuitably model
voiced speech and medium or high pitched voices. Moreover LP coefficients are
unstable, which means small changes in the coefficients may not lead to small
changes in the speech signal. Furthermore a KF assumes the relationship be-
tween the observations and the inner state to be linear and Gaussian, which
is not true in practice. That is why [DGWO00] proposed to use a time varying
partial correlation model, and in addition to that to replace the KF by a particle
filter (PF) (operating in time domain).

Instead of tracking clean speech, [Kim98] proposed to see the problem from
the opposite direction and use noise as the state variable, which means that the
noise spectrum is ‘contaminated’ by clean speech. All of the filtering methods
mentioned before, do neither operate in the log spectral, nor in the Mel frequency
domain. That is why [YNO2| presented a PF, operating in the log Mel spectral
domain, where the characteristics of the human andifory system are regarded.
A PF using the technique of sequential importance resampling (SIR), called
Bayesian Bootstrap filter, was first proposed by Gordon et al. [GSS93] and is
basically the approach used for the experiments of this thesis. The advantages
of particle filtering compared to other filtering methods are:

e Noise can be non-stationary.

e It can cope with the multi-modality of the proposal density (i.e. can have
more than one maximum).

o It can cope with the non-linearity and non- Gaussianity of the observation
transition.

¢ PFs are computational efficient compared to alternative algorithms (e.g.
EKF or HMM-decomposition).

1.4 Basic work

In prior works [Fau06, FWO06] a particle filter for speech feature enhancement
has already been developed and implemented by our research group at the
Institut fiir Theoretische Informatik, Universitiit Karlsruhe (TH), Germany and
the Interactive Systems Laboratories, Carnegie Mellon University, Pittsburgh,
USA. It is part of the Janus Recognition Tooklit (JRTKk), which is developed
and maintained cooperatively by both institutions,

The PF algorithm mainly follows the approach of Singh and Raj [SR03]. Fur-
thermore, a series of refinements to the original approach have been developed
to further improve the word recognition accuracy and stability of the PF:

In practice it can happen, that the PF algorithm overestimates a noise hy-
pothesis, so that it exceeds the observed contaminated spectrum. In this case
the relationship between contaminate speech, clean speech and noise cannot be




calculated in the log Mel spectrum, because ol negative logarithm, as shown
in the next chapter. Assigning zero weight to such a hypothesis can lead to a
decimation of the particle population until its complete annihilation. [FWOT]
tackled the problem by a so-called fast acceptance test and reinitialization pro-
cedure,

The second major performance improvement of the particle filter is, to re-
place the commonly used vector Taylor series (VTS) [MRS96] by a new statis-
tical inference approach [FWO0T| to infer clean speech after the noise estimation.

1.5 Pre-processing stage

A speech feature enhancement stage should be placed as close as possible to the
feature domain in which the decoder of the ASR system operates, to achieve
the best effects. That is why otherwise irrelevant parts of the signal may be
cleaned (e.g. a MMSE estimation in the spectral domain does not lead to
a MMSE estimation in the log spectral domain) and furthermore there is a
general problem that speech feature enhancement may not directly result in a
better recognition performance (in terms of word error rate).

Figure 2 shows the pre-processing stage of the speech recognizer (JRTk) used
for this project thesis.

Figure 2: Feature extraction stage

1. The inputed acoustic signal is sampled by 16 kHz, 8 bit. This time domain
signal is cut into frames, each of 10 ms length, using a 16 ms Hamming
window,

2. Instead of the prominent Fourier transformation, we retrieve spectral co-
efficients. from the 256 samples, by the warped and scaled mingmum var:-
ance distortionless response (MVDR) spectral envelope [WMO05|. This
results in a 129 dimensional estimation of the power spectrum. It has
been shown that spectral envelopes operate more robustly in noisy en-
vironments, since they overcome the equal weighting of spectral valleys
and peeks by representing energy rich regions with more detailed infor-
mation than low energy regions, where noise is mainly present. Further-
more, MVDR outperforms linear prediction (LP), which is known to model
voiced speech and high pitched voices not accurately. To mimic the human
auditory system, which percepts frequencies and loudness logarithmically,
Mel-frequency is approximated by warping the MVDR.



3. By calculating the componentwise logarithm (log) we obtain the log Mel
power spectrum.

4. The application of discrete cosine transform (DCT) takes the spectum
into the commonly so-called cepstrum. A dimensional reduction to 20
spectral bins is performed by cutting off high cepstral coefficients. This
procedure is commonly known as liftering. Transforming back again, using
a 20 dimensional matrix, results in a smoothing effect of the spectrum.

5. The particle filter, which is discussed in the next sections, performs the
speech feature enhancement.

6. DCT, yet without truncation, is applied to operate in the cepstrum, again.

7. To be able to regard variations to adjacent samples in the feature space, for
each frame the 7 prior and 7 following spectra (samples) are combinated
to form a 300 dimensional vector.

8. Finally, linear discriminant analysis (LDA) is applied. This transforma-
tion decorelates and arranges the features by their discriminability, while
minimizing the variances within each class (i.e. codebook) and maximizing
the variance between the classes. By cutting off low order coefficients dur-
ing the transformation, a further reduction to 42 dimensions is achieved.

Thus, the PF works in the log Mel spectral domain. Maybe it would be
appropriate to do speech feature enhancement in the cepstral domain or after
the LDA transformation, but there are mathematical problems to maintain the
relationship between noise corrupted speech, clean speech and noise throughout
the DCT and LDA steps. [Fau06] points out the problems in detail.

1.6 Phones and Phonemes

Phonologists accurately distinguish between phones and phonemes. Phones
are all the single acoustic units, which can be distinguished in speech. The
international phonetic alphabet (IPA) [Ass] aims to list phones of any spoken
language. Phonemes, however, are the smallest units of speech, which can effect
the semantic meaning of a word (e.g. first sound of the words "rip’ and 'lip’).

Engineers, seeing these differences from a more technical perspective, tend to
mix the terms, since ASR systems only use acoustic models for recognition of the
phonetic units, which have to be mapped to words. Throughout this thesis I use
the term phoneme, although it might not be correct in every situation. Appendix
A lists the phonemes and corresponding word examples used for clustering and
particle filtering in this work.



2 Speech Feature Enhancement using Particle
Filters

This section gives a short introduction into particle filtering theory, which is
based on Bayesian tracking, and presents our particle fltering algorithm for
clean speech estimation.

2.1 Particle Filter Theory

Many real world processes can be modeled as time-discrete stochastic dynamic
systems [RNO3]. At time step ¢ the output or observation y. of such a system
depends on the current input u,, and an inner state x, (which can be seen as
a hidden memory). . = and u; can be regarded as n dimensional random
vectors.

The evolution of the inner state x; is described by the so called {dynamic)
state model. The (static) measurement maodel describes the output y, upon a
given point of time t, inner state z, and current input u;.

Usually the state transition probability can be modeled as a (1st-order)
Markov chain:

pl2esy|To w1,y ) = (@ |2)

The Markovian assumption is basically no restriction, since it can be shown, that
every higher order Markov chain can be transformed into a 1st-order Markov
chain (by an increase of state space dimensionality).

Figure 3 shows a typical block diagram of a dynamical Markovian system.

Figure 3: Dynamic Markovian system

The estimation of the inner state z., based on the observations y from time
step 0 to time step ¢ (the notation yg. is used in the following), is commonly
known as seguentiol Bayesian filtering. Particle filters (PF)s are simulation
filters, where the probability density mass is modeled by samples from the state
space - the so-called particles, outputting the posteriori probability density of
the system state.

Sequential estimations from this hidden system state’s probability density
p(z¢|yo.+) are obtained for each time step by recursively computing, when a new
observation is received (i.e. fracking).

Several different PF algorithms have been proposed. In [AMGC02], variants
are discussed and compared to estimators, which perform optimal under certain
restrictive conditions, like the Kalman filter (KF). Since we use a Bayvesian
Boostrap filter, the term particle filtering refers to a PF algorithm using the
technique of sequential sampling importance resampling (SIR), throughout this
thesis.

@©o



2.1.1 Bayesian tracking algorithm

A general Bayesian tracking algorithm can be regarded as two simple steps:

L. Prediction from the previous density (at t — 1) one time step ahead to the
current time step (t) via the state transition density (time update), which
can be seen as the evolution (or simulation) of the system:

o0

p(-’czlyl:s_:)=/ P{-‘»“tirr—l)!’(ﬁ-:|b’1:t-—1)d1x—1 (2.1)

Since this equation is recursive, the system state has to he initially (at
t = 0) estimated by an a-priori probability p(zo|ye) = p(xq).

2. A filtering step (measurement update), which uses the latest observation
to adjust the probability density using Bayes’ theorem

plyelze)p(@e|y1e—1)
Plyelye—1)

plze|ye) = (2.2)

where the denominator (normalizing constant) can be computed by mar-
gialisation of the numerator:

puelye—1) = _/ Plyeled)pl[yre—1 Jdw,

It can be shown, that the optimal solution to the tracking problem, which is
the estimation of the system state, that has a minimal distance to the optimal
estimate (minimum mean square error estimation) is

Epfz:-l!.‘l::l[mtlylfll —J / Ty 'P(afflyl:f )dIE (23}
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where E[| is the expectation value. As we are interested in a functional depen-
dency of the estimated noise, corrupted speech and clean speech in our algorithm
in the next section, (2.3) can be generalized to

Ep(:.ly:-.—-)lh(-'ﬁt)lyi:d = ./:“’ hiay) - p(ﬁfr.[yl:t}dxt (2-‘1)

2.1.2 Particle filtering

The Bayesian tracking algorithm derived in the prior section can be seen as
the optimal solution of recursively calculating the posteriori density. But in
general it cannot be computed analytically, because (2.1) and (2.2) are not
necessarily linear. Applying further restrictions, allows to compute an optimal
estimation. E.g. a Kalman filter (KF) delivers an optimal estimate under
the restrictive condition that both, the state transition and the observation
transition, are Ganssian and linear functions. But since the relationship between
noise and speech is non-linear in nature, a KF is not an adequate algorithm for
speech feature enhancement. Alternatively an ertended Kalman filter (EKF)
could be used, which locally linearizes the problem by a first order Taylor series

10



approximation. However it is not mathematically justified to retrieve gains in
recognition performance when using an EKF [Kim98].

Particle filters have the ability to cope with non-linear and non-Gaussian
problems by approximating the probability distribution with discrete random
measures, modeled N samples and weights (called particles):

{Igjlv w::”}:l\;l

These particles are relocated and weighted in each time step. Particle filtering
belongs to the class of Monte Carlo algorithms, therefore it will not perform
optimal in general, but as the number of particles goes to infinity, PFs approach
the Bayesian optimal estimate.

So PFs approximate the continuous posteriori probability density (2.2) by
its discretisized (empirical) counterpart:

"
p(zelyre) = 3 w8 - 2)
i=1

Where N is the number of the particles :xﬁ’ ) and w}“.} their corresponding

weights (z?r:lw&” — 1) as outlined in the next section. d() denotes the Dirac

distribution.

2.2 PF algorithm for clean speech estimation

A practical particle filtering algorithm for noise tracking and clean speech esti-
mation can be seen as four steps:

1. Evolution of noise hypotheses (state transition of particles).
2. Rating the noise hypotheses likelihood (particle weights).

3. Inference of clean speech based on the noise estimation and observed spec-
tral signal.

4. Resampling of noise hypotheses.

The steps 1 - 4 are repeated until each speech frame has been processed.

Note that in this chapter n, is the state vector (instead of x, in the preced-
ing section), z. denotes clean speech and 1 is the noise contaminated speech
observation.

1. Initialization and Evolution of noise hypotheses

Initially the N noise hypotheses nt! (j = 1...N) are sampled from a
general probability distribution, which is learned from noise spectra for a
specific noise (noise model).

Later (t > 0) the evolution of particles (noise hypotheses) can be modeled
by a kth-order autoregressive progress, as proposed in [RSS04],

ne=Ay np_ + Ay g+ + Ap - + €
=A-n_;+a (2.5)
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where A, are d x d state transition matrices, which are learned for a specific
noise and n; is a noise sample at time ¢. The error term ¢ is i.i.d. zero
mean Gaussian (i.e. N(n:;0, Znoise)). It can be regarded to model parts
of the system, which are not expressed by the autoregressive progress. A
denotes the (k- d) x d by row concatenation of the k 4; matrices and P
denotes the vector by column concatenation of the last k d-dimensional
noise samples n;. This leads to the noise transition probability (prediction
step)
Preca|ne) = N(ne<1: A - 1,, Znoise)

Since it has been experienced, that the prediction of noise hypotheses does
not significantly improve by using a model order greater than k = 1 and
a much higher training effort would be necessary, we use a. 1st-order model.

A new particle generation is obtained by drawing each particle of the
next time step n%” (j =1...N) from a so-called importance or proposal
density, since drawing samples from the posteriori density p(nu|y..) is
usually impossible. This concept, called sequential importance sampling

(SIS), can be understood as drawing samples from regions of "importance’.
When using a sampling importance resampling (SIR) particle filter algo-
rithm, the proposal density of a new particle ni‘” is its state transition
probability p(n.4, an’)). This way, the particles are drawn from a density,

which is independent from y,, however the current observation iy takes
effect to the particle weighting (next step of this algorithm).

As mentioned before, overestimations of the noise hypotheses can cause
severe decimation of the particle population, which is also analyzed in
[HUS03]. A simple solution to work against the degeneracy would be,
to use a very high number of particles, but this would suffer from high
computational costs. Therefore we use the so-called fast acceptance test,
which has been proposed by [FW07):

While the condition nﬁ” < Y is not satisfied for all spectral bins, or
a certain number B of iterations have passed, the new particle nfﬂl is
sampled from a transition probability p{mHInS’}). which is the one of a
random particle ns") (i.e. random s € {1...N}). This can be regarded as
virtually increasing the number of particles up to N - B, if Necessary,

. Calculation of particle weights
Having an additive noise assumption, the time domain relation

e =T + 114

12



can be expressed in the log Mel frequency domain by the following equn-
tion?, if the phase is omitted (a detailed analysis can be found in [FWOT]):

ye = log{e* +€e™)

This makes it possible to express a functional dependency of the clean
speech estimation calculated from ng’] and yg:

x, = logle?t —e™)

= flyern¥)) 1= ye + log(1— e ~¥) (2.6)

Next, we can apply the so-called fundamental transformation law of prob-
abilities, which is defined as

) = et - 12

In our case this transformation allows to evaluate the output probability
plyelng) (e pyly) == plyelne)), given the relationship (2.6) and a proba-
bility distribution of clean speech ps(x¢) (speech model).

As noted before, speech is usually modeled by a Gaussian mixture model
(equation 1.1, page 5). This gives us the probability distribution p.(x;)
of clean speech.

So the output probability can be expressed as

; 1

plueln®) =pe (Flwin)) - ——— (2.7)
11 — ™ _‘!.r’tl
N RN (f (e n)s i, Th))

= Z o (2.8)

k=1 i

y = ﬂi”—b‘:.

= CkN{yf + Ii'}g(]- e Mk Ek) (2‘9}

k=1 1 —en’=m|

The likelihood {(n'”; y¢) of the j-th particle is actually the output proba-

bility p(yeIne) of the dynamical system, i.e. Uni; ye) = p{y;ln&j)).

The weight of the j-th particle can be calculated as its normalized likeli-

hood 0
- ) lin J :

wEJ} = ur(ngj)’ ) = _N(J_%-

Yz lne iwe)

where N is the number of particles.

2]y our setup, the relationship between carrupted speech, clean speech, and noise only
approximates this equation for the log Mel power spectrum, since features derived by warped
MVDR are only an approximation to Fourier features, and the liftering step (4. page 8)
introduces further non-linearities.

13



Equation (2.9) is not computable, if n{”’ exceeds y; in any spectral bin,
since it implies e™ ~¥¢ > 1, plyent’) is set to zero in this case.

. Inference of clean speech

Usually, PFs for noise tracking deal with the non-linearity of the relation
between the system state z and the observation y with a linearization using
Taylor series expansions for clean speech inference. This so-called vector
Taylor series (VTS) approach [MRS96] uses a Oth-order Taylor series to
approximate the term log(l — e™*~¥r) .

Inn contrast to that, we use a straight forward direct calculation (statistical
inference approach), derived from equation (2.6):

(a) Calculation of clean speech hypotheses xi‘f ) for each of the N noise

samples n'?:

2 = o + log(1 — e ~w1)

(b) The clean speech estimation #, can be evaluated exploiting equa-
tion (2.4), which can actually be caleulated by averaging over all

N clean speech hypotheses :ctu ) weighted by their normalized likeli-
hoods (particle weights w"):

N
Ty = Zw}” ’35.}]
)=1

This simple approach solves the inference problem without approximation
and has shown better performance than VTS, while being computationally
extremely efficient [FW07].

- Resampling of particles

A major problem when using a SIR particle filter is the degeneracy of
particles. Meaning that after a small number of time steps, all, but only
a few particles get insignificant weights and the probability density is de-
scribed inadequately, since the contribution of most of the particles to
the posteriori density is almost zero. Therefore, the systematic residual
resampling algorithm [BDHO3] is used to resample the particles. This is
a semi-deterministic variant of the sequential sampling importance resam-
bling (SIR) algorithm. SIR can be seen a pruning step. where samples
having a low rating in the likelihood function die, and likely samples are
multiplied. Figure 4 schematically illustrates the concept.
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3 Phoneme Specific Particle Filtering

One crucial step to improve the estimation of a particle fillering algorithm,
is to get a more precise weighting of the particles (step 2 of the algorithm in
the preceding section). This can be achieved by using a better way to model
how speech looks like. In other words, we would appreciate to have an output
probability distribution (2.9), which models the observed speech signal more
precisely.

Traditionally particle filtering for speech feature enhancement is performed
using a general speech model. This means one generic model, giving a likelihood
which states, how far a specific spectral frame has the shape of what is assumed
to be clean speech. Faubel and Wélfel [FW06] have proposed a time dependent,
phoneme specific clean speech model:

M

pphaneft)(x) = Zcl‘.phnﬂ&(f)N(xhll‘phﬂﬂc(t)! zi,phanﬂ{i)) [31]
' 1=1

It is obvious, that a general model for speech is a very unfocused criterion,
ignoring the dynamic properties of speech, since different phonemes have differ-
ent important frequency characteristics (e.g. high frequencies for fricatives like
'S” and low frequent formants for vowels).

Figure 5 shows the probability distribution of a general speech model in
comparison to different phoneme models.

Our research team has developted a PF, which performs a particle weight
caleulation based on a phoneme specific speech model, as further addressed in
this thesis, and first experiments showed that the improved estimation can lead
to & notable increase of word recognition accuracy [FW06).

To establish a phoneme dependency in the PF, it has to be known, what is
spoken at a specific point of time in an utterance. But, since it is the actual job
of the ASR system to obtain these phonemes (and reveal word sequences), they
are not known in advance. Therefore, a two pass system is used (Figure 6).

3.1 Two pass Particle Filter

In the first pass a phoneme independent, general acoustic model for speech is
applied to the acoustic signal, as it is commonly used for particle filtering.
Afterwards, as usual, the ASR system does its decoding to generate a hypothesis
of what has been said. This hypotheses is the basis for the second pass. As
it is known, at that point, what phonemes have been spoken throughout an
utterance, the models can be switched dynamically and particle filtering can be
performed using more specific acoustic speech models.

By using a phoneme transcription hypothesis as indicator which phoneme
specific speech model to use, the PF's stationary speech model is replaced by a
dynamically time varying clean speech model, Furthermore, by coupling back
the recognition results of the first pass into the speech feature enhancement
stage, it benefits from the sophisticated methodologies of the decoder of the
ASR system.
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Figure 6: Two pass particle filter

3.2 Problems of the two-pass approach

In preceding experiments [FWO06] recognized, that using a phoneme specific
speech model for particle filtering is a very promising approach, since the word
error rate (WER) could be reduced by more than 5%®* compared to particle
filtering nsing a general speech madel. But only if a reference hypothesis tran-
seription is available, specifying which phoneme is spoken al a specific point
of time. This can be regarded as the output of a perfect ASR system in the
first pass. Of course, in a real world scenario, such a reference is not available
in advance, that is why we use the decoded hypothesis of a previous decoding
pass. However, such a hypothesis of the first pass may be wrong, which results
in wrong probability distributions being used as speech models for particle fil-
tering. The effect is, that in case of a mismatched hypothesis, the PF cleans
and enhances the noisy speech features into the direction of a wrong phoneme
and the decoder recognizes the wrong phoneme even more likely, which leads
to a worse WER than using a general speech model for particle filtering. We
call this phenomenon ‘model tying'. This effect is most substantial for similar
phonemes which are likely to be confused.

Another problem, when using a phoneme-specific PF, is that dynamically
switching the models leads to very sudden changes in the particle’s weights,
which can destabilize the PF,

To overcome these problems, [FW06] introduced a mized model consisting
of the interpolation of a phoneme specific and a general speech model. In ad-
dition to reconfirming these experiments, this thesis introduces the following
approaches, which will be discussed in the next sections:

® Using a phoneme specific model which is additionally trained by phonemes,
which are likely to be interchanged

* Grouping phonemes to classes and using phoneme class-based speech mod-
els

ISNR 0 dB
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3.3 General and phoneme-specific mixed models

Interpolating between the two different approaches - general speech model p(z)
and phoneme-specific speech model Pphoneme(t)(Z) - Overcomes the model tying
problem, as it was shown in [FW06]. A (phoneme dependent) mixed model can
be defined as

pmtzt:)(m) = pphonemm(t)(m) T (1 = t’)f) ki P{;‘C)

where o is the mixture weight and phoneme(t) is the phoneme in the hypothesis
transcription at time t. It has been evaluated, that the increased number of
Gaussians in this equation is not relevant for the results.

3.4 Confusability based mixed model

Due to their characteristics, some phonemes are conceivably interchanged by
the speech recognition system more often than others. Thus, the model tying
effect is assumed to be more severe for those phonemes, which have a higher
probability of confusion in the decoding stage. The confusability based mized
model tries to tackle this problem by interpolating each phoneme model with a
series of phoneme models, which are known to be interchanged often. The goal
is, not to focus the enhancements by the PF strongly on the single phoneme
given by the hypothesis transcription, but also let it be biased by other possible
phonemes, according to the probability of their confusability, so that the decoder
can identify the correct word.

The phoneme specific, confusability based mixed model is defined as follows:

’\phonemc{f.) * Pphoneme(t) (I’) if A= thefne(t]
pcmi!uw‘\-ﬁxed{;){"ﬁ] 1 Z '\phannme(f].A ¥ pphmemr(!](x} if A# pfwneme(t}
A
(3.2)

where
Aphoneme(t) = P(phoneme(t) is not interchanged),

Aphoneme(t),A = P(phoneme(t) is interchange with A)

W is the set of all phonemes and phoneme(t) is the phoneme in the hypothesis
transeription at time . The probabilities Ajhoneme(t) and Aphoneme(t),A Were
determined by an offline experiment, which messured the number of interchanges
of all pairs of phonemes by comparing the result of a recognition pass (i.e. the
decoded hypothesis transcription) to a reference transeription of approximately
100 hours of speech data.

Typically Aphonemeae) 18 8 much higher probability than Apponeme(e), A which
is zero for many phonemes A in the phoneme set W. However, if phoneme(t)
is potentially interchanged with many other phonemes, it leads to a very high
number of Gaussians in equation (3.2). Therefore, the experiments for this
approach use a fixed number of Gaussians, but are trained by samples, which
belong to differrent phonemes, distributed corresponding 10 Apponeme(r) and

Aphunume{t),ﬂ .
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4 Class-Based Phoneme Models

As the phoneme specific PF is focused too much and therefore tends to in-
fluence the spectrum towards a maybe wrong hypothesis, the idea is, to tie
similar phonemes together into one phoneme cluster. This should also result in
smoother transitions belween the different models and avoid the dying out of
particle, because of rapid changed likelihoods of the particles. The goal is to
emphasize the PF performance by exploiting the characteristics of mare specific
speech models, while dropping the irrelevant characteristics. E.g. phonemes
which are similar and likely to be interchanged may be clustered in one class,
so that this does not influence the decoder in the way of model tying.

4.1 Class-based particle filtering

Generally, there are two different ways how data can be clustered - knowledge-
driven (supervised) and date-driven (unsupervised).

Heuristic, supervised clustering means, that there is a human, who has ex-
pert knowledge in the special domain of the data to be clustered (e.g. a linguist,
or phonologist for the domain of ASR). This expert can analyze the data and
create clusters in a way data can be separated by his knowledge. The methodol-
ogy of using manually labeled data for clustering has shown good results in many
different felds of data clustering (e.g. acoustic model combination for multilin-
gual phoneme set creation [SK06] chapter 4.4). However, it is time consuming
and expensive compared to unsupervised clustering, Moreover, many theoreti-
cal concepts are difficult to apply to real world data, where various problematic
effects have to be considered. E.g. in the case of finding similarities between
phonemes, it is complex to deal with fluent, spontaneous speech, where effects
like coarticulation occur.

The main focus of this thesis lies in purely data driven unsupervised
clustering approaches (without human interaction)., So a clustering algorithm
has to determine on its own, which pieces of data belong to one ¢class and which
do not. We have addressed a hierarchical clustering algorithm to achieve this.

acoustic unadapted
signal hypothesis

Phoneme classes

Specifi hypothvesis
— L Decoder —,—)-

: Pre-Processing

Figure 7: Two-pass particle filter using phoneme classes

Figure 7 shows an extension of the two-pass approach introduced in the previ-
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ous section having an additional classifier component, which maps the phoneme
transcription (hypothesis) of the first pass to phoneme classes, following a cer-
tain classification strategy.

The classification strategy realizes the various clustering approaches and pa-
rameters we addressed, e.g. the clustering policy (i.e. data-driven or knowledge-
based), number of classes, used distance measure, etc.

4.2 Supervised heuristical clustering

First, we focus on the knowledge based approach, and obtain simple phoneme
classifications, based on phonologically well known phoneme classes.

This section introduces the evaluated classes and shortly describes their dif-
ferent characteristies,

4.2.1 Voiced and Unvoiced speech

One of the most fundamental classification is the distinction between voiced and
unvoiced speech. Voiced speech is quasi-periodic, consisting of a fundamental
frequency corresponding to the pitch of the speaker and its harmonics. Un-
voiced speech is stochastic in nature and do not consist of a periodic part in the
spectrum. It can be modeled as white noise convolved with an infinite impulse
response filter.

So the following two phoneme classes (sets of phonemes) have been defined

Covsced = {AA, AE, AH, AO, AW, AX, AX R, AY, B, D, DH, EH, ER, EY,
G.IH,IX,IY,JH,L,M,N,NG,OW,OY,R,V,UW.UH,W,
Z,ZH,XL,XM,XN,Y}

Cunvoiced = {CH., F, HH, K, P.S,SH,T,TH}

4.2.2 Vowels and Consonants

In most languages sounds can be distinct between vowels and consonants. On
the one hand vowels are articulated without major constrictions in the vocal
tract, on the other consonants are formed by characteristic constrictions in the
throat or obstruction in the mouth. Vowels carry most energy of the speech sig-
nal, whereas consonants are weak, often looking similar to silence, and therefore
are likely to be dominated by noise.

So the following two phoneme classes (sets of phonemes) have been defined

Covuets = {AA, AE, AH, AO, AW, AX, AY, EH, EY, [H, IX,IY,OW,0Y.
UW,UH}

Cronsonants = {AXR,B,CH,D,DH,ER,F,G,HH, JH,K,L,M,N, NG, P,
R,S.SH,T.TH,V,W,XL, XM XN,Y,Z,ZH}

4.3 Unsupervised purely data driven clustering

This section presents how to build phoneme clusters based on an unsupervised
clustering method. One of the best known unsupervised clustering methods
is to build up a hierarchical cluster tree e.g. as presented in [DHS01]. This
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way of clustering is also popular in finding similar phonemes for multi-lingual
automatic phoneme clustering e.g. [BAMCAM99] and performs good for speaker
segmentation (e.g. [JS04]).

Hierarchical clustering can be performed in two different ways: agglomer-
ative (bottom-up) and diversive (top-down). In the following we use an ag-
glomerative approach, which means, it starts with n singleton elements to be
clustered and merges similar elements or clusters into bigger clusters up to one
single cluster consisting of all n elements.

The choice, which elements and clusters are most 'similar’, and therefore are
going to be combined, can be determined by many different kinds of distance
measures, which are discussed later. The result of the hierarchical clustering
algorithm can be illustrated as a rooted binary tree (a.k.a. dendrogram), starting
with single elements to be clustered (leafs) and ends in one single cluster (root).

4.3.1 A hierarchical clustering algorithm

Listing 1: Hierarchical clustering algorithm

Cluster[] hierarchClustering(Cluster[] clusters,
int finalNumberOfClusters) {

1

2

3

4: for ( i=1..n; i<=n: i++ )

5: for ( j=1..n; j<=n; j++ )

6: distances([i,j] := D(i,j);
7

8

9

while ( |clusters| > finalNumberQ0fClusters) {
: (i, j) := getMinDistance(clusters, distances);

10: clusters := mergeClusters(i, j» clusters);
1t: |cluster|--;

12: }

13:

14: return clusters;

15: }

Listing 1 shows a typical agglomerative hierarchical clustering algorithm in
pseudo-code. The first step in hierarchical clustering is calculating all distances
between the elements (line 6) to be clustered. In each of the following steps,
the closest clusters are determined (line 9) and combined to a new cluster (line
10), resulting in a decrease of the number of clusters by one. The algorithm
terminates when the specified final number of clusters has been reached and
returns the resulting clusters.

There remain two important points to make the hierarchical clustering al-
gorithm work:

1. Definition of distances between the clusters

2. Merging of clusters to bigger clusters

4.3.2 Distance definitions

In order to cluster similar phonemes, represented by Gaussian mixture models
(GMM)s, the next sections present different distance measures and merging
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methods.

Most of the distances usually used in the fields of pattern recognition are de-
fined between single Gaussian distributions, which means monogaussian models.
E.g. there is no closed form representation of the relative entropy, that could be
used as distance between GMMs. So, in many cases, monogaussian distance’s
definitions wmust be extended to the use for GMMs.

The following distances, were tested in the hierarchical clustering algorithm,
and are discussed further in the following:

e Distances between monoganssian models:

— Euclidean distance
— Extended Mahalanobis distance
— Kullback Leibler distance

e Distances between Gaussian mixture models:

— Kullback Leibler distance for GMMs

— Earth Movers distance

e Euclidean distance between speech samples

In this chapter, ®;, ®; denote Gaussian distributions, with means i, y; and
diagonal covariance matrices Xy, ; (i.e. ®; = N (x|, i), 5 = N(zly;, Z5)).
I'; and I'; are Gaussian mixtures, as introduced in (1.1).

4.3.3 Merging classes

After the distance calculation in the hierarchical clustering algorithm, the near-
est clusters are merged into a new bigger cluster (listing 1 line 10). As the
phoneme classes are represented by GMMs, an easy method achieve this, is to
mix the models by adding and adjusting their distribution weights:

pag(z) = o palz) + (1 —a)  ps(z)

where pal(c) and pg(z) are the GMMs of the two clusters and « 18 a mixture
weight, which can be set, according to the number of phonemes the clusters
consist of, to achieve an equal weighting of the intra class distribution weights.
The number of Gaussians of the new GMM is the sum of the Gaussians of both
clusters.

This method of merging was applied in the experiments for clustering the
Kullback Leibler distance for GMMs and the Earth mover’s distance.

Apart from this approach, combined models can be created by training new
distributions, based on samples of the two phoneme classes to be merged:

There are different ways to train the parameters of a GMM. We use the
widespread split and merge (SAM) training algorithm (e.g. [UNGH98]), which
iteratively improves a model by performing alternately a phase of split opera-
tions followed by a phase of merge operations. Starting with a monogaussian
model. based on all training samples, the splitting divides large cluster (of train-
ing samples) into two subclusters, whereas the merging combines two nearby
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clusters. The parameters of the GMMs are improved by several iterations of
the expectation maximization (EM) algorithm, after each merge and split phase.

This method of merging was applied in the experiments for clustering using
the monogaussian distances.

The Euclidean distance between speech samples does not necessaryly need

a special merging step. The distance calculation can just be performed between
the samples in each of the clusters.

4.3.4 Eucledian distance

1000 lllrlll!llllllllllll!l!llillllx||:lll:!llr!l
b

| |
T

10

i L

I i
H?ﬁ:sgdﬂi;ﬁ“ﬁ!;tg&g*!g>quzg§§kuiil—:;5£wu

A

oY p—v

2

AW

z

Figure 8: Hierarchical clustering based on Euclidean distance

One of the most popular and simple distances is the Euclidean distance:

DEVCE (B4, @) = \/ (e — p1;) (s — 1)

Obviously, this distance is only based on means pip; of Gaussians ®;, ®; and
does not consider their covariances. This can e.g. result in very differently
scattered distributions having the same distance.

Figure 8 shows the dendrogram when clustering the phoneme specific models
by the hierarchical clustering algorithm,
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4.3.5 Extended Mahalanobis distance

The well known Mahalanobis distance is defined to messure the distance between
two vectors in a vector space:

Di»:fjm' /- Tz -y (4.1)

Where z and y are the vectors and £7! is the inverse covariance matrix of the
vector space. In fact the Mahalanobis distance is a weighted Euclidean distance
where the weighting is determined by the covariance matrix (both distances are
identical, if the covariance matrix is the identity).

It can be extended to a distance between two Gaussians, as [ollows:

DMAN (9, ;) = \/(#a = pg) (B 4 Z5) 7 (i — 1)

B e P g o o i B i o e ame s g e N NN S B i BN B L BN L LR IR

o ’J_‘j:——-—-—;l_ I _‘_‘—J:j \_L‘ d
L )

l il )
H ’l‘l i |

|
32 E‘#gﬁ'gﬁ‘:ﬁg%‘ﬁhi’%i”s‘*“’ TgE™

Figure 9: Hierarchical clustering based on extended Mahalanobis distance

4.3.6 Kullback-Leibler distance

The Kullback Leibler divergence is usually used as a means to measure the
distance between a true probability density p(z) and an approximation to it
plz). From an information theoretical point of view, it can also be seen as the
relative entropy for using p(x) instead of p(x):

div plx) .
Dz = f plz) - log =— o )
=00
This definition is not sufficient as a distance, since it is not symmetric (i.e.
DL 4 DKL), o the following symmetrised divergence definition is used
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in this thesis. It will be called Kullback Leibler distance in the following.
K div div
Dyy =Dig™" + D} (4:2)

It should be noted, that D L is still not metric, since it does not satisfy the
triangle inequality in general.

In the case of f() and g() being multivariate Gaussian distributions the
Kullback-Leibler divergence can be computed as

DRE (P, @) = tag:}“': —rrE (' -7+ 5 trES Yo — ) s — pay)"
where fr denotes the trace.

Using diagonal covariance matrices and assuming the coefficients to be statis-
tically independent, allows a simpler calculation of the Kullback-Leibler distance
(4.2):

q

d 02 2
Z};&:— %"2"'( 2 + 2)(!"11_%1)2) (4.3)
=1 l o

D¥E(@, ;) =

lol-—l

where d is the dimension of the feature space and o}y, 0%, are variances of
the dimension /.
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Figure 10: Hierarchical clustering based on Kullback-Leibler distance
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4.3.7 Distances between Gaussian Mixture Models

All distances presented in the previous sections, are only defined for single Gaus-
sian distributions. So, we have to face the problem to apply these distances to
GMMs. One way to handle this is to find a matching between single Gaussian
components of the two GMMs and compute the distance between the mapped
pairs (e.g. [GA05]). We have tried the following mapping:

D{F,.FJ')= Z Z Cw'fy'D(‘piltpj)

Dol Dy ED

However this approach did not lead to balanced cluster trees and therefore
was not considered in our experiments. Another approach to use distances
between single Gaussians for GMMs is, simply to compute distances on mono-
gaussian models. These can be generated by a training algorithm.

4.3.8 Earth Mover’s distance

The Earth Mover’s Distance, proposed in [RTG98], tries to express the minimum
amount of work needed to transform the ’distribution mass’ of one distribution
into another distribution. In [LS01] it is used as distance between GMMs based
on the Kullback Leibler distance (4.3) as a 'ground distance’ between the single
Gaussian components of the GMMs. It can be defined as

DEMD(T, T;) = Z Z DEE(®, &) F(®,,P,)

Pl PyeT;

where F(®,,®,) is the flow from &, to ®,. This flow. which also can be
regarded as a weighted matching between the single Gaussians of the GMMs, is
the solution to the transportation problem [AMO93|, where the Gaussians ®.
with their distribution weight ¢; supply the consumers ®; with capacity ¢;.

4.3.9 Kullback Leibler distance on GMMs

The symetrised Kullback Leibler distance (4.3) can be extended by the distri-
bution weights of the GMMs:

1 Wy 0y,
DKLGMM(p, D) = s Z Z 2wy — wy) - log( wf 'o” )+
P, el el ! :
2
w:'dg_f_u’l."au_'_ ﬂ

a? ol ( a2

w ;
+ =) (pe — py)? = (we +wy)
¥ b Ty

4.3.10 Sample distance

A different approach from building phoneme classes based on speech models, is
to measure the distance between samples of speech in order to get a classification.

The square of the Euclidean distance can be used as a straight forward
metric:
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Figure 11: Hierarchical clustering based on Earth Mover’s distance
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pPlEP) p2e Py d=1

where Py and P, are sets of speech samples of two phonemes and | - | denotes
the cardinality of the set.

4.4 Confusability clustering

In contrast to find similarities between phonemes, the idea behind this cl ustering
method is the fact (similar to the confusability based mixed model in section
3.4), that some phonemes are conceivably interchanged by the speech recognition
system more often than others. So the goal of the clustering method proposed
in this section, is to try to use the same phoneme cluster and therefore the
same (and still correct) speech model for particle filtering, even if the decoded
hypothesis of the first pass is wrong (i.e. the hypothesis indicates a phoneme
which is known to be interchanged often). This should compensate the effect
of model tying in a more direct way, than by the approach using a distance
measures between GMMs, which was proposed in prior sections, because it
gains from the complex evaluations and optimizations in the decoding stage of
the ASR system, in addition to considering similarities between GMMs. Thus,
regarding the interchanges between phonemes offers a potentially good indicator
for building phoneme classes.

To achieve this, we introduce a messure for clustering which answers the
question “How likely will two phoneme classes ¥ and Y be interchanged?".
This measure is called Phoneme Interchange Rate (PIR) in the following.

28



B e o o oo S S e e S S A B B L S L L B S B I S L I B L L B

Ho00CD -| -
|
700000 - -
BOOOOD | -
1 |
l—-,J_—. |

-t J '.

Figure 12: Hierarchical clustering based on Kullback-Leibler distance between
Gaussian mixtures

Phoneme interchange rate

The offline experiment, which was already mentioned in section 3.4, provides us
the number of interchanges of all pairs of phonemes by comparing the result of
a recognition pass (i.e. the decoded hypothesis) to a reference transcription of
the speech data. The interchange rate between the phonemes X and Y (PIR)
can be computed as follows:

PIR(X,Y)=P( X and Y are interchanged | X occurs and Y oceurs )

_ P(XandY are interchanged )
~ P( X occurs ) - P( Y occurs )

#ic(X,Y) + #ic(Y, X)
S #1e(A,B)

A bsv

FocX) __FocY)

Y #0c(C) Y #0c(C)

Ce¥ Ce®

(4.4)

Where #ic(X,Y) means the number of interchanges of phoneme X by
phoneme Y. #oc(C) is the number of occurrences of phoneme C in the ref-
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Figure 13: Hierarchical clustering based on Eunclidean distance between samples

erence transcription, ¥ is the set of all phonemes.

In the hierarchical clustering algorithm two phonemes X and Y are merged
to one new cluster, when their interchange probability PTR(X,Y) is the largest.
Therefore, the PIR is defined as a symmetric measure (ie. PIR(X.Y) =
PIR(Y,X)). The denominator of (4.4) can be regarded as elimination of the
a-priori probability. Not considering the a-priori probability would lead to a
cluster tree, where nearly in each step of the algorithm a phoneme is added to
one single big class. This would result in very unevenly distributed class sizes.
Since phonemes, which occur very often, have a potentially high number of in-
terchanges, and therefore are merged first. With the effect of getting an even
higher number of occurrences and a probable higher number of interchanges in
the following step.

Above, the definition of the phoneme interchange rate is between two single
phonemes X and Y. To be able to use it in the hierarchical clustering algorithm
it has to be extended to work for two sets of phonemes (i.e. phoneme classes)
X and Y:
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PIR(X.Y) =F( U X is interchanged with Y | U X oceurs and Y oceurs |
Xex yYey XeX.Yey

)3 #ie(X,Y) + #ic(Y, X)
XeX.yey Z #ic(A, B)

A.BeW
v ek #oc(Y)
xexvey 3 #oc(C) Y #oc(C)

Cev Cew

2
(Z #0‘-‘(0)) ST #ie(X,Y) + #ic(Y. X)

_ Cev ‘XEX.YEY
Y #ic(A, B) D #Hoc(X) - #oc(Y)
A, Bew XeEX YEY

The following diagram shows the corresponding dendrogram, as outputted
by the hierarchical clustering algorithm:
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Figure 14: Hierarchical clustering based Phoneme Interchange Rate
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Figure 15; Phoneme Interchange rate (darker fields denote higher PIR)
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5 Experiments

After the theoretical part of this thesis, we now try to evaluate and compare the
discussed particle fillering enhancements by recognition experiments using the
system setup described in the following subsection. The different experiments
are quantified in terms of word error rate (WER).

5.1 System setup

To analyze the performance of the discussed particle filtering improvements,
all of the proposed techniques were tested on 45 minutes of seminar talk, which
presents a very challenging task to all parts of the ASR system: The acoustic
models have to cope with data that contains spontaneous, non-native and
disfluent speech. The language model has to deal with demanding technical
topics, which are focused on automatic speech recognition and signal processing,.

Dynamic noise was artificially added to the clean speech signal (additive
noise). We selected to evaluaie all of the proposed techniques under the signal
to noise ratios (SNR)s 0 dB, 5 dB and 10 dB. The artificially added noise [Pro]
consists of a collection of different kinds of environmental noise with a high
degree of non-stationary sounds. It contains noise of trucks driving past, slam-
ming containers and human sounds like distant voices, shouts and coughing, ete.

The acoustic models were generated based on approximately 100 hours of
training data, which was taken from ICSI, NIST, CMU meeting corpora, as well
as Translanguage English Database (TED), leading to 3500 context dependent
codebooks, which consist of up to 64 Gaussians with diagonal covariances.

We use a 3-gram language model, trained on approximately 23000 words
with a perplexity of 125.

In the second pass, we also used adaption. Namely, maximum likelihood
linear regression (MLLR) and constrained MLLR (feature space adaption)
adapted the corresponding first pass hypothesis.

In each experiment the PF uses N = 100 particles, since it has been discov-
ered, that a much higher number of particles only leads to slight performance
improvements, while being computationally significantly more expensive. A
static noise variance ¢ = 10 (error term in equation (2.5)) has been chosen
in each of the experiments. however different values have shown comparable
results.

The traditional general speech model is represented by one single Gaussian
Mixture for speech, consisting of up to 64 Gaussians. Each cluster of the clus-
tered phoneme models (presented in chapter 4) also consists of up to 64 Gaus-
sians. The mixed models (section 3.4 and 3.3) consist of up to 64 Gaussians
for each of the 45 phonemes. The clean speech model for the purely phoneme
specific model (section 3.1) consists of 16 Gaussians per phoneme.
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5.2 Experimental results

The experiments using a particle filter with the traditional general speech model
can be seen as the baseline to the following improvements by mixed models or
phoneme classes.

SNR 0 dB
Unadapted Adapted
Hypothesis ] Reference | Hypothesis [ Reference
No PF 61.3% 43.9%
General PF 56.6% 41.9%
PSM 55.1% 52.9% 41.4% 39.8%
Mix 55.3% 54.8% 41.9% 40.0%
ConfusMix 56.5% 54.6% 41.5% 39.5%

Table 1: Experimental results SNR 0 dB

SNR 5 dB
Unadapted Adapted
Hypothesis | Reference | Hypothesis | Reference
No PF 50.1% 35.4%
General PF 46.3% 36.1%
PSM 45.5% 44.9% 34.5% 33.5%
Mix 45.9% 45.6% 35.3% 33.5%
ConfusMix 45.9% 43.9% 34.3% 33.9%

Table 2: Experimental results SNR. 5 dB

SNR 10 dB
Unadapted Adapted
y Hypothesis | Reference | Hypothesis [ Reference
No PF 42.9% 31.2%
General PF 40.5% 31.2%
PSM 41.4% 39.4% 32.2% 31.2%
Mix 40.6% 39.7% 32.5% 32.3%
ConfusMix 41.0% 40.0% 3L.7% 32.0%

Table 3: Experimental results SNR 10 dB

First, Table 1, Table 2 and Table 3 show the general particle filter re-
sults (General PF) in comparison to the results without a speech feature
enhancement step by particle filtering (No PF). The values with adaption as
well as without, show significant improvements compared to the recognition
experiments without PF (only the adapted experiment at SNR 5 dB appears
to be an outlier).
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The unadapted generali PF experiments act as the first pass of the two pass
approach. All of the other experiments are based on the hypothesis phoneme
transcription of a correspouding first pass (i.e.  their related General PF
experiment) and can be considered as second pass. Additionally, as mentioned
in the previous section, the adapted experiments used adaption techniques,
based on these first pass recognition results.

In the next row Table 1, Table 2 and Table 3 show the results of the purely
phoneme specific model (PSM). It appears to generate good results for the eval-
uated experimental conditions (with and without speaker adaption and for the
reference as well as the hypothesis transcription) for SNR 0 dB and SNR 3
dB. Thus, as in previous analyzes we can clearly confirm, that particle filtering
greatly benefits from phoneme specific speech models. The problem of model
tying becomes evident at SNR 10 dB (i.e. the hypothesis experiments of the
purely phoneme specific model perform worse than the general model, and its
reference experiments perform better). However, in contrast to experiences from
previous experiments, this effect does not appear for SNR 5 dB and SNR 0 dB
in our system setup.

Mixed Speech Models

Next, let us have a look at the mized speech models (see section 3.3). Contrary
to earlier experiments (using different system setups), the phoneme specific
results perform better than the results using the general model even for most
of the hypothesis based experiments. Therefore, mixing the phoneme specific
model with the (worse performing®) general model is not very promissing. We
tested a series of different values for the mixture weight a. The experiments
use a = 0.5 (equal weighting of both models), which appeared to be a good
value. The results can also be found in Table 1, Table 2 and Table 3. The
performance of the basic mixed model is slightly better than the general model
approach (except for SNR 10 dB), but cannot reach the performance of the
purely phoneme specific model in nearly all of the cases.

Confusability based mixed model

Most of the experiments using the confusability based mized model PF (see sec-
tion 3.4) show slightly better results, than the basic mixed model experiments.
Even though, for the unadapted experiments the WER performances is mostly
located between the one of the two mixture sources (i.e. general model and
phoneme specific model), the adapted experiments show slightly better results
than the general model as well as the phoneme specific model.

4We discovered, that the mixed models approach delivers good results for this system
setup, if the training of the models is slightly modified by using samples of phoneme mids
only (i.e. samples which do not belong to the beginning or the end of the articulation of a
phoneme, and therefore are assumed to be more “precise”). For better comparability to the
other approaches, the results presented here are based on the unmodified training procedure,
using all of the extracted training samples.



SNR 0 dB

Unadapted Adapted
Hypothesis | Reference | Hypothesis | Reference
General PF 56.6% 41.9%
PSM 55.1% 52.9% 41.4% 39.8%
VoicedUnvoiced 55.1% 56.6% 41.3% 40.4%
VowelConsonant 57.0% 55.8% 41.2% 40.7%

Table 4: Experimental results SNR. 0 dB

SNR 5 dB
Unadapted Adapted
B Hypothesis | Reference [ Hypothesis | Reference
[ General PF 46.3% 36.1%
PSM 45.5% 44 9%, 34.5% 33.5%
VoicedUnvoiced 45.9% 45.7% 34.4% 35.1%
VowelConsonant 45.6% 45.9% 34.9% 34.4%

Table 5: Experimental results SNR 5 dB

SNR 10 dB
Unadapted Adapted
Hypothesis | Reference | Hypothesis | Reference
General PF 40.5% 31.2%
PSM 41.4% 39.4% 32.2% 31.2%
VoicedUnvoiced 41.3% 40.6% 32.3% 31.7%
VowelConsonant 40.9% 40.7% 31.8% 32.2%

Table 6: Experimental results SNR 10 dB
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Knowlodge-based phoneme clustering

The knowledge based clustering into two classes, for voiced and unvoiced
phonemes (see section 4.2.1), as well as for vowels and consonants (see sec-
tion 4.2.2) reaches the performance of the purely phoneme specific particle filter
results (see Table 4, Table 5, and Table 6). Therefore, it can be stated, that im-
provements over the traditional general model approach can be achieved with a
much lower number of classes. So, it is possible to improve the PF performance
up to a level, that is comparable to the results of the purely phoneme specific
approach (consisting of 45 phonemes), only by a little more training effort (two
classes instead of one),

Data-driven phoneme clustering

To evaluate the phoneme classes based methods, we start by analyzing the
outputs of the hierarchical clustering algorithm (the corresponding dendrograms
have already been shown in each of the distance’s sections) In the following,
we discuss their performance.

Clustering results

First, it becomes apparent, that the distance measures are a critical factor in
building dendrograms by agglomerative hierarchical clustering. Some distances
tend to generate a tree, which is very unbalanced, because many phonemes
are merged to the same cluster over a series of continuous iterations of the
algorithm (i.e. it results in very unevenly distributed class sizes). This problem
depicts itself as stairs-effect in the dendrogram (e.g. see the Euclidean distance
between samples, Figure 13). Such a case limits the number of potential
phoneme clusters to a small number (i.e. we only evaluated two and three
classes for the Euclidean distance between samples). There are distances where
this effect is so severe, that it is even not possible to build a useful cluster tree,
because in each iteration of the hierarchical clustering algorithm only one single
cluster grows (e.g. the distance proposed in [HV07], and the generalization of
the monogaussian distances to GMMs as described in section 4.3.7 turned out
to be inoperative for clustering phoneme models).

Having a closer look at the clustering results shows, that the arrangement
of phonemes differs significantly for the different distance measures. However,
it can be recognized, that there are several characteristics that many cluster
trees have in common. For example in each of the investigated cluster trees the
phonemes S and Z are merged at leaf layer, furthermore the class { {AA, AW},
{AH, OY}, {AY, EH} } appears in all of the monogaussian dendrograms (i.e.
DEUCL DKL peMHNY and is constructed exactly in the same order for each
of the distances.

All in all it can be stated, that in most cases the phoneme model based
clustering results show structures, which can (intuitively) recognized as similar
sounding,.

The confusability based clustering (Figure 14) reveals problems due to devi-

ations of the reference alignment from the hypothesis. Thus, the two phonemes
IX and NG which together form the suffix ’ing’, or Y and UW which compose to
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the word "you', appear to be interchanged very often. However, S and Z, which
also show a high interchange rate, are certainly phonemes which are hard to be
kept apart by the decoder.

o ' ' ' ' Ref SNR OdB s

Hyp SNR 0dB ==m
Ref SNR 5dB mm
60 + Hyp SNR 5dB mmmmm -
Ref SNR 10dB —=
Hyp SNR 10dB ——

55

50

WER in %

40

General model 2 4 8 16 32
mixture factor

Figure 16: Kullback-Leibler distance on Gaussian mixture models, unadapted,
2,4, 8, 16 and 32 classes in comparison to the traditional general model

Monogaussian Distances

For the distances based on the monogaussian approach (see sections 4.3.4, 4.3.5
and 4.3.6), we evaluated the Euclidean distance (DEVCL) and the extended Ma-
halanobis distance (D*M"N) for two classes, and the Kullback Leibler distance
(D) for three classes, because of the structure of its dendrogram (it actually
consists of two approximately equal sized classes and the phoneme XM). The
results of the monogaussian distances outperform the general model in all of
our experiments for SNR 0 dB and SNR 5 dB, but can mostly not reach the
performance of the purely phoneme specific approach. At SNR 10 dB, where the
model tying effect occurs, they cannot compete with the general model, how-
ever the results are better than those of the purely phoneme specific approach.
Thus, the monogaussian distances show performeance improvements for evident
noisy environments in comparison to the general model, and appear to be more
robust against the model tying effect than the phoneme specific approach, only
by enhancing the particle filter with one additional class.

Distances between Gaussian Mixtures

For the class of distances based on Gaussian mixtures, we first evaluated the
Earth Mover's distance for two and three classes. The results in terms of word
error rate can bhe found in Table 8, Table 9 and Table 10 at rows DEMD
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6E

AA, AW, AY, EH. AE, OW, AQ, R, AH, UH, ER,

B,T,DH, W, D K P F,TH, 8. 2, G,
OY, AXR, UW,. AX, HH, UH, 5H, EY, 1X, XM, ZH N, JH, Y, IH, 1Y, L, XL, M, NG, v, XN
AA, AW, AY, EH, AL, OW, AO, R AH, UH, ER, OY, AXR, UW, AX H,T,DH, W, DX, P P, TH, 8,7,G, N, JH. Y,
HH, CH, 5H, EY, IX, XM, ZH IH, 1Y, L, XL, M NG, Vv XN
AA, AW, AY, EH AE, OW, AD H AH, UH, ER, OY, CH, 8H. EY B, T, DH, W DK P P, TH. 5, Z, 1H, 1Y L, XL,
AXF, UW, AX, HH IX, XM, ZH G, N, JH, ¥ M, NG, V, XN
AN, AW, AE, OW A, R AH, UM, AXR, UWwW, CH, §H EY, IX, B, T DH, W o, K P F, TH, G. N S Y 1H, ¥, M, NG,
AY, EH B, Y AX, HH XM, ZH 8,2 L, XL ¥, XN
AA, AY EH AE ow AT R AH, BR; AXR, AX. CH 5H Y X, XM, B a H w i3 H L id 7 8. (=] N M Y =, 1, M. V.
AW uUH oy W HH ZH TH z 154 XL NG XN

Table 7: Kullback-Leibler distance between Gaussian mixtures - 2, 4, 8, 16, and 32 classes




They appear to be comparable to those based on the monogaussian distances,
although exploiting some additional information, that the GMMs provide (i.e.
the mixture weights are not considered by the monogaussian distances and the
Euclidean distance even ignores the covariance matrices).

Anyhow, the overall best absolute value of a word error rate in our experi-
ments can be found for the adapted reference of the Earth Mover’s distance for
three classes at SNR 10 dB (31.0%).

We further investigated a deeper analysis on the Kullback Leibler distance on
GMMs, since among all studied distances the shape of its dendrogram is most,
similar to a balanced binary tree. So we evaluated 2, 4, 8, 16 and 32 classes.
The compositions of these classes can be found in Table 7. Table 8, Table 9 and
Table 10 show the corresponding results as DN ELGMM

A potentially best number of classes cannot be determinated clearly. For
the unadapted results on the reference, a definite trend for better performance
with more classes can be recognized, however this mostly does not translate
to the adapted experiments. Nevertheless, for the (most expressive) hypothesis
experiments, nearly all of the best performing results (among all studied particle
filter enhancement techniques) can be found in one of those experiments based
on Kullback Leibler distance on GMMs. For example at SNR 5 dB on the
hypothesis with speaker adaption using 8 classes, it could achieve a gain of
2.6% WER compared to a particle filter using the traditional general model.
Especially it can outperform the traditional general approach and the purely
phoneme specific approach (except for the hypothesis experiment at SNR 10
dB, where the general model could not be surpassed by any other approaches’
hypothesis experiment).

SNR 0 dB
Unadapted Adapted
#classes | Hypothesis | Reference | Hypothesis | Relerence

[ General PF 1 56.6% 411.9%

[ PSM 45 55.1% 52.9% 41.4% | 39.8%
DEUCL 2 55.7% 56.1% 41.5% 40.3%
ety 2 56.3% 56.3% 41.0% 40.8%
DFT 3 55.8% 56.0% 422% 41.0%
DEMD 2 56.3% 56.3% 41.0% 39.5%
DEMD 3 56.4% 56.6% 40.5% 40.2%
DRLCMH 2 56.3% 56.4% 41.6% 10.0%
DRLGMM 4 56.9% 56.1% 40.9% 41.7%
DRICWM 8 55.6% 55.0% 11.4% 41.1%
DRLGH™ 16 56.2%% 54.0% 41.4% 40.4% |
DRLGMM 32 54.7% 53.7% 41.3% 39.1%
DeveSMP 2 57.0% 56.9% 41.9% 41.0%
DEveISMP 3 56.2% 56.2% 42.2% 40.6%
DFTR 2 55.9% 56.4% 42.0% 40.9%
PE 3 56.1% 55.5% 11.7% 41.3%

Table 8: Experimental results SNR 0 dB
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SNR 5 dB
Unadapted Adapted
B #classes | Hypothesis | Reference | Hypothesis | Reference

General PF 1 46.3% 36.1%

PSM 45 45.5% 44.9% 34.5% 33.5%

DPYSh 2 45.9% 45.0% 34.8% 34.7%

DEMHN 2 15.6% 16.0% 35.0% 34.2%
[[DAR 3 45.9% 16.1% 34.6% 34.2%
| DEMD 2 45.6% 46.0% 35.0% 34.4%

D=EY2 3 46.0% 44.7% 34.7% 34.0%

DRLGMM 2 45.1% 45.9% 34.4% 34.0%

DAk 4 45.8% 45.4% 33.9% 34.3%

DELGHM 8 45.4% 15.3% 33.5% 34.4%

DRIGHM 16 46.0% 45.0% 34.6% 34.0%
[ DFEREN 32 45.9% 44.3% 35.0% 33.8%
[ pruclSMF 2 45.9% 16.6% 34.2% 34.2%

el 3 46.7% 45.7% 35.3% 34.8%

DFTR 2 46.5% 45.7% 34.6% 34.3% |

DTIR 3 16.0% 45.4% 31.3% 34.3%

Table 9: Experimental results SNR 5 dB

Sample distance

The Euclidean distance belween samples (see section 4.3.10) has already shown
fHlawed clustering results. We evaluated the clustering into two and three classes,
which have relatively unevenly distributed class sizes (e.g. in the case of two
classes, one class consists of 37 phonemes and the other consists of 8 phonemes).
Table 8, Table 9 and Table 10 again present the results (D*“<'S*"). For nearly
all of the analyzed experimental parameters, the performance of DeuetSMP oqpy
be found among the worst results (e.g. it delivered 57.0% for unadapted, hy-
pothesis with two classes at SNR 0 dB, which is the overall worst performance
in the PF experiments test set). Therefore, in our experiments the Euclidean
distance between samples is the least successful approach to build clustered
phoneme models, but this points out, that the quality of clustering has an im-
pact on the results of the recognition experiments. Nevertheless, DeveSMP gy
excel the traditional approach in single experiments.

Confusability clustering

The confusability clustering experiments, which are based on the phoneme in-
terchange rate (introduced in section 4.4) can also be found in Table 8, Table 9
and Table 10 (DP'R). Again, we evaluated two and three classes. The perfor-
mance is below-average, which appears to be consistent to the problems, that
have already been indicated by the clustering resitlts. However, for most of the
experiments, the word error rate can still be identified to be better than either
the traditional general, or the purely phoneme specific model.
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SNR 10 dB
Unadapted Adapted
#classes | Hypothesis | Reference | Hypothesis | Reference
General PF 1 40.5% 31.2%
PSM 45 41.4% 39.4% 32.2% | 31.2%
DHICL 2 41.3% 40.6% 31.9% 31.3%
bl 2 41.0% 40.8% 32.3% 31.5%
D= 3 40.8% 41.5% 31.9% 31.7%
PEsEE 2 41.0% 40.8% 32.3% 32.0%
DE»D 3 41.1% 40.0% 31.6% 31.0%
[ DXICNR 2 41.0% 40.8% 31.6% 31.7%

' i 4 41.1% 40.7% 32.3% 32.1%
DR LGN 8 41.4% 40.6% 31.8% 31.7%
T 16 40.9% 40.4% 32.4% 3L.7%
DALGHM 32 40.4% 39.6% 31.6% 31.90_;41___
DIpua e 2 40.8% 40.7% 32.9% 32.2%
Devciaiar 3 41.2% 40.9% 31.9% 32.0%
DFTR 2 41.1% 40.1% 31.8% 32.3%
Dl 3 41.2% 40.5% 3L.7% 31.7%

Table 10: Experimental results SNR 10 dB

6 Conclusion and Outlook

In this thesis, a series of new approaches to further improve the particle filter
performance by phoneme specific, dynamically time varying speech models have
been introduced and an experimental scenario has been set up to evaluate their
performance. The focus has been set to data-driven, unsupervised phoneme
clusters, which were generated by an agglomerative hierarchical clustering algo-
rithm using different distance measures. In addition to that knowledge-hased
and confusability-based approaches have also been examined.

We tried a lot of different approaches and parameters to evaluate the per-
formance of the proposed particle filter enhancements. The results show a high
rate of variability, which makes it hard to derive clear qualitative statements
for comparing the different approaches. These problems seem to be only partly
inherent in the indeterminism of the particle filter approach. Additional vari-
abilities come from the language model, the speaker adaption techniques and
also the pre-processing stage appears to be a highly critical factor. For that
reason, the experimental results might not directly translate to alternative sce-
narios or processing in different dimensionalitics of the feature space. To get
more stable results, further analyses, using a much larger data set, had to be
used, which was not possible within the scope of this thesis.

The different distances lead to very different clustering results, but this does
not directly transfer to the word error rates and no single best solution could
be determined, that stands out from the other approaches. Hence, it might be
necessary to perform an additional investigation, to find out which approach
achieves the best possible speech recognition performance for the application’s
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special environmental conditions and setup.

Towever, we clearly reconfirtned, that a particle filter based approach does a
very good job to improve the recognition accuracy in environments afflicted with
highly non-stationary, additive noise. To conclude we can state, that in nearly
all cases, the performance of one of the proposed approaches could outperform
either the traditional general or the purely phoneme specific model, and the
overall best performance could be meliorated by the use of class-based phoneme
models

Outlook

Finally, this section introduces some additional ideas, to develop further the
phoneme specific particle filter design.

The articulation of a phoneme can vary within its duration, so that the
onset and offset might differ considerably. Additionally. for spontaneous and
fluent speech, phonemes can not be treated as separate units, but flow into
each other (coarticulation). Because of that, a phoneme is often represented by
a 3-state Hidden Markov Model in ASR systems (modeling its begin, middle
and end). Furthermore context dependent probability distributions are used
for each state. By now, our speech models for particle filtering neglected the
fact of fluctuating articulation within a phoneme and its context. A phoneme
clustering with respect to begin, middle and end of a phoneme, or clustering
based on context dependent sub-phonemes could be more fine granular, reduce
variabilities, and lead to better matching to the acoustic models used in the
decoding pass.

Another refinement can be applied to manage the classification of the particle
filter: Instead of using a single best hypothesis transcription of a first recognition
pass, the classification can be made by using phoneme transcriptions based on
the n best hypotheses or lattice, derived from the wordgraph of the (first pass)
decoding stage. This way, additional information about alternative hypotheses
and their uncertainty can be transfered back from the ASR system into the
particle filter.

It even might be possible to overcome the two phase approach by fast
heuristics to detect classes without a previous recognition pass (e.g. use
of an voiced/unvoiced speech detection as classifier), since we experienced
improvements in the performance of the particle filter even with a small number
of classes.

The methods proposed in this section show, that there are still many
opportunities to exploit the full potential of phoneme specific particle filters
for speech feature enhancement. Future research efforts can improve their
performance and stability and help to further reduce the impact of noisy
environments on speech recognition.



A Phonemes in JRTk

Phoneme | Words
AA arm, article
AE avenue, axe
AH about, above
AO awesome, force
AW bounce, down
AX account, alert
AXR capture, liter, ...er
AY mike, psycho
B brain, about
CH chain, chicken
D development, destiny
DH the, thank
EH error, excellent
ER versus, term
EY weight, take
F filter, flag
G gold, gun
HH hack, hammer
IH history, image
IX illusion, intensive, ...ing
1Y Jewlery, magazine, ..ty
JH major, merge
K micro, kill
L long, life
M man, manual
N novel, nice
NG language. bank, ...ing
oW bold, code
(6)'¢ deploy, appointment
P pittsburgh, party
R reason, record
S senior, setup
SH shield, short
T time, today
TH thumb, theatre
UH would, look
UwW you, loose
v over, provider
W queen, way
XL able, angle
XM rhythm, tourism
XN certain, buton
Y young, year
A advice, is, .5
ZH measure, usual
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