
A Study on Semantic Parsing
of Cooking Recipes

Bachelor’s Thesis of

Florian P�sterer

at the Department of Informatics

Institute for Anthropomatics and Robotics

Reviewer: Prof. Alexander Waibel

Second reviewer: Prof. Tamim Asfour

Advisor: M.Sc. Stefan Constantin

Second advisor: Prof. Eduard Hovy

Third advisor: M.Sc. Naoki Otani

July 28, 2019 – November 27, 2019

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Pittsburgh, PA, United States, November 27, 2019

. .

(Florian P�sterer)

Abstract

To be useful in interactions with humans, computers need to thoroughly understand

natural language. For this purpose, a deep semantic analysis of text is required. Due to

the ambiguity and sparseness of natural language however, a syntax-level understanding

of sentences by themselves is not enough. Rather, deep semantic parsing requires inter-

sentence context and commonsense background knowledge.

In order to come closer to open-domain commonsense knowledge extraction algorithms

and thus open-domain semantic parsers, our approach is to focus on a domain with

procedural semantics. By a deep semantic analysis of instructional text, we can spot gaps

in between instructions, which we can interpret as implicit semantic assumptions and

extract as commonsense knowledge. Cooking recipes are widely available, have a limited

vocabulary and thus o�er an attractive initial starting point for such work.

In this thesis, we study English cooking recipes, identify challenges for semantically

parsing them, and evaluate existing rule-based, syntax-based and neural end-to-end se-

mantic parsers on a small dataset of 50 English recipes we create. We compare their

performance on trigger word identi�cation (which words evoke actions or entities), action

classi�cation (which type of action is evoked) and input identi�cation (which entities

participate in each action).

We �nd that the syntactic parse of the recipe is a very useful input for a semantic parser,

as syntax-based pipelines in our comparison outperform neural methods by 0.48 and more

absolute F1-score di�erence in input identi�cation. Additionally, using the Gold syntactic

labels instead of a syntactic parse obtained from a state-of-the-art dependency parser

improves the input identi�cation F1-score by 0.06. This also suggests current syntactic

parsers have a relatively low accuracy in the cooking recipe domain, which we examine

both quantitatively and qualitatively.

Based on our investigation, we suggest various directions for future work. We be-

lieve that research on inter-sentence context, additional inputs for the parser and the

combination of multiple models will bring the best performance improvements.

i

Zusammenfassung

Um in Interaktionen mit Menschen nützlich zu sein, müssen Computer ein tiefes Ver-

ständnis natürlicher Sprache haben. Hierzu ist eine tiefgreifende semantische Analyse

von Texten erforderlich. Da natürliche Sprache allerdings oft mehrdeutig ist, reicht ein

ober�ächliches Verständnis der Syntax einzelner Sätze nicht aus. Vielmehr erfordert

tiefgreifendes semantisches Parsen satzübergreifenden Kontext und Commonsense Hin-

tergrundwissen.

Um dem Ziel von allgemein einsetzbaren Commonsense Extraktionsalgorithmen und da-

mit allgemeinen semantischen Parsern näher zu kommen, ist es unser Ansatz, uns auf eine

Domäne mit prozeduraler Semantik zu fokussieren. Mithilfe einer tiefgreifenden semanti-

schen Analyse von instruktionalen Texten können wir Lücken zwischen Instruktionen

feststellen, diese als implizite semantische Annahmen interpretieren und als Commonsense

Wissen extrahieren. Kochrezepte sind breit verfügbar, nutzen ein begrenztes Vokabular

und bieten damit einen attraktiven Startpunkt für solch eine Forschungsarbeit.

In dieser Abschlussarbeit studieren wir englische Kochrezepte, erkennen Herausforde-

rungen, diese semantisch zu parsen und evaluieren bestehende regelbasierte, syntax-

basierte und neuronale End-zu-End semantische Parser auf einem Datensatz von 50

englischen Rezepten, den wir selbst kreieren. Wir vergleichen deren Genauigkeit be-

züglich Auslöser-Identi�zierung (welche Wörter implizieren Aktionen oder Entitäten),

Aktions-Klassizi�erung (welcher Typ von Aktion wird impliziert) und Input-Identi�zierung

(welcher Aktion sind Entitäten zugeordnet).

Wir stellen fest, dass der syntaktische Parse eines Rezepts eine sehr nützliche Eingabe

für einen semantischen Parser ist, denn syntaxbasierte Pipelines in unserem Vergleich

übertre�en neuronale Methoden um 0.48 und mehr in absoluter F1 Di�erenz. Zudem

verbessert die Eingabe der syntaktischen Gold-Labels anstatt des von einem state-of-the-

art syntaktischen Parser generierten Parses den F1-Score bezüglich Input-Identi�zierung

um 0.06. Dies suggeriert ebenfalls, dass aktuelle syntaktische Parser eine vergleichsweise

geringe Genauigkeit bei Kochrezepten haben, was wir sowohl quantitativ als auch qualitativ

untersuchen.

Basierend auf unserer Untersuchung schlagen wir diverse Richtungen für zukünftige

Forschungsarbeiten vor. Wir denken, dass Forschung in den Bereichen satzübergreifender

Kontext, zusätzliche Eingaben für den Parser sowie die Kombination mehrerer Modelle zu

den besten Leistungssteigerungen führen wird.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1

1.1.1. Semantic Parsing . 2

1.1.2. Cooking Recipes . 2

1.2. Contributions of this Work . 3

1.3. Structure . 4

2. Background 5
2.1. Natural Language Processing . 5

2.1.1. Syntax . 5

2.2. Semantic Parsing . 6

2.2.1. Task Description . 6

2.2.2. The Problem of Representation Design 7

2.2.3. Semantic Parsing Corpora . 8

2.2.4. The Problem of Transformation Algorithms 9

3. Commonsense Knowledge 11
3.1. Project Context . 11

3.2. Commonsense Knowledge Extraction . 11

3.2.1. Gap Analysis . 11

3.2.2. Frequency Analysis . 12

4. A Case Study: Semantic Parsing of Cooking Recipes 13
4.1. Semantic Representation . 13

4.1.1. Semantic Characteristics in Cooking Recipes 13

4.1.2. Annotation Schema . 14

4.2. 50 Cooking Recipes Dataset . 15

4.2.1. Syntactic Annotation . 15

4.2.2. Semantic Annotation . 17

4.2.3. Syntactic Characteristics . 18

4.2.4. Semantic Parser Challenges . 21

4.3. Models . 23

4.3.1. ocra: A Rule-based Parser . 23

4.3.2. SLING: A Neural Parser . 25

v

Contents

4.4. Evaluation . 28

4.4.1. Training . 28

4.4.2. Performance . 31

4.4.3. Semantic Parser Challenges . 33

4.5. Discussion . 35

5. RelatedWork 37
5.1. Domain and Problem Formulation . 37

5.1.1. Cooking Recipes . 37

5.1.2. Others . 38

5.2. Computational Models . 39

5.2.1. Surface Structure Prediction . 39

5.2.2. Tracking the World State . 39

6. Future Work 41
6.1. Inter-sentence Relations . 41

6.2. Representation Design . 41

6.2.1. Automatic Representation Design 42

6.3. Training with Weak Supervision . 42

6.3.1. Additional Inputs . 42

6.4. The How-to Domain . 43

6.5. Model Ensemble . 43

6.6. Commonsense Gaps vs. Parser Errors . 44

7. Conclusion 45

Bibliography 47

A. Frame Types 51
A.1. List of Frame Types . 51

A.2. Disambiguations . 51

A.2.1. Divide vs. SizeChange . 52

A.2.2. Merge vs. LocationChange . 52

B. Common Format 53
B.1. Motivation . 53

B.2. Description of the Common Format . 53

vi

List of Figures

1.1. High-level overview of the pipeline. 1

1.2. An annotated example cooking recipe. 2

4.1. A recipe sentence with a subject. 18

4.2. Direct objects by step number. 20

4.3. Inter-sentence relations in our 50 recipes dataset. 22

4.4. ocra’s recipe analyzer pipeline. 24

4.5. Step 2 of ocra’s pipeline. 24

4.6. Step 2 of ocra’s pipeline. 25

4.7. Step 4 of ocra’s pipeline. 26

4.8. SLING’s encoder-decoder architecture. 27

4.9. Learning curves for training SLING. 30

4.10. Inter-sentence relations by pipeline. 35

vii

List of Tables

4.1. Dataset statistics of the 50 recipes dataset. 15

4.2. Performance of the StanfordNLP dependency parser. 16

4.3. Objects and oblique dependents by verb. 19

4.4. Training and development splits for training SLING. 29

4.5. Performance evaluation results. 32

ix

1. Introduction

1.1. Motivation

Language is not only how we communicate but also makes up for a lot of how we think.

Thus, for computers to be useful in interactions with humans, they need to deeply under-

stand natural language.

Understanding natural language in the way a human does requires the computer to

have much more than a surface understanding like the syntactic structure of each sentence

can provide. Deep semantic analysis of texts requires inter-sentence context and often

knowledge about not explicitly mentioned facts. Such commonsense knowledge is shared

by humans and used to interpret texts, without them being consciously aware of.

Our goal is to get closer to developing an open-domain deep semantic parsing framework.

Our approach to acquire the commonsense knowledge required to do so is to detect

implicit semantic assumptions in texts by performing a semantic analysis of them. Texts

with procedural semantics that list instructions are well-suited for this task, because

by semantically parsing them, we can spot gaps and extrapolate to omitted pieces of

information, which we can interpret as commonsense knowledge.

We choose to use cooking recipes as one representative of this category of text. Because

cooking is such a common task for humans, in cooking recipes, “obvious” information is

frequently left out. We investigate methods to build a semantic parser for cooking recipes

that can be used to infer such gaps. Such a parser needs to be able to accomodate the

speci�c characteristics of cooking recipes which we study as part of this work.

Figure 1.1.: High-level overview of the commonsense knowledge extraction pipeline and

the scope of this work.

Figure 1.1 gives a visual overview of the overall framework and which parts this thesis

is focusing on. Components of the pipeline which are not part of this work will be brie�y

explained to aid coherence and comprehensibility where appropriate.

1

1. Introduction

1.1.1. Semantic Parsing

What does it actually mean for a computer to understand a piece of natural language?

What does it actually mean for a human to understand a piece of natural language?

One de�nition of understanding a text is that the computer can correctly answer ques-

tions about it. What does the computer actually “acquire” by “reading” a piece of natural

language that allows it to reason and answer questions about the text?

In this thesis we take the approach that at the core of automatic natural language

understanding with computers lies a representation that allows the computer to structure

the unstructed natural language text it has read in order to reason about texts or even

unmentioned facts. Thus, fundamentally, natural language understanding becomes the

transformation of natural language into such a representation.

This is the de�nition of semantic parsing, which has various applications [21]. One is

to understand and execute commands for robots or conversational agents like Siri, Google

Assistant or Alexa. Another is data exploration by parsing natural language queries to

formal database queries.

In this work we study study semantic parsing with the downstream task of commonsense

knowledge acquisition in mind. Acquiring large amounts of commonsense knowledge

— knowledge that humans unconsciously share, often without being aware of it — will

help computers understand humans and the world they live in better and thus make them

more useful.

1.1.2. Cooking Recipes

Figure 1.2.: An example cooking recipe, semantically annotated in brat [42].

Why study cooking recipes and not another category of text? Semantic parsing of open-

domain texts is a hard problem and is far from solved [21]. It includes not only building

a parsing algorithm, but also designing a semantic representation that captures enough

depth for the speci�c use case. Figure 1.2 show an example recipe that is semantically

annotated. The goal is that a semantic parser can produce such and deeper annotations

(i.e. a structured representation) not only for cooking recipes, but for open-domain texts.

In order to come closer to such a general-purpose semantic parsing framework, we focus

on a narrower domain. Cooking recipes are attractive for several reasons.

Firstly, cooking recipes generally use a limited vocabulary. This reduces sparsity, a

problem commonly encountered in natural language processing [5]. It also allows the

2

1.2. Contributions of this Work

development of rule-based systems, because the rules can be manually designed if the

scope is limited. ocra was �rst built solely for omelet recipes, allowing us to only focus on

language commonly encountered in describing how to make an omelet.

Secondly, a lot of (unlabeled) data is available, which is especially important for machine

learning approaches. There are several publicly available corpora of cooking recipes [22,

7, 43].

Thirdly, in contrast to other types of procedural texts such as lab protocols [25] or

scienti�c processes [35], to understand cooking recipes, one requires little to no domain

knowledge. Thus, annotators of a corpus do not need to have a professional background

in the respective area, which makes the crowd-sourced annotation of training samples

cheaper. Annotated training data — as was con�rmed during this study — is very important

not only for machine learning models to learn patterns in the data but also for researchers

to better understand the problem itself.

Fourthly, semantically parsing cooking recipes allows interesting applications beyond

the downstream task of commonsense knowledge acquisition, as in our project. One

could imagine personalized instructions for some dish based on the user’s cooking exper-

tise, combining multiple recipes on the same dish based on the user’s preference or the

generation of new recipes [7].

Finally, as this study demonstrates, parsing cooking recipes comes with many complex,

unsolved challenges.

1.2. Contributions of this Work

The main contributions of this thesis are fourfold:

1. We design a semantic annotation schema tailored both for the downstream task of

commonsense knowledge acquisition and the representation challenges arising in

cooking recipes.

2. We annotate a dataset of 50 English cooking recipes both syntactically and seman-

tically with this annotation schema. Based on the annotation e�ort and statistics

gathered from the dataset, we study the syntactic characteristics commonly encoun-

tered in this domain. We identify challenges that arise from these characteristics and

draw conclusions as to what is important in a semantic parser for cooking recipes.

3. We evaluate four di�erent pipelines on this dataset, both quantitatively and qualita-

tively. We study the accuracy measured in precision, recall and F1-score of these

pipelines on three core metrics we de�ne, and also analyze the parsers’ performance

with respect to the cooking recipe challenges identi�ed earlier.

4. Based on the results of this evaluation and the accompanying case study, we propose

several directions for future work.

3

1. Introduction

1.3. Structure

Chapter 2 brie�y reviews some background concepts about natural language processing,

syntax and semantic parsing built on later in the thesis. In chapter 4, we describe our

annotation e�ort for the 50-recipes dataset. We further study characteristics and challenges

found in cooking recipes, evaluate di�erent semantic parsers on the dataset and analyze

them with respect to the challenges identi�ed earlier. Chapter 5 places this thesis within

related work in the two �elds it touches: the category of text (procedural text) and the

task (semantic parsing). Based on our investigation, chapter 6 proposes several directions

for future work. It draws both on work in this thesis as well as on related work, and

suggests ways to combine di�erent methods which might yield considerable performance

improvements. Finally, chapter 7 concludes the thesis, reviewing the core �ndings and

contributions.

4

2. Background

2.1. Natural Language Processing

Natural language processing (NLP) is a �eld at the intersection of computer science and

linguistics concerned with how computers process, understand and generate natural

language [30]. Basic concepts from NLP needed for the following sections will be brie�y

reviewed in this section.

2.1.1. Syntax

Syntax is concerned with the structure of a sentence.

Parts of speech Parts of speech (POS) are categories of words with similar grammatical

and semantic properties. The most common are noun (“carrot”), verb (“stir”), adjective

(“liquid”), adverb (“often”), preposition (“in”), coordinating conjunction (“and”), determiner

(“the”) and pronoun (“it”) [30]. A POS-tagger reads a sentence and assigns a POS-tag (noun,

verb, etc.) to each word.

Syntactic parsing There are two paradigms for syntactic parsing: constituency parsing

and dependency parsing. Constituency parsing utilizes a context-free grammar to separate

a sentence into a tree of its syntactic constituents (such as noun phrase, verb phrase, etc.).

Dependency parsing on the other hand builds a tree where each word except the root has

exactly one head word (parent node), which is the semantic center of the relation and

provides features for surface forms such as in�ections. The child node of a head word is

called the dependent of the head word [30]. The relation between head and dependent is

called a dependency.

Dependency labels Dependency labels describe the relation between a head and a depen-

dent. As an example, a verb can have an object and a subject (and other relations to words

in the sentence). In this case, the verb would be the head and the object and subject would

be dependents of the verb. Di�erent languages have di�erent sets of dependencies. Work

has been done on establishing a universal standard for dependency relations. Universal

Dependencies [38] is the product of one of such projects, and we utilize its schema in our

work.

5

2. Background

2.2. Semantic Parsing

This section formally de�nes semantic parsing and what it entails, relates it to sub-problems

and discusses di�erent approaches. Finally, it introduces the type of semantic parsing we

examine in this thesis.

2.2.1. Task Description

Semantic parsing is the transformation of a piece of natural language into a formal,

machine-understandable representation of its meaning. Depending on the depth of this

representation, semantic parsing entails a number of sub-problems which are explained in

the following.

2.2.1.1. Intent Classification

Each piece of text, usually a sentence, has a primary intent or event that is being described.

The task of intent classi�cation is a special type of sequence classi�cation. Given a text

sequence, the task is to determine the main intent expressed in the text out of a prede�ned

set of possible intents.

For example, the sentence “Book a �ight from San Diego to Düsseldorf on December 5”

primarily describes a “booking” of something. Mostly, when the piece of text is a single

sentence, the intent is triggered by a verb. In the following, we will often write a set of

tokens (words) evokes a frame. The frame (cf. 2.2.2.2) can be understood as a template

for the meaning of the sentence, given by the primary intent, and which has slots for

arguments and links to other frames to be �lled in.

2.2.1.2. Semantic Role Labeling

Also called shallow semantic parsing, semantic role labeling is the task of identifying

entities in a sentence and assigning semantic roles to these entities [20]. An entity might

be a person, an object or an abstract concept - any group of words that semantically

describes one concept. A semantic role is interpreted with respect to the primary intent

of the sentence. The slots of the frame are �lled in by the entities, which have semantic

roles de�ned with respect to the frame. The essence of semantic role labeling is, given a

sentence, to answer the question “who did what to whom”.

Formally, given a sequence of n tokens X =< x0, . . . , xn−1 >, the task of semantic role

labeling is to predict a sequence of labels of the same length: Y =< y0, . . . ,yn−1 > [20].

Each label yi determines if token xi belongs to an entity in X , and if so, gives the role of

this entity. A common way to handle multi-token entities is the IOB format [40], in which

the label can be one of

• B-role: beginning of an entity of role role

• I-role: inside of an entity token sequence of role role.

• O: outside, not part of an entity

6

2.2. Semantic Parsing

For example, the cooking recipe sentence “Mix in herbs, salt and pepper.” (input se-

quence X =< ’Mix’, ’in’, ’herbs’, ’,’, ’salt’, ’and’, ’pepper’, ’.’ >) may be labeled with the

label sequence Y =< O,O,O,O, B-Input,O, B-Input,O >. Note that the �rst two tokens

(“Mix in”) are the trigger for the primary intent of the sentence and might evoke a “Merge”

frame.

2.2.1.3. Coreference Resolution

Semantic Role Labeling is commonly framed as a per-sentence problem, because semantic

roles are de�ned with respect to the main intent of a sentence [20]. However, when one

interprets a document (a sequence of sentences) as a whole, one often encounters di�erent

mentions referring to the same concept (e.g., using pronouns). One such domain is the

cooking recipe domain which we explore in this thesis. In cooking recipes, which are

sequences of instruction sentences, frequently the input to an action described in sentence

n comes from sentence n − 1. Sometimes this relation is made explicit using a pronoun.

However, cooking recipes often have anaphora as well: the relation is implicit and needs

to be inferred from the semantics (cf. Figure 4.3).

In such cases, an explicit or implicit coreference resolution is needed. A semantic parser

must be able to correctly handle cases where one entity is referred to in multiple places,

often with di�erent words. Formally, coreference resolution is the task of �nding all

references to the same entity in a text. It can be framed as a binary classi�cation task to

determine whether two references from a text corefer to the same entity or not [20].

2.2.2. The Problem of Representation Design

A core question in semantic parsing is about the representation into which the piece of

natural language is transformed. There exist di�erent types of semantic representations

for di�erent use cases. The most common are examined in the following [21].

Once one has decided which class of representation is best suited for the task, one must

also consider the �ne-grained design of the representation. The possible design choices

depend on the class of representation and are described in our case in section 4.1.2.

2.2.2.1. Logic-based Formalisms

One meaning representation is to use �rst-order logic (FOL) with quanti�ed variables and

predicates. An example is the sentence “All primes greater than 2 are odd”, which can be

expressed in �rst order logic as ∀x .prime(x) ∧ greater(x, 2) ⇒ odd(x) [27]. While vanilla

�rst order logic has limitations in what it can represent, FOL augmented with lambda

calculus (LC) has been used for querying databases and giving robots instructions [21].

Recent work has introduced a more compact representation of LC [26], which has been

applied to answering compositional questions on semi-structured Wikipedia tables [24]

among other work [21].

Another type of logic-based formalism for representing semantics is description logic

languages, which are a bit less expressive than FOL. A famous representative of this line

of work is the Web Ontology Language (OWL) [33], used as a language for ontologies.

7

2. Background

2.2.2.2. Graph-based Formalisms

Another approach to representing meaning is graphs. Nodes represent entities or events

and edges represent semantic relations between those entities or events [21]. One common

way to understand such a graph is to represent each piece of text that evokes some intent

as a frame. The basic idea of frame semantics, originally introduced in [13], is that one

cannot understand the meaning of a single word without the other knowledge which

relates to the word. Thus, one or more words evoke a prede�ned frame, which relates

to the concept the words refer to. A frame consists of slots which link the core intent or

event to its arguments. These arguments can be a set of tokens or other frames.

A set of frames is thus a graph, with frames and their arguments being the nodes and

frame-valued slots being the (labeled) edges.

As an example, one cannot understand the word “booking” without knowing about what

is booked, who is booking something, the date of the booking, etc. Thus, “booking” might

evoke a Booking frame which has arguments for the the person who books something, the

thing that is booked (e.g., a �ight) and when the booking takes place (e.g., December 5).

Slots of frames can be generic and the same for all frames (generalized semantic roles,

used in PropBank [39]) or they can be speci�c for each frame (deep roles, used in FrameNet

[3]). Generalized roles include proto-agent (the subject, the volitional causer of an event)

and proto-patient (the object, the thing being acted on or caused) [20]. In the booking

example above, deep roles could be “booker”, the “booked thing”, “booking date”, etc.

In this work, we use frame semantics as the target meaning representation, as it is best

suited for our downstream task of commonsense knowledge acquisition (which is further

described in section 3.1).

2.2.2.3. Programming Languages

One can also represent the meaning of a piece of text using a high-level programming

language such as Python or Java. Advantages include that developers are already familiar

with such a representation and the schema and syntax are relatively simple, which limits

the scope [21]. Parsing then becomes a kind of machine translation from a natural language

like English to a programming language like Python.

2.2.3. Semantic Parsing Corpora

An integral part of semantic parsing research is the development of corpora. The two most

relevant corpora for semantic role labeling are PropBank [39] and FrameNet [3], which

are further described in the following.

2.2.3.1. PropBank

The Proposition Bank (PropBank) [39] contains sentences from the Penn TreeBank [32]

annotated with semantic roles. Each verb sense has speci�c roles, which are given by Arg0,

Arg1, Arg2, and so on. The commonality between di�erent verbs is that, in general, Arg0

is the proto-agent and Arg1 is the proto-patient. There is one set of roles for each sense of

each verb.

8

2.2. Semantic Parsing

As an example [20], the agree.01 PropBank entry speci�es its roles as follows:

• Arg0: the agreeer (the �rst entity agreeing)

• Arg1: the proposition (what is being agreed upon)

• Arg2: the other entity agreeing

The .01 behind the verb (agree) in the entry name indicates that this is the entry for the

�rst sense of the verb “agree”. It might have other senses, whose entries would then be

called agree.02, agree.03, and so on. An example sentence annotated using this entry is

[Arg0Management] agreed with [Arg2the IT department] about

[Arg1the new project management system].

In addition to these core arguments Arg0, Arg1, etc., PropBank also has a number of

additional attributes called ArgMs, which modify or add to the main frame. Examples

include ArgM-TMP for temporal information (e.g., “tomorrow morning”) and ArgM-LOC for

information about the location of the event being described (e.g., “at CMU”) [20].

2.2.3.2. FrameNet

FrameNet [3] is a dataset for semantic role labeling that contains frames and speci�c

roles for each frame, which provide background information for a given concept, such as

booking a �ight. In addition to the frame structure, FrameNet also includes labeled ex-

ample sentences. As an example, the change_position_on_a_scale frame is de�ned

as follows [20]: This frame consists of words that indicate the change of an Items

position on a scale (the Attribute) from a starting point (Initial_value) to an end

point (Final_value). An example sentence annotated using the slots of this frame is

[AttributeApple’s shares] rose to [Final_valueUSD 245].

2.2.4. The Problem of Transformation Algorithms

Once the desired semantic representation is de�ned, the next task building a semantic

parser entails is to create an algorithm that transform the piece of natural language into

this representation. Just like there is a wide variety of representation types, many di�erent

parsing system types exist. The most common are described in the following.

2.2.4.1. Rule-based Systems

The �rst semantic parsing systems were mainly rule-based. Because rules cannot be

manually created for all domains, such systems were domain speci�c [21]. Di�erent

methologies on which the system is based on exist:

• pattern matching: prede�ned patterns are matched against the input text word by

word, like in the dialogue system ELIZA [46]

• syntax-based systems: an intermediate syntactical representation given by a syntac-

tical parser is mapped to the semantic representation using manually created rules

(ocra, described in section 4.3.1 is based on this idea)

9

2. Background

An example from this class of semantic parsers is [15], which introduces a semantic inter-

preter called “Absity”. Semantic interpretation is de�ned here as “The process of mapping

a syntactically analyzed text of natural language to a representation of its meaning.” [15].

2.2.4.2. Statistical Techniques

Work on large semantic role labeling corpora like FrameNet [3] has fostered research

in statistical techniques for automatic semantic role labeling. In contrast to purely rule-

based approaches, these techniques rank the probability of di�erent parses using diverse

statistical features. Gildea et al. [14] propose the �rst statistical model on FrameNet,

which utilizes mutliple statistical classi�ers to identify both abstract and domain-speci�c

semantic roles in a sentence. Various other statistical and lexical features are combined

to train the statistical classi�ers. Another line of work has used semantic grammars (e.g.,

weighted linear combinatory categorical grammars) for parsing PropBank [2], which ranks

di�erent parses given by the grammar by their probability.

2.2.4.3. Neural Methods

In recent years, due to the rise of deep learning techniques, many NLP tasks such as

machine translation, question answering or syntactic parsing have been approached using

end-to-end methods for sequence-to-sequence learning [21]. While traditional methods

require hand-crafting features, templates or lexicons, they can better leverage the a-priori

logic compositionality than end-to-end methods [21].

One of the �rst such sequence-to-sequence approaches to semantic parsing uses an

encoder-decoder architecture with recurrent neural networks to transduce the input

sequence of natural language to the output semantic representation [12]. The decoder is

aided in generating the hierarchical structure of the resulting logical expression by using

special parenthese-tokens and parent feeding connections.

Recent work on neural semantic parsers includes SLING [41] and Neural Process Net-

works (NPN) [7], which are examined thoroughly in section 4.3.2 and section 5.1.1, respec-

tively.

2.2.4.4. Syntax-first vs. Semantics-only

While early methods like rule-based systems that use a mapping from a syntactic parse use

an intermediate symbolic representation (such as ocra, explained in section 4.3.1), modern

neural methods are trained end-to-end, and all intermediate representations are latent. A

problem arising with an intermediate symbolic representation is error accumulation. A

semantic parser which uses a syntactic parse as the base representation can only be as

good as the syntactic parser. In addition, syntax is inherently limited to the sentence level.

As this study shows, operating on the sentence level is not enough for semantic parsing of

a cooking recipe (cf. section and Figure 4.3). However, modern neural semantic parsers

which go directly from text to semantic representation lack the explainability a human-

understandable intermediate symbolic representation provides. Latent representations in

neural networks can currently not be analyzed as well as a syntactic parse, for example.

10

3. Commonsense Knowledge

3.1. Project Context

Our long-term goal is to be able to de�ne commonsense knowledge quantitatively and to

automatically acquire it from di�erent types of text. Commonsense knowledge acquisition

is a longstanding task in arti�cial intelligence research, but it is not considered a solved

problem [48]. For the purpose of this thesis, we use an abbreviated version of the de�nition

of commonsense knowledge given in [48]:

Knowledge of default assumptions about the world, which seems so fun-

damental and obvious that it usually does not explicitly appear in people’s

communications

Our approach is to focus on the domain of instructional text, as this genre often omits

“obvious” parts, which we can �nd by a deep semantic analysis of the text. Initially, our

work is concerned with semantically parsing cooking recipes to be able to spot implicit

semantic assumptions (in what we call gap analysis) and align multiple recipes to quantify

the commonsense-ness of a piece of knowledge (in what we call frequency analysis). Both

of these methologies will be explained in the following.

3.2. Commonsense Knowledge Extraction

Disclaimer: the author of this thesis has not worked on the commonsense knowledge

extraction part of this project. His sole focus was on the semantic parsing of cooking

recipes with the downstream goal of gap analysis and frequency analysis in mind. To

better understand the considerations employed in the semantic parsing part however, this

section brie�y outlines our approach to commonsense knowledge extraction once the

semantic parse of a recipe is available.

3.2.1. Gap Analysis

Our assumption, which we have empirically validated (cf. section 4.2), is that cooking

recipes often leave out information that is obvious to a human reader, which however we

can automatically discover by a deep semantic parse and literal interpretation of the recipe.

The way we discover such left-out information, which we call a gap, is by semantically

parsing each instruction of a recipe and inferring pre- and post-conditions for each of

the participating entities (i.e., ingredients and utensils). We can then compare the post-

conditions of an entity from the last instruction it participated in (say in sentence n) with

11

3. Commonsense Knowledge

the pre-conditions of another instruction in sentence m > n. If the conditions do not

match, we can infer that some information has been left out and that this information is

probably commonsense knowledge, as it would have been explicitly given in the recipe

otherwise.

As an example, consider this excerpt from a recipe below:

1. Put a skillet over high heat.

2. Melt butter.

One pre-condition of the “melt”-action in the second sentence is that the input (the butter,

in this case) needs to be solid and in a location that is hot. We know that the butter is

solid by default. However, there is no post-condition of a previous instruction in the

recipe that speci�es the location of the butter. Clearly, the information where the butter

is located has been left out in the recipe. We call this a gap. When a semantic parser

detects this inconsistency between post- and pre-conditions, it can try to �ll in the gap by

looking at adjacent instructions. In this example, it might infer that the hot location the

butter must be located in is the skillet from the previous sentence (just like a human does

automatically).

Repeating this process for a large number of recipes (including recipes of the same

dish) will allow us to build a knowledge base that contains such pieces of commonsense

knowledge like the fact that butter is usually heated in a skillet.

3.2.2. Frequency Analysis

We want to be able to quantify the commonsense-ness of a piece of knowledge (in a

cooking recipe). Our strategy to do so is to semantically parse a large number of recipes

for the same dish (e.g., an omelet), semantically align the instructions of each recipe and

then analyze which pieces of knowledge occur in almost every recipe and which do not.

We call this last step frequency analysis.
For example, we can assume that all omelet recipes will in some form instruct the cook

to heat eggs. Thus, this piece of knowledge can be considered not being commonsense

(otherwise it would be an obvious step and at least some recipes would leave it out). The

information that the eggs need to be cracked before heating them on the other hand might

occur only in some omelet recipes. Others might just contain the instruction “Heat eggs in

a pan until set” and assume the reader understands that the eggs shells must be removed

beforehand. Thus, we can consider this information as being commonsense.

By aligning a large number of recipes for the same dish that way, we can build a master
recipe that allows us to analyze the frequency of each individual instruction or action-

ingredient pair. It also allows us to infer necessary pre- and post-conditions between steps

in the master recipe, which we can use to build a lexicon that in turn improves parsing

accuracy and hence helps with the gap analysis (described above).

12

4. A Case Study: Semantic Parsing of
Cooking Recipes

4.1. Semantic Representation

Before one can build a semantic parser or annotate a dataset, the �rst step is to design an

annotation schema that captures enough semantic depth for the task. In our case, we need

to be able to understand which cooking instructions take place in which order, and which

inputs they have, such that we can later assign pre- and post-conditions to them, extract

commonsense knowledge and do frequency analysis (as described in section 3.2).

4.1.1. Semantic Characteristics in Cooking Recipes

Cooking recipes o�er several challenges for a semantic representation. In particular,

they often have complex control structure. Some of the challenges in the following are

addressed by our annotation, others are left to future work (see section 6.2).

4.1.1.1. Representing conjunctions among actions or ingredients

In some recipes, multiple actions are included in one sentence and have an “and”- or

an “or”-relation between them. If it’s an “and”-relation, there most likely is a temporal

relation between the actions, which is further discussed in the next section. “Or”-relations

between actions (i.e., either do action A or action B, but not both) need to be representable

as well. One option would be to create a new “or”-frame and add the action frames as

slots. Another is to establish an “or”-slot on existing frames and link action frames that

are conjoined in an “or”-relation. An example sentence from a recipe which requires such

an or-relation between ingredients is the following: “Serve topped with whipped topping

or ice cream”.

4.1.1.2. Representing temporal relations between actions

Cooking recipe instructions naturally have an order (by how they are listed in the recipe).

However, we also encountered recipes with more complex temporal relations than this

“before”-relation. For example, a recipe step might explain that some action A needs to be

done every 5 minutes during the execution of action B. Such and other temporal relations

need to be representable, which is left to future work. The way we treat such complex

temporal relations in this work is to conjoin the actions with a “before”-relation and

include the speci�c details in the condition slot of one of the action frames.

13

4. A Case Study: Semantic Parsing of Cooking Recipes

4.1.1.3. Representing goal states and relations

Often, the temporal scope of actions is speci�ed explicitly with a given duration (e.g., cook

for 30 minutes). A more complex case also occurs frequently, however. Some actions need

to be executed until some goal condition is met (e.g., “heat butter until bubbling subsides”).

One approach is to represent the goal condition (“bubbling subsides”) using another frame,

and to link it to the original action (“heat butter”) using a new “goal-state” slot, which is

the approach we take in this work.

A similar analysis of control structure in cooking recipes has been done in [29], which

classi�es the relations between actions into condition (“do A until B is satis�ed”), sequence

“do A and then B”) or alternatives (“do either A or B”).

4.1.2. Annotation Schema

We present the annotation schema we have designed based on the requirements for the

downstream task of commonsense knowledge acquisition (section 3.2) and the unique

challenges encountered in cooking recipes (section 4.1.1). We later use this schema to

annotate our own small dataset of cooking recipes, which is described in section 4.2.

In general, we represent a recipe as a whole (not each single sentence by itself) and

annotate on the word level. Each contiguous span of words can be an Action (and evoke

one or more frames) or an Entity or neither. In addition to this word-level annotation,

actions and entities can have binary relations between them. The frame types and relation

types are described in the following.

4.1.2.1. Frame types

Frames describe actions that the cook in a recipe must perform. The current set of frames

has been iteratively devised during the annotation of our small dataset. We started with

a small set of given cooking actions inspired by [7] and supplemented them with new

frames as we encountered a case that was not covered by the current set of frames. Finally,

we generalized some frames such that they cover multiple more speci�c frames in order

to simplify the annotation task.

Some of the most important frames are Merge (multiple inputs are merged together, e.g.,

“Mix eggs, salt and pepper.”), LocationChange (something is moved to a di�erent place,

e.g., “Slide the omelet onto a plate.”) and TemperatureChange (the input is either cooled or

heated, e.g., “Heat butter.”). The full list of frames, along with a de�nition of each, can be

found in Appendix A.

4.1.2.2. Relation types

Each action frame can have the following relations to other frames and entities:

• Location: an entity that describes the location where this action takes place or

where something is moved

• Utensil: a list of entities that describe utensils like a fork, spoon or oven which are

utilized in this action

14

4.2. 50 Cooking Recipes Dataset

number of recipes 50

number of sentences 404

number of verbs 747

number of unique verbs* 251

avg number of sentences per recipe 8.08

avg number of verbs per sentence 1.85

Table 4.1.: General dataset statistics of the 50 recipes dataset collected and annotated by

us as part of this study. *: after lemmatization

• Input: a list of entities that describe the entities being acted upon in this action or

Actions if the output of the other action is an input of this action

• Condition: a list of entities that describe conditions of the action, such as temporal

conditions (e.g., the duration of the action)

Entities cannot have relations to other entities, only to action frames. An entity can be

linked to at most one action and an action can be an Input of at most one other action.

4.1.2.3. Pre- and Post-conditions

Given a set of frames with the corresponding input entities, one can assign pre- and post-

conditions to the inputs, which later allows �nding gaps for gap analysis. Such conditions

are usually a set of attributes for ingredients, such as their location, temperature or state

of matter. In ocra, pre- and post-conditions are based on a manually created lexicon.

As this thesis is only concerned with the semantic parsing part and the author has not

worked on the pre- and post-conditions, we omit further discussion of how to represent

and infer such conditions.

4.2. 50 Cooking Recipes Dataset

To deeply investigate the linguistic characteristics of cooking recipes, we manually an-

notated a corpus consisting of 50 English recipes. These recipes were randomly sampled

from the Now You’re Cooking (NYC) Dataset [22] and describe di�erent dishes and drinks.

The NYC dataset contains recipes collected from mailing lists in the 1990s. As the authors

of the recipes are not professional recipe writers, the language is rather informal. Some

general statistics about our 50 recipe dataset can be found in Table 4.1.

The annotation was performed by two annotators, both of whom do have a background

in NLP, but are non-linguists. The annotation was split up into two phases which built

on each other: syntactic and semantic annotation. For both phases, we used brat [42], a

web-based visual annotation tool.

4.2.1. Syntactic Annotation

In a �rst phase, we annotated only the syntactic dependencies and part-of-speech (POS)

tags. Speci�cally, we focused on dependency relations that are relevant to the later

semantic annotation. The relevant relations are listed in the following with their Universal

15

4. A Case Study: Semantic Parsing of Cooking Recipes

Category Precision Recall F1

verb detection 0.99 0.88 0.93

obj identi�cation 0.92 0.83 0.87

obl identi�cation 0.76 0.90 0.66

Table 4.2.: Performance of the StanfordNLP dependency parser on selected POS-tagging

and dependency categories on our 50 recipe dataset.

Dependencies [38] abbreviations, along with the semantic features they typically capture

in a recipe sentence.

• root: usually the �rst verb in the sentence, which describes the action (type of

instruction) the sentence describes, e.g., “blend in �our.”

• direct object (obj): usually an ingredient or other input to an action, e.g., “blend in

�our.”

• oblique nominal (obl): typically a location or condition of the action, e.g., “put

�our and cocoa in a baking pan.”

• adverbial clause modi�er (advcl): typically a goal condition of an action, e.g.,

“mix well until smooth.”

• conjunct (conj): usually encountered in enumerations of ingredients or actions

(only considered if the root of the conjunction is an object or oblique nominal of the

verb), e.g., “parboil potatoes and carrots.”

• compound (compound): nouns or verbs that consist of multiple words, e.g., “mix in

herbs.” or “egg whites”.

As a baseline, the StanfordNLP parser [31] (further described in section 4.3.1.1), which

is one of the recent standard NLP tools, was run on all 50 recipes. Its output was presented

as the base annotation to the annotators, who then �xed the dependencies and POS-tags

in brat.

We measured the inter-annotator agreement using Cohen’s kappa on the syntactic

annotation task. We only took into account a dependency annotation if the �rst or second

annotator labeled the dependency as one of the relevant relations listed above. In this

case, both the label and the head were included in the calculation. Over all 50 recipes, an

inter-annotator agreement of 0.891 was reached. This is considered a high agreement in

the NLP domain [1].

After going through 10 of the 50 recipes together and discussing ambiguous cases, one

annotator adjusted annotations on the remaining 40 recipes. The resulting dependencies

and POS-tags were used as the Gold labels in the evaluation and further annotation.

Table 4.2 shows the performance of the StanfordNLP dependency parser on this dataset

for selected categories, as compared to the Gold labels. Considering that the current state

of the art in syntactic parsing of general text (the Penn Treebank corpus [32]) has an

F1-score of 0.96 and an F1-score of 0.97 in POS-tagging as of September 2019 [49], the

16

4.2. 50 Cooking Recipes Dataset

results show that syntactic parsing of recipes is very di�erent to syntactically parsing other

types of texts. If the syntactic parse is used as an input to a semantic parser, especially

the verb detection recall of 0.88 is problematic: This means that 12% of verbs are missed,

because they are misclassi�ed as nouns or other parts of speech by the POS-tagger.

Section 4.2.3 analyzes the syntactic characteristics of cooking recipes that cause a general-

purpose syntactic parser trained on newspaper text like the StanfordNLP dependency

parser to fail when run on cooking recipes.

4.2.2. Semantic Annotation

In a second phase, we took the Gold dependencies and POS-tags from the previous step

and converted them to a simple baseline for the semantic annotation. These conversion

steps will be illustrated by applying them to the following sentence from our dataset:

1. Mark words tagged as verbs including all compound dependents as the trigger of an

Action:

2. Apply a manually created verb-frame mapping to the lemmatized trigger to get the

frame. In the example sentence, assign the Merge frame to the “combine” action.

3. Attach all oblique and object dependents of the verb including all their dependents

(recursively), as Input entities to the action (also including conjunctions of objects

or oblique dependents):

4. Prune away leading or trailing prepositions or coordinating conjunctions of the

entities:

17

4. A Case Study: Semantic Parsing of Cooking Recipes

This baseline annotation was presented to the two annotators. Both annotators then

independently went through all 50 recipes again, expanding and �xing the semantic

annotation. In particular, this involved classifying the automatically generated input entity

relations into the di�erent cases of location, input, condition or utensil (see section 4.1.2

for the full semantic annotation schema).

For the example sentence used above, the correct semantic annotation is the following

(where the �rst input, “wax paper”, is re-classi�ed as a Location relation):

4.2.3. Syntactic Characteristics

As shown in Table 4.2, general-purpose syntactic parsers trained on newspaper texts (and

other non-recipe genres) do not perform well on cooking recipes. When correcting the

dependency annotations proposed as the baseline by the StanfordNLP parser, we noticed a

number of mistakes that were commonly made by the parser. The syntactic characteristics

of cooking recipes that make parsing them di�erent from parsing other types of text are

imperative language, implicit objects, omissions and uncommon part-of-speech tags. Each

characteristic is described in the following.

4.2.3.1. Imperative Language

Instructions in cooking recipes are mostly formulated in imperative language. In our

dataset, only 50 of the 747 verbs have a subject (in the Gold annotation). This a�ects the

performance of POS-taggers and dependency parsers considerably, as it is a clear di�erence

from other types of texsts such as news articles, which are typical training samples of

POS-taggers and dependency parsers (e.g., the Penn Treebank corpus [32]).

In most cases, the implicit subject of the verbs is the cook performing the instructions.

However, if the subject is named explicitly, in most cases it is not the cook but an ingredient.

The verb in this case usually describes a goal condition of the ingredient. Figure 4.1 presents

an example sentence from the dataset.

Figure 4.1.: A sentence from the dataset in which the verb “resembles” has a subject (“the

mixture”) and describes a goal condition.

A possible solution is to insert a subject automatically in every verb clause where the

syntactic parser does not detect a subject and then run the parser again. In cooking recipes,

one might just insert the pronoun “You” before each verb lacking a subject.

18

4.2. 50 Cooking Recipes Dataset

[min, max] mean

of verbs per sentence [0, 6] 1.85

of obj per verb [0, 2] 0.42

of obl per verb [0, 4] 0.52

Table 4.3.: Ranges and average number of objects (obj) and oblique nominal dependents

(obl) of verbs in our dataset. Based on 747 verbs in 404 sentences and 50 recipes.

4.2.3.2. Implicit Objects

Not only subjects but also objects of intransitive verbs are frequently omitted in cooking

recipe instructions. This is known as zero anaphora, which occurs very infrequently in the

English language [18], which is one reason why current NLP tools like the StanfordNLP

parser do not perform well on cooking recipes.

Semantically, objects or oblique nominal dependents of a verb are usually the input

ingredients of the action that the verb implies. As we found later in the semantic annotation,

inputs of an action in sentence at position n in the recipe include inputs from previous

sentences at positions ≤ n − 1 in 14% of cases (see Figure 4.3). Table 4.3 presents statistics

on how many objects or oblique nominals verbs in our dataset typically have.

Most importantly, for the 747 verbs the average number of objects is 0.42, meaning that

verbs with no object predominate. In the Gold labels of our dataset, 432 verbs (57.8%) have

no object, 410 (54.9%) have no oblique nominal dependent, and 255 (34.1%) have neither.

Figure 4.2 correlates the normalized step number in the recipe with how often objects

were not named explicitly (all recipes were normalized to 10 steps by linearly mapping the

sentences to 10 buckets). As one can see, verbs in later steps of the recipe are more likely

to miss objects. In the �rst sentence of recipes, only 36.11% of verbs have no explicitly

mentioned direct object. This number is 55.00% for the second sentence (normalized to

a 10-step recipe) and increases up to more than 70% in the last steps of the recipe. A

possible interpretation is that in later steps of the recipe, the objects that verbs act on are

the outputs of previous sentences. This is often assumed implicitly, and thus verbs in later

steps are less likely to have a direct object named explicitly in their sentence.

Consider the following two sentences from our dataset:

1. Combine �our, sugar and salt and add to egg whites.

2. Beat until smooth, losing grainy look.

The object of “add” in the �rst sentence is not explicitly named. Semantically, it is the

output of the previous action (“combine”), which in this case is in the same sentence.

Similarly, the object of “beat” in the second sentence is omitted. The thing that is beaten is

the mixture that has been created in the �rst sentence.

4.2.3.3. Omissions

In addition to omitted syntactic constituents like objects, other words like prepositions

are also frequently left out in cooking recipes. Our dataset’s recipes stem from the NYC

19

4. A Case Study: Semantic Parsing of Cooking Recipes

Figure 4.2.: Correlation of the step number in the recipe and how many verbs have no

direct object.

dataset, which was originally created from mailing lists in the 1990s [22]. This means that

the recipes were not written by professionals, which might explain the informal language.

A common example occuring multiple times in the dataset is an omitted preposition in

an oblique nominal dependent of a verb that describes a temporal condition, such as the

duration of the action. This causes the syntactic parser to misclassify the constituent as

an object.

This is illustrated by the following example: “Add the other ingredients and marinade

24 hours.” The preposition “for” of the oblique nominal dependent “24 hours” has been

left out. The pre-trained StanfordNLP dependency parser thus misclassi�ed “24 hours” as

the object of “marinade”.

If one uses the syntactic parse for the downstream task of semantic parsing, it makes a

big di�erence if one marinades some ingredient for 24 hours or one tries to marinade the

duration of 24 hours itself.

4.2.3.4. Uncommon Part-of-Speech Tags

Further analysis of the POS-tagging errors showed that verbs that are commonly used as

nouns are often used as verbs in cooking recipes. Examples include “top”, “dust”, “heat”,

“press”, “cap”, “frost”, “spray”. Incorrect POS-tags frequently cause the dependency parser

to misunderstand the syntactic structure of the sentence. this results in objects of a verb

being identi�ed as noun-modi�ers instead, which again makes semantic parsing di�cult

if the syntactic parse is used as an input.

20

4.2. 50 Cooking Recipes Dataset

In addition, if verbs are misclassi�ed as nouns, the dependency parser also has trouble

distinguishing between enumerations of ingredients and actions. This is illustrated by

the following sentence (which is annotated with the (incorrect) StanfordNLP dependency

parser’s output):

The semantically correct interpretation is that one needs to �rst remove the crumb

and then dust the shells (i.e., “dust” as a verb), which is an enumeration of two actions.

However, the syntactic parse suggests otherwise: “dust” is misclassi�ed as a noun, which

presumably causes the parser to interpret it as another ingredient of the “remove” action.

Similarly, “brown” is misclassi�ed as an adjective though it is used as a verb here. The

syntactic parser attaches it as a conjunct to “butter”, which might again cause a semantic

parser using the syntactic parse to treat it as an enumeration of ingredients.

4.2.4. Semantic Parser Challenges

During annotation, we also identi�ed some challenges in the cooking recipe domain

that concern semantic parsers. When designing the architecture of a semantic parser for

cooking recipes, the following should be considered.

Some of the challenges only concern semantic parsers that use a syntactic parse as an

input. This is only one possible design choice, as is more throughly examined in section

2.2.4.4. Parsers that go directly from the natural language text to the semantic representa-

tion may naturally accomodate these challenges, depending on their architecture.

4.2.4.1. Multiple actions per sentence and verb

A parser must be able to evoke multiple action frames per sentence and per verb. In

some contexts, action verbs imply two distinct actions that are performed on the same

or di�erent inputs. For example, in the sentence “Cut the tomatoes into the bowl”, “cut”

implies two distinct actions:

1. Cutting the tomatoes (i.e., a SizeChange frame)

2. Moving the cut tomatoes into the bowl (i.e., a LocationChange frame)

4.2.4.2. Compound verb triggers

In some cases, actions are not triggered by a single verb, but by phrasal verbs or even the

verb phrase. Depending on the compound words, di�erent types of action frames might

be semantically correct. For example, “remove from heat” should be treated as one action

trigger for a TemperatureChange or LocationChange frame (or both). A possible solution

is to assign action frames not to trigger words, but to a whole sentence or clause. This is

the approach we will take in the semantic annotation of a larger recipe dataset, which is

planned for the end of the year 2019 but is not part of this thesis.

21

4. A Case Study: Semantic Parsing of Cooking Recipes

Figure 4.3.: Inter-sentence relations in our 50 recipes dataset (in the gold labels).

4.2.4.3. Inter-sentence relations

249 out of 1952 relations in the Gold labels of the semantic annotation are between frames

which are evoked in di�erent sentences. Since objects of action verbs are frequently

ommitted in recipes (see 4.2.3.2), often the input to some action is the output of the

previous action (207 out of 1475 Input relations in our dataset). Figure 4.3 shows the

sentence index delta between the head frame of a relation and the dependent frame of this

relation, categorized into di�erent relation types. As one can see, for all three relation

types (Input, Location and Utensil), the majority of relations are between frames evoked

in the same sentence (i.e., sentence index delta 0). In 14% of Input relations, the input

comes from the previous sentence (i.e., sentence index delta −1). This is only the case for

4.8% of Location relations and 1% of Utensil relations.

Inter-sentence relations with a sentence index delta of more than one are very rare. In

our dataset, 99.28% of all relations are between sentences with a maximum distance of

1. 98.82% of all relations are between either frames evoked in the same sentence or the

previous sentence.

To conclude, a semantic parser for cooking recipes must allow such inter-sentence

relations. Most semantic parsing studies however focus on sentence-level parsing [21].

22

4.3. Models

4.3. Models

In this case study, we will evaluate two very di�erent semantic parsers on our 50 recipes

dataset and speci�cally examine how each performs with respect to some of the challenges

identi�ed during annotation.

The �rst parser is ocra, a rule-based parser which has been speci�cally built for our

project. It uses a syntactic parse as input and maps it to a semantic parse using manually

created rules and lexicons.

The second parser is SLING, a general semantic parsing framework by Ringgaard et al.

[41]. It is based on a neural architecture that is trained end-to-end without requiring the

manual design of rules or lexicons.

Both parsers have advantages and drawbacks, as will be shown in section 4.4.

4.3.1. ocra: A Rule-based Parser

The cOmmonsense-based Cooking Recipe Analyzer (ocra) is a rule-based semantic parser

for cooking recipes. It was developed as part of this project by another person who is

not the author of this thesis. ocra has been inspired by ontology-based methods [10] for

mapping a syntactic parse to semantic relations. Its rules and lexicons have originally been

created speci�cally for omelet recipes, but with some adjustments (adding a few words to

the lexicon) we will use it as one of the parsers evaluated on our dataset (which contains

recipes for arbitrary dishes). In contrast to SLING (described in section 4.3.2), ocra uses

manually created rules and lexicons to map a syntactic parse obtained from a separate

syntactic parser to a semantic representation. The syntactic parser it uses to obtain the

syntactic parse is the StanfordNLP dependency parser [31], one of the recent standard

NLP tools, which will be brie�y described in the following.

4.3.1.1. The StanfordNLP Dependency Parser

Transition-based Parsing Transition-based parsing is a type of parsing algorithm that

can be used to parse a sequence of tokens. The basic idea is rooted in the shift-reduce

algorithm, originally developed for parsing programming languages. By replacing the

formal grammars used in parsing code with a classi�er that determines the next transition,

the algorithm can be adapted for parsing natural language as well.

Arc-based dependency parsing The arc-based transition system used for dependency

parsing [11] is an adjustment of the shift-reduce algorithm to the problem of syntactic

parsing. The basic idea is that a classi�er predicts one out of a �xed set of possible

transitions, based on features describing the current state.

In the beginning, all tokens are in the bu�er, including a special ROOT token at the top.

By predicting the SHIFT transition, the parser pushes the next token onto the stack. To

create a dependency relation between the two topmost tokens on the stack, a RIGHT-ARC

or a LEFT-ARC transition is predicted (depending on which of the two words is the head

and which is the dependent). The dependent is popped from the stack, and the newly

created relation is added to the list of dependency relations. Features helping the classi�er

23

4. A Case Study: Semantic Parsing of Cooking Recipes

Figure 4.4.: ocra’s recipe analyzer pipeline.

to predict the correct transition at each step might be the top words of the bu�er and stack,

existing dependency relations and POS-tags. If labeled dependency relations are required,

RIGHT-ARC(label) and LEFT-ARC(label) transitions exist for each possible relation label.

The StanfordNLP Dependency Parser The Stanford CoreNLP framework provides most of

the common natural language processing steps, from tokenization to coreference resolution

[31]. For ocra, only the tokenization, part-of-speech (POS) tagging and syntactic parsing

steps are required. The POS-tagger uses a log-linear bidirectional dependency network

[44] and outputs POS-tags for each token. The syntactic parser uses the input token

sequence along with the POS-tags and outputs a labeled dependency tree. The model

used is a neural network dependency parser [8] which predicts transition as described

above. It has been trained on the English Penn Treebank [32], which is, notably, a general

dataset comprised mainly of text from newspapers, a very di�erent style than the style

encountered in cooking recipes (cf. 4.2.3).

4.3.1.2. Pipeline

ocra’s pipeline from recipe to frames is illustrated in Figure 4.4
1
.

After the StanfordNLP POS-tagger and syntactic parser have been run on all sentences

of the recipe (step 1), ocra goes through the sentences one by one. For each sentence, ocra

identi�es a frame trigger by pre-de�ned trigger patterns.

Figure 4.5.: Step 2 of ocra’s pipeline. “crack” is identi�ed as a trigger for the Divide frame.

In the third step, the frame referenced by the trigger identi�ed in step 2 is evoked. The

frame comes from a pre-de�ned frame list which also contains pre- and post-conditions

(which is relevant for the last two steps).

1
The example illustrations in this section are taken from the ocra documentation with some small adjust-

ments by the author.

24

4.3. Models

Figure 4.6.: Step 2 of ocra’s pipeline. The Divide frame is evoked and “crack” is �lled in as

the trigger.

The slots of the frame evoked in step 3 are �lled in step 4. Given the syntactic parse,

potential objects or oblique dependents of the trigger verb are added as inputs to the frame,

and — depending on which information is given in the lexicon — eventual output entities

are �lled in as well. If the frame contains pre-conditions applying to its inputs (such as

that the matter state of something that is divided must be solid, as in the example), they

are checked based on the properties of entities in the Entity List.

In the last step, potential post conditions applying to the output entities given by

the evoked frame are evaluated. In the example, the Divide frame does not have any

post-conditions, so this step is skipped.

4.3.1.3. Pre- and Post-conditions

In addition to evoking frames and �lling their slots, ocra also computes and evaluates pre-

and post-conditions for each frame and each entity. These are relevant for the downstream

task of gap analysis, but are ignored in our evaluation, because this study is concerned

only with the semantic parsing part. Also note that SLING, the other parser evaluated in

this study, does not have this functionality.

4.3.2. SLING: A Neural Parser

SLING [41] is a framework for semantic parsing. It is based on a neural architecture that

is trained end-to-end without any intermediate symbolic representations like dependency

parse trees. Its output is a frame graph that represents the meaning of the input token

25

4. A Case Study: Semantic Parsing of Cooking Recipes

Figure 4.7.: Step 4 of ocra’s pipeline. “eggs”, as an object of “quote” is added as an input.

From the lexicon, ocra knows that egg whites and egg yolks are the parts that

eggs consist of. It also knows that the Divide frame splits up an entity into its

components, and thus �lls in the output slot with egg whites and egg yolks.

sequence (see section 2.2.2.2). In the following, SLING’s architecture, training process and

characteristics will be brie�y examined.

4.3.2.1. SLING’s transition system

SLING’s transition system is based on the same idea as the general transition-based parsing

framework described earlier in section 4.3.1.1. The di�erence is that, while in dependency

parsing only a tree connecting tokens is predicted, SLING gradually builds a generic frame

graph representing the semantic meaning of the token sequence it receives as an input. It

does so by predicting transitions such as “evoke frame X”, “link frame X and Y on relation

Z”, and “set attribute X in frame Y to value Z”. SLING’s default schema features 8 di�erent

types of transitions. Some transition types have arguments (such as the name of the frame

to evoke), thus the total number of possible transitions depends on the frame lexicon and

other factors speci�c to a given dataset. The number of possible transitions in our dataset

is further examined in 4.3.2.3.

The most important transition types SLING uses are:

• SHIFT: moves to the next input token

• STOP: signals that the parse is completed

• EVOKE(type, n): evokes a frame of type type from the next n tokens of the input

• CONNECT(source, role, target): adds the role slot to the source frame with a

value of target

26

4.3. Models

Figure 4.8.: SLING’s encoder-decoder architecture. Taken from [41].

4.3.2.2. Architecture

On a high level, the SLING parser has the following architecture (illustrated in Figure 4.8):

1. The input text tokens are mapped to randomly initialized embedding vectors.

2. A bidirectional LSTM (long short-term memory, [16]) encoder network reads the

sequence of embedding vectors.

3. The hidden states of the LSTM cells form the basis for the recurrent features, which

are used as the input to the recurrent feed-forward unit.

4. The transition based recurrent unit (TBRU) predicts a transition at each step (using

a �nal softmax layer), which is then applied to the frames in the frame store.

5. The frame store is updated and thus the recurrent features (input of the TBRU) for

the next step are changed.

The frame store The frame graph is gradually built as the transition system reads the

input token sequence. Similar to the list of existing dependencies in the arc-based transition

system, SLING uses a frame store to save the partial frame graph. This frame store is a

container that keeps recently updated or created frames at the top. A neural representation

of the topmost frames in the frame bu�er forms a part of the input of the TBRU, which

predicts the transitions to execute on the frames at each step based on these features.

27

4. A Case Study: Semantic Parsing of Cooking Recipes

This neural representation consists of the hidden layer activations of the TBRU at the

transition steps which brought the top-k frames to the top of the frame store. It serves as

a continuous representation of the k most recently evoked or referenced frames.

Training Training token sequences are represented as a special type of frame in SLING’s

frame format. These Document frames include a list of all tokens in the input sequence

and a list of all frames that are evoked by these tokens. SLING uses a deterministic

algorithm to transform a set of frames into a sequence of transitions which the TBRU must

predict in order to build the correct frame graph. This transition sequence is used as the

Gold sequence and compared to the predicted sequence of the TBRU, using beam search.

The loss is the summed cross entropy between the Gold transitions and the predicted

probability distribution over all possible transitions at all time steps.

4.3.2.3. Adjustments for our Dataset

Number of possible transitions In the original SLING paper, the parser is trained and

evaluated on the OntoNotes corpus [17], which uses PropBank frames [39]. In their

experiments, the parser predicts one of 6, 968 possible transitions. This large number

of possible transitions mainly comes from the many di�erent frame type arguments in

the EVOKE transition. For our dataset, with only about 15 frames, the number of possible

transitions to predict is much smaller (51 to construct the frame graphs for all 50 recipes). In

addition to making the �nal softmax calculation much faster, this also reduces spareseness

and makes the learning task simpler.

Inter-sentence relations Since SLING does not support inter-sentence relations (i.e., two

frames from di�erent sentences being linked together) but those kinds of relations appear

frequently in our data (cf. section 4.2.4 and Figure 4.3), we treated the whole recipe as one

sentence. The SLING authors are planning to support inter-sentence relations in a future

version of SLING, however
2
.

4.4. Evaluation

4.4.1. Training

ocra is a rule-based parser and thus does not need to be trained. We directly ran it on our

dataset to obtain its annotations. SLING’s neural engine however needs to be trained. The

training process and results are described in the following.

4.4.1.1. Training SLING

As our dataset of 50 cooking recipes is very small compared to datasets usually used for

training neural networks, this can be seen as more of a proof-of-concept experiment than

training a well-performing semantic parser. It shows that training a neural semantic parser

2
https://github.com/google/sling/issues/129

28

4.4. Evaluation

Split # of recipes # of tokens # of frames

training 35 3,282 1,673

development 15 1,178 564

Table 4.4.: Training and development splits for training SLING. Frames, here, are both

frames for actions and also frames for entities (based on the Gold labels).

to predic the annotation schema we designed is generally feasible. If one wants to create a

semantic parser based on a neural engine like SLING that works well on a wide range of

cooking recipes, considerably more training data is required.

Data preparation For training SLING, we randomly split up our 50 recipes into 35 recipes

for training and 15 for development. The dishes of the recipes in both splits are independent.

Thus, when evaluating the model on the development set, it needs to annotate di�erent

dishes than the ones seen in training. Details can be found in Table 4.4.

Model The SLING model (using default hyperparameters) we trained has the following

speci�cation:

• Token vocabulary size (number of embedding vectors): 735

• Number of possible transitions (�nal softmax output dimension): 48

• Number of parameters: 1.1 million

• Hidden dimension of LSTM cells: 256

Note that the number of possible transitions (�nal softmax ouput dimension) is around

8,000 in the SLING paper [41], which makes our learning problem much simpler (cf. section

4.3.2.3).

Training setup We use the standard training and evaluation script that is open-sourced as

part of SLING
3
. We use a batch size of 8 recipes and the Adam optimizer [23] with a learning

rate of 0.0005, β1 = 0.1 and β2 = 0.999. We clip gradients at 1.0 to avoid the exploding

gradients problem [4]. If not speci�ed otherwise, we use the default hyperparameter

values as de�ned in the training script.

Learning constraints The model only has a small number of training examples to train

its 1.1 million parameters from (35 recipes). In addition, training and development recipes

come from di�erent dishes. Thus, we expected the model to not learn much at all (i.e.,

the evaluation metrics to stay close to zero). As the results suggest however, even if this

restricted setting, the model was able to obtain a considerably high performance when

annotating the 15 development recipes. The metrics, results and training progress are

described in the following.

3
See https://github.com/google/sling

29

4. A Case Study: Semantic Parsing of Cooking Recipes

Figure 4.9.: Learning curves for training SLING (train set: 35 recipes, dev set: 15 recipes).

Evaluationmetrics SLING’s training and evaluation script
4

computes a number of dif-

fered evaluation metrics. We focus on the most relevant three. The span-F1 gives the

F1-score of the frame trigger span detection accuracy (i.e., detecting which tokens evoke an

action or entity frame). The frame-F1 gives the F1-score of frame classi�cation accuracy

(i.e., which frame is evoked by a token sequence). Finally, the slot-F1 gives the F1-score

of linking di�erent frames together (e.g., linking an input ingredient frame correctly to

its action frame). Note that these metrics are based on graph matching algorithms and

thus allow no comparison to the metrics we de�ne for comparing the di�erent models in

section 4.4.2.1.

Training results Even with only 35 recipes to learn from, the model was able to obtain the

following performance metrics after convergence (circa 500 batches, which corresponds

to about 114 epochs): span-F1 = 0.37, frame-F1 = 0.3, and slot-F1 = 0.11. The learning

curves are shown in Figure 4.9 (plotting the loss on the training set, and the three evaluation

metrics on the development set). One can see that as the training loss steadily decreases,

the three performance metrics on the development set increase. This means that the model

does not just memorize the correct annotations for the 35 training recipes, but learns

useful features that help it annotate the other 15 recipes with increasing accuracy.

4
Training script: https://github.com/google/sling/blob/master/sling/nlp/parser/tools/train.sh

30

4.4. Evaluation

4.4.2. Performance

4.4.2.1. Metrics

We are interested in three performance metrics: trigger identi�cation (which tokens evoke

an action frame or entity), action classi�cation (which type of action frame is evoked) and

input identi�cation (which action or entity is the input of which action).

Trigger identification In this metric, we only distinguish between entities and actions, not

the speci�c type of actions. We consider the whole token sequence and compare the Gold

annotations for actions and entities with the predicted annotations. We report precision,

recall and the F1-score on a per-token basis (i.e. rewarding partial matches).

Action classification This metric describes how well actions are classi�ed into the correct

type. We treat action classi�cation as a sequence labeling problem, consider the whole

token sequence and compare the Gold action annotations with the predicted action anno-

tations. We report precision, recall and the F1-score on a per-token basis (i.e. rewarding

partial matches). These values are macro-averaged for all action frame types (i.e., each

frame type is weighted equally, regardless of how often the frame occurs). Note that this

metric depends on the trigger identi�cation accuracy: if the parser does not predict an

action for a given token at all, the action type cannot be correct.

Input classification This metric quanti�es how well the inputs of actions (entities or other

actions) are identi�ed. We treat this as a binary classi�cation problem: out of all possible

action-action (both directions) and action-entity relations, how many are predicted, and

how many are correct? In this metric, we do not reward partial matches, but report

precision, recall and the F1-score only for perfect matches. Note that this metric depends

on trigger identi�cation, because the correct inputs can only be identi�ed if the respective

entities and actions have been identi�ed correctly.

4.4.2.2. Results

We report results for the following 4 pipelines on the metrics de�ned above, when eval-

uated on the 15 evaluation recipes: Heuristic (the simple heuristic syntax-to-semantic

conversion script described in section 4.2.2, using the Gold labels as the syntactic parse),

SLING-35 (trained on the 35 training recipes), ocra-Stan (using the StanfordNLP parser

for the syntactic parse) and ocra-Gold (using the Gold labels as the syntactic parse).

To acquire the scores of the di�erent pipelines on our dataset, we developed a common

format and created converters for each of the output formats. Details about this format

can be found in Appendix B.

Discussion In general, as one can see, Heuristic performs best on action classi�cation

and input identi�cation by a considerable gap (absolute F1 di�erences of 0.08 and 0.21,

respectively). In trigger identi�cation, ocra-Stan performs about as well as Heuristic,

and ocra-Gold beats the two by an absolute F1 di�erence of about 0.06. If one ignores the

31

4. A Case Study: Semantic Parsing of Cooking Recipes

Metric Heuristic SLING-35 ocra-Stan ocra-Gold

Trigger id.

P 0.62 0.45 0.62 0.70
R 0.73 0.50 0.69 0.77
F1 0.62 0.44 0.61 0.68

Action cls.

P 0.63 0.24 0.47 0.52

R 0.62 0.26 0.47 0.53

F1 0.59 0.24 0.45 0.51

Input id.

P 1.00 0.33 0.86 0.85

R 0.62 0.01 0.36 0.41

F1 0.77 0.02 0.50 0.56

Table 4.5.: Precision (P), recall (R) and the F1-score on the 3 metrics on the evaluation

dataset.

two pipelines using the Gold syntactic annotations and only compares ocra-Stan against

SLING-35, ocra-Stan performs better in all three categories (and all of precision, recall

and F1), by F1 di�erences ranging from 0.17 to 0.48.

Heuristic achieves an input identi�cation precision of 1.0, which means that all input

entities predicted by the heuristic rules based on the Gold syntactic parse are actually

input entities according to the Gold semantic annotation. Its recall in this category is

considerably lower (0.62), which however is still 0.21 better in F1 than all other pipelines.

While SLING-35’s input identi�cation precision is quite low (0.33), its recall is almost

zero (0.01). This means that SLING-35 has di�culty linking input entities to the correct

action. Its trigger identi�cation F1 score is 0.44, which although the lowest among the

other pipelines still suggests it does correctly identify some action triggers. However,

the input identi�cation metric (other than the other two metrics) only rewards perfect

matches, which might explain that SLING-35’s recall in this category is so low.

The overall results suggest that the Gold syntactic parse is a useful input. When

using the Gold parse instead of the StanfordNLP dependency parser’s output, ocra’s F1

scores improve in all three categories, by absolute di�erences of 0.06-0.07. In addition,

when averaging the F1 scores in the three categories, Heuristic is the best model in the

comparison with an F1-score average of 0.66, followed by ocra-Gold with an F1-score of

0.58.

Still, one must keep in mind that Heuristic has been speci�cally built for our dataset

and also served as the baseline for the Gold semantic annotations, while SLING-35, as

mentioned before, has only 35 recipes available for training. Thus, this comparison cannot

be seen as a fair evalation of the pipelines themselves, only the speci�c models we built as

part of this thesis. Once more training data becomes available, we expect that SLING-35’s

performance improves considerably and might eventually surpass ocra’s. This is however

left to future work, as our larger dataset will be available only after the completion of this

thesis.

32

4.4. Evaluation

4.4.3. Semantic Parser Challenges

In addition to the accuracy as measured by the three metrics de�ned in 4.4.2.1, we examine

ocra and SLING with respect to some of the challenges in cooking recipes we identi�ed in

section 4.1.1, both qualitatively and quantitatively.

4.4.3.1. Multiple Actions per Verb

In our 50-recipe dataset, with 564 total action frames, there are 117 trigger overlaps. This

means that 20.7% of action frames are triggered by tokens that already evoke another

action frame. This can be both a partial overlap (e.g., in “crack into bowl”, “crack” and

“crack into” each evoke a frame) and a full overlap (e.g., “crack” evokes two frames) (we

only annotated at most two frames per trigger).

ocra While ocra supports and also searches for overlapping triggers, it does not allow the

evocation of mutliple frames for the same trigger. This is a design choice that was made

based on the empirical result that otherwise, too many action frames would be evoked

(i.e., reducing the parsing accuracy).

SLING Given by its transition system, SLING does allow both multiple frame evocations

per trigger and overlapping triggers. It can predict two EVOKE(n, type) transitions (evok-

ing a frame of type type from the next n tokens) without a SHIFT-transition in between

(moving the current position one token further). It must, however, learn to do so. In most

cases in the dataset, one token evokes at most one frame, therefore SLING mostly learns

to predict n SHIFT-transitions after each EVOKE(n, type) transition.

Evaluation In the Gold labels, 19 of 136 action frame triggers (14%) overlap with another

action frame trigger. In contrast, SLING only predicts overlapping triggers in 3 of 119

cases (2.5%), while ocra is close to the Gold labels in this respect, with 15 out of 110 (13.6%).

This suggests that SLING might have a bias against overlapping frame triggers, as for most

frames it needs to predict SHIFT-transitions after each frame evocation.

4.4.3.2. Multiple Actions per Sentence

In 148 of 404 (36.63%) of sentences in our 50-recipe dataset, more than one action frame is

evoked. These means that there are two or more distinct actions mentioned from di�erent

triggers in the sentence (in contrast to multiple frames per trigger, discussed above).

ocra ocra tries to match as many action triggers on one sentence as it can �nd. If there

are mutliple matches (i.e., multiple words in a sentence have a match in ocra’s trigger

lexicon), it just evokes action frames for each one and assumes them to be in order of

appearance in the sentence. Thus, its accuracy of evoking an action frame does not depend

on whether the actions are mentioned in di�erent sentences or the same sentence.

33

4. A Case Study: Semantic Parsing of Cooking Recipes

SLING SLING needs to learn to evoke multiple action frames per sentence where needed.

As the current version of SLING does not support inter-sentence relations, we are treating

whole recipes as one sentence in our training setup. Thus, other than the dot-token after

each sentence, SLING has no concept of separate sentences and one might expect it to

approximately match the training dataset’s frequency of evoking an action frame per

recipe.

Evaluation In the 119 sentences in the evaluation dataset, the Gold labels contain more

than one action frame in 32 sentences (26.9%). SLING evokes multiple frames per sentence

in 30 (25.2%) and ocra in 19 sentences (16%). Interestingly, when ocra is given the Gold

syntactic parse (ocra-Gold), it evokes multiple action frames in 33 sentences (27.7%). This

suggests that the errors by the StanfordNLP parser hinder ocra of evoking multiple action

frames in some sentences. This might be related to a wrong verb-object structure caused

by incorrect POS-tags for some action verbs (see section 4.2.3.4).

4.4.3.3. Inter-sentence Relations

Identi�ed as a challenge earlier, inter-sentence relations (i.e. an action-input or action-

action relation in which head and dependent come from di�erent sentences) are a common

occurrence in cooking recipes. In our dataset, 229 of 1577 relations (14.5%) span multiple

sentences.

ocra ocra creates inter-sentence relations with the simple assumption that if a slot in

a frame cannot be �lled with entities from the same sentence, the most recently created

entity (input or location) that hasn’t been “consumed” by another frame is used. This

entity might come from the previous sentence, or, in some cases even come from earlier

sentences in the recipe. ocra keeps track of all entities on its Entity List (see Figure 4.4)

and marks them as used when they have been consumed as an input by some frame. Most

frames also generate an entity as their output, which is how ocra can set the input to an

action the output of another action.

SLING When training and evaluating SLING, we treat the whole recipe as one sentence,

so it can predict inter-sentence relations. Thus, it is natural for SLING to link actions and

entities from di�erent sentences together, as it does not consider sentence boundaries at

all. While its attention bu�er may bias SLING in favor of predicting relations between

recently evoked frames, in theory it can predict any relation between entites and actions

mentioned anywhere in the recipe.

Evaluation Figure 4.10 compares how often each of the four pipelines described in section

4.4.2.2 predicts inter-sentence relations. One can see that the variance in sentence index

delta is highest for SLING-35, which can be explained by the fact that each recipe is treated

as one sentence.

Heuristic does not support inter-sentence relations (which it also cannot, because it

only considers the syntactic parse, which is inherently limited to the sentence boundary).

Thus, all its relations are intra-sentence (i.e., a sentence index delta of 0).

34

4.5. Discussion

Figure 4.10.: Inter-sentence relations for the four pipelines compared to the Gold annota-

tions in the evaluation dataset.

ocra-Stan and ocra-Gold have a very similar distribution of sentence index deltas.

The fact that ocra-Stan predicts inter-sentence relations a little more frequently than

ocra-Gold (3 absolute percentage points) might be caused by ocra-Stan identifying

wrong input entities in the same sentence if the syntactic parse is wrong.

4.5. Discussion

To summarize, we have found that — regarding the three metrics we focused on in this case

study (trigger identi�cation, action classi�cation and input identi�cation) — the syntax of

the sentence seems to be important. The two pipelines that have the Gold syntactic parse

available signi�cantly outperform the others. This can be assumed even though we have

insu�cient training data for SLING and thus the comparison is not a fair one, since ocra’s

average F1-score on the three metrics improves by 0.06 when using the Gold syntactic

parse instead of the StanfordNLP parser’s. In addition, one cannot discard the possibility

that SLING’s latent representations do have some concept of syntax that help it identify

actions and entities.

The reason why syntax seems to be so important might be that direct objects of a verb

are almost always its input entities (patients) in imperative language such as the one found

in cooking recipes. In addition, noun phrases and verb phrases are mostly the triggers

of entities and actions in recipes. Thus, the heuristic script annotates actions and inputs

correctly in almost all cases. We hypothesize however, that once a certain accuracy is

reached by a parser, an emphasis on syntax is not bene�cial anymore, because the more

35

4. A Case Study: Semantic Parsing of Cooking Recipes

complex relations in a cooking recipe (which the parser may still struggle with) cannot be

captured on the sentence-level.

In general, until a considerably larger amount of training data for SLING or other

machine learning methods is available, we conjecture that rule-based and syntax-based

methods will bring better performance in the short term. While their capabilities might be

limited to the simple cases that can be expressed in sentence-level syntax or rules in the

lexicon, these are also the common cases with which one correctly parses most recipes.

Another option is alternative forms of supervision, which is discussed as a direction

for future work in section 6.3. Transfer-learning, by pretraining a subset of SLING’s

parameters in an unsupervised fashion for example, is also a path one can explore to

circumvent the need for large amounts of (expensive) annotated training samples.

36

5. RelatedWork

The work in this thesis touches two di�erent areas: the kind of data (cooking recipes) and

the task (semantic parsing). Cooking recipes belong to the larger category of procedural

text. Related work both concerning the domain and the computational models will be

examined in the following.

5.1. Domain and Problem Formulation

5.1.1. Cooking Recipes

Representing ingredient-instruction structure as trees Jermsurawong et al. [19] propose a

shallow representation of cooking recipes. Given a list of all ingredients used in the recipe

and the instructions, they predict which ingredients are consumed by which instruction.

The resulting representation is a tree that contains ingredients as leaves and instructions

as inner nodes. The limitation introduced by this representation is that ingredients can

only be merged by an instruction, and not divided or kept independent. In our annotation,

we have a Divide frame which splits up an ingredient into di�erent parts (e.g., eggs into

egg whites and egg yolks). Those kinds of actions cannot be represented with the tree

representation proposed in [19].

This work can be seen, however, as a �rst step towards a deeper semantic representation

of recipes, such as the one introduced in this thesis. The high-level �ow of ingredients

(which ingredients are merged in which instructions) may be used as a separate input to

more complex models such as NPN [7], as explored below.

From trees to rooted DAGs Mori et al. [37] expand upon this idea of representing recipes

as trees by instead representing them as rooted directed acyclic graphs (DAGs). The root

of the graph is a special node that describes the �nal dish into which all actions lead. Also,

they include not only ingredients and instructions as vertices, but also distinguish multiple

actions in a sentence and take utensils into account. In contrast to [19], the edges are also

labeled. The labels describe how the two nodes are related to each other. For example, an

ingredient-to-action edge might be labeled as “d-obj”. They annotate 266 Japanese recipes

with rooted DAGs describing the �ow of entities.

This graph representation can be seen as an extension to our annotation schema. The

relations among entities and actions have more detailed types in their work. Also, they

include relations such as which tools are equivalent, which tools are parts of each other or

which foods are part of each other. While in their work, “the skin of the potato” would

contain annotations for “skin” and “potato” and a “food part-of” relations between them,

in our work we treat “skin of the potato” as one ingredient. For our downstream goal of

37

5. Related Work

commonsense knowledge acquisition, having such a �ne-grained representations as [37]

makes the learning problem of semantic parsing more di�cult, with little or no bene�t for

the resulting commonsense knowledge.

Understanding cooking recipes by tracking the world state Malmaud et al. [29] introduce

a taxonomy of common linguistic characteristics found in cooking recipes and identify

similar challenges as we found in our work. In contrast to our work, their method assumes

a given list of all ingredients. They attempt to solve the problem of implicit actions and

inter-sentence relations by tracking the world state throughout the execution of the recipe.

The world state here is de�ned by a set of attributes of participating entities such as

ingredients or containers. They propose an abstract probabilistic model that predicts

symbolic actions which are applied to the current world state by a simple recipe simulator.

Bosselut et al. [7] build on this work and propose a concrete parser that tracks the world

state explicitly. As part of their work, they release a hand-annotated dataset of 600 cooking

recipes. Their annotation schema is geared towards the task of tracking the world state, as

it contains information about a list of attributes like location, cleanliness or temperature

for each ingredient after each recipe step. These attributes were an inspiration on the list

of frames used in our annotation schema. As the dataset contains no explicit annotation

for which trigger words in a sentence evoke the action frames we cannot build on their

dataset.

5.1.2. Others

Annotation of lab protocols of biological experiments Kulkarni et al. [25] describe a se-

mantic annotation e�ort on a corpus of lab protocols of biological experiments. These wet

lab protocols are similar to cooking recipes in that they contain instructions on how to

combine di�erent substances and modify their state (e.g., heat the reagent). However, the

language that is used is more complex and contains many technical terms. The annotation

schema described in the paper inspired the annotation scheme for the recipe dataset

created as part of this work. It is more complex, as it splits up compounds that describe an

ingredient into separate entities such as measurement and reagent or meronyms. These

are just treated as n-grams annotated as one Entity in our annotation schema. As lab

protocols contain much more detailed instructions than cooking recipes and are less likely

to leave out information, they represent not an ideal target to study with the goal of

commonsense knownledge acquisition from gaps in the recipe. This is presumably the

case because the language generally is more formal in lab protocols as it is written by

experts with the goal of being able to reproduce an experiment exactly (which is not as

important in cooking recipes).

The authors apply baseline action extraction and sequence tagger models to validate the

feasibility of machine learning approaches on the task of semantic parsing of procedural

texts. Because the task is similar, this makes exploring machine learning models for our

task also promising, given enough training data.

38

5.2. Computational Models

5.2. Computational Models

5.2.1. Surface Structure Prediction

Predicting the ingredient-instructionstructureof cooking recipes Jermsurawong et al. [19],

in addition to the ingredient-instruction tree format, introduce a parser for the task of

transforming recipes into the tree format. The problem of generating a tree describ-

ing the structure of the recipe is reduced to a binary classi�cation problem. The parser

consists of two binary Support Vector Machine classi�ers that predict whether a given

ingredient-instruction or instruction-instruction edge is valid or not. The features used

for the classi�cation consist of various lexical features, as well as n-grams, binary term

vectors and the number of ingredients already linked to a given instruction. While the

representation the parser outputs is too shallow for our use case, their method achieves

an edge prediction accuracy of 93.5%, which makes it interesting to use as an additional

input to more sophisticated parsers that output a deeper representation of recipes.

A framework for procedural text understanding Maeta et al. [28] propose a pipeline parser

approach for the dataset introduced by Mori et al. [37]. In a �rst step, the sentences are

segmented into words (which is relatively trivial in European languages, but harder for

Japanese, which is the language used in this corpus). The second stage is a conditional

random �eld (CRF) that identi�es concepts like actions and ingredients and is framed as a

named entity recognition (NER) problem. The �nal step is to parse the full text and predict

the rooted DAG representation introduced in [37]. Maeta et al. [28] use a minimal spanning

tree (MST) parser that predicts the arc labels. In their experiments, the authors argue that

the pipeline approach introduces too many errors at each state. These errors compound

and limits the accuracy improvements achievable by optimizing only one component,

motivating future work on an integrated solution that goes directly from text to semantic

representation. This direction is adressed by the SLING parser [41], evaluated as part of

this work, as well as the NPN parser [7], discussed below.

5.2.2. Tracking the World State

In addition to a dataset, Bosselut et al. [7] also introduce a semantic parser trained and

evaluated on this dataset. The parser, called a neural process network (NPN), is a recurrent

memory network [47] which learns to update entity states using learned action embeddings.

First, a sentence is read using a gated recurrent unit (GRU) [9]. The �nal hidden state

is used to predict (a) which actions take place in the sentence and (b) which entities

participate in the sentence. Based on the predicted actions, an action embedding for this

sentence is constructed and applied to the entities which are stored in the network’s

memory. A set of attribute extractors predict which value an attribute of a given entity

has after each sentence. As annotated training data is expensive, the network is trained

with weak supervision using a dataset which was heuristically annotated with a few

hand-designed rules. Thus, it lacks annotations for implicitly mentioned ingredients. A

big limitation is that the NPN needs to predict all participating entities for each sentence,

even if the ingredients have been merged in a previous step. The evaluation is done on the

39

5. Related Work

smaller, hand-annotated 600-recipe dataset, and shows especially low scores for the entity

selection task for combined entites (F1 score of 0.21). This speci�c task is approached more

successfully in [19], which is why a combination of these two methods is a compelling

direction for future work. This is further discussed in section 6.5.

40

6. Future Work

Based on our investigation, we propose several directions for future work on semantic

parsing for cooking recipes.

6.1. Inter-sentence Relations

As the annotation of our study 50-recipe dataset revealed, cooking recipes can only be

understood fully if the parser can take into account not only the current sentence, but

maintains a context of the whole recipe. SLING [41], one of the parsers evaluated as part

of this work, does not support such inter-sentence relations o� the shelf. Thus, we treated

one recipe as one sentence when training and evaluating it. The general architecture of

SLING, however, would theoretically allow inter-sentence relations. If the frame store

(attention bu�er) was not cleared after each sentence was read, and the sentences of a

recipe were attached to each other and read by the parser in sequence, it could predict

relations between frames evoked in di�erent sentences. The authors of SLING have told

us that they are working on a new version that allows this.

Another approach to handle the sentence-spanning context in cooking recipes is to

explicitly track the world state, as methologies like NPN [7] do.

One area for future work is to develop another (third) approach to handling inter-

sentence context. One could imagine, for example, a transformer network [45] encoding

the whole recipe at once and then building a frame graph out of the obtained contextualized

recipe embedding (instead of the LSTM [16], which is used by SLING), using a similar

transition predictor.

6.2. Representation Design

The design of the representation is a core task of semantic parsing. In this work we have

identi�ed several challenges concerning representation design, and solved some of them

with our own annotation schema.

One of the remaining challenges are temporal relations. Momouchi [36] presents a

taxonomy of control structures that one could adapt for the recipe domain and adjust

our annotation schema such that temporal control structures can be represented in more

detail. It remains questionable, and worthy of future study, however, whether a deeper

representation of temporal relations leads to a better bottom line accuracy regarding

commonsense knowledge acquisition.

41

6. Future Work

6.2.1. Automatic Representation Design

In this work, we manually designed a representation schema that accomodates the phenom-

ena commonly encountered in cooking recipes (a relatively limited domain). Eventually,

our goal is to be able to extract commonsense knowledge from all categories of text.

Manually designing a representation for each new domain or broad domains appears to

be infeasible. Thus, one direction for future work is to experiment with the automatic

construction of frame lexicons, which can then be used to train a semantic parser. This

process can be seen, interestingly, as another kind of commonsense knowledge acquisition.

6.3. Training with Weak Supervision

Creating the small study dataset of 50 recipes in this thesis has already been a considerable

manual e�ort, to meaningfully train large machine learning models like SLING [41] or

NPN [7] however, much more is required. Such annotation is costly. Thus, one direction

for future work is to explore training models with di�erent kinds of supervision signals

(other than manual token-by-token annotations).

So-called denotation-based training is a common method to train semantic parsers in

general [21]. The idea is not to calculate the error based on the representation the semantic

parser produces directly, but to measure the accuracy using a downstream result of that

representation (for which the correct result might be easier to acquire than the semantic

representation of the parser). If the task is to predict SQL queries from a natural language

text, a straightforward measure of accuracy is to compare the result of running the query

on a database with the desired result.

Another type of such training is to frame semantic parser as a question answering task.

Rather than output a speci�c semantic representation for an input text (for which labels

are expensive to obtain), the parser needs to be able to answer questions about the input

[6].

We are not aware of any such work that addresses the cooking recipe domain or uses a

similar annotation schema as ours. While if the targeted semantic representation is an SQL

query, comparing the result of running the query is a straightforward supervision signal,

such types of weakly supervised approaches are not as obvious in the cooking recipe

domain. The only option of how to score semantic parses without annotated training

samples we could think of is to give parses that use all ingredients given in the ingredient

list of the recipe a higher score. Future work in this direction might �nd enough such

signals to be able to train a semantic parser for cooking recipes based solely on weak

supervision.

6.3.1. Additional Inputs

A related area for future work is to take additional inputs into account. Especially videos

or photos of a person performing the recipe, or of the ingredients in the kitchen might

be incorporated as an additional input to the parser. Not all datasets of recipes include

such information, but work on the more general domain of how-to texts has datasets that

would allow such research [34].

42

6.4. The How-to Domain

Notably, using a video or photo for each sentence of the recipe, one can solve another

challenge we identi�ed in this thesis. The imperative language used in cooking recipes

causes the performance of general-purpose syntactic parsers to be considerably lower

than on newspaper text (see 4.2.3.1). A well-trained image or video captioning model,

applied to the photo or video associated to each sentence can generate a natural language

sentence that has a subject and a less informal language in general. Running the syntactic

and/or semantic parser on those captions might reduce the di�culty of the parsing task

and improve overall accuracy.

6.4. The How-to Domain

Another direction for future work is to expand our research to the broader domain of

how-to guides. This domain o�ers a broader vocabulary, and — supposedly — more frames

and more types of slots (not only ingredients, locations, utensils and conditions). Miech et

al. [34] present a dataset of how-to videos paired with narrative captions in many di�erent

categories, only one of which is cooking. One could build on their work, perhaps, by

studying the narrative captions in their dataset, treating the captions for each video as

one “recipe”. The videos themselves could also be utilized as an additional input for a

multimodal how-to guide semantic parser.

6.5. Model Ensemble

Semantic parsing is a complex task that entails multiple subtasks such as trigger identi�-

cation, action classi�cation, ingredient prediction and/or input identi�cation (depending

on the way the problem is framed). Especially given the lack (and expensiveness) of large

amounts of manually annotated training samples, end-to-end approaches like SLING [41]

or NPN [7] may not be the most fruitful research direction.

Instead, ensembling multiple specialized models, each one optimized for a particular

subtask, might be a more promising area for future work. One such combination has

already been mentioned in section 5.1.1. It addresses the di�culty NPN has with predicting

all participating ingredients for each steps, especially the ones that have been combined

in earlier steps. One could try using the SIMMR parser [19], which achieves a very high

accuracy in building an ingredient-instruction tree (i.e., which ingredients participate in

each step), for this subtask instead. One could then retrain NPN, taking the participating

ingredients as an additional input and then only having to predict the correct actions

applied to those ingredients instead, which might improve the overall parsing accuracy

considerably.

ocra (described in section 4.3.1) is another example of such a combined model. It uses

the StanfordNLP dependency parser [31] to get a syntactic parse, which is then further

processed by its own rules.

Other combinations of specialized models are conceivable, which is one research di-

rection to further pursue that might mitigate the need for large amounts of manually

annotated training samples.

43

6. Future Work

6.6. Commonsense Gaps vs. Parser Errors

Finally, a very general challenge a�ecting our work with respect to the downstream task

of commonsense knowledge acquisition is how one can distinguish between errors of the

parser and actual commonsense gaps.

In our work, a gap is de�ned by a mismatch between a post-condition and a pre-condition

for some entity. This gap could be caused by the recipe itself (i.e., some commonsense

information has been left out, and this should be recorded) or it could be caused by an

error of the parser (e.g., the frame has been identi�ed incorrectly or some slot has been

�lled with the wrong entity).

In conclusion, this means that only if the parser has a near-perfect accuracy, one can

trust the commonsense knowledge it extracts. Another approach, rather than working on

improving the parser’s accuracy, might be to develop a post-processing algorithm that can

distinguish between parser-error gaps and actual commonsense gaps. Frequency analysis

to quantify the commonsense-ness of some piece of information, is one feature such an

algorithm could utilize.

44

7. Conclusion

In conclusion, we have investigated the problem of semantic parsing in the cooking recipe

domain with the downstream task of commonsense knowledge acquisition in mind.

Our annotation schema is able to represent a cooking recipe in a way that allows us

to extract commonsense knowledge and quantify the commonsense-ness of a piece of

information.

We have annotated a small dataset of 50 English recipes, which has allowed us to study

syntactic characteristics such as implicit objects, imperative sentences and omissions that

one commonly encounters in this domain. We found that state of the art dependency

parsers and POS-taggers yield considerably more errors in this domain than they do in

texts like news articles.

We have de�ned three metrics — trigger identi�cation, action classi�cation and input

identi�cation — that we have used to evaluate four di�erent semantic parsing pipelines

on our recipe dataset. We have found that syntax-based methologies outperform other

methods considerably, and hypothesized that this is due to the imperative language found

in cooking recipes: the object of a verb is the input of the action it represents in most

cases.

We have analyzed the four parsing pipelines’ performance regarding a central issue in

understanding cooking recipes: inter-sentence relations. As such relations where the input

of an action comes from an earlier sentence are frequent in cooking recipes, a semantic

parser must be able to reliably identify the correct input of an action, even if comes from

an earlier sentence and the relation is not stated explicitly.

Based on our investigation, we have proposed several directions for future research in

this �eld, in areas we believe will improve the parsing accuracy, which in turns allows gap

analysis and frequency analysis to extract commonsense knowledge more accurately.

When we are able to automatically extract commonsense knowledge from open-domain

texts, we can eventually build computers that are able to deeply understand natural

language. As language is so central in our lives, this will make computers a lot more

useful.

45

Bibliography

[1] Ron Artstein and Massimo Poesio. “Inter-coder agreement for computational lin-

guistics”. In: Computational Linguistics 34.4 (2008), pp. 555–596.

[2] Yoav Artzi and Luke Zettlemoyer. “Weakly supervised learning of semantic parsers

for mapping instructions to actions”. In: Transactions of the Association for Compu-
tational Linguistics 1 (2013), pp. 49–62.

[3] Collin F Baker, Charles J Fillmore, and John B Lowe. “The berkeley framenet project”.

In: Proceedings of the 17th international conference on Computational linguistics-
Volume 1. Association for Computational Linguistics. 1998, pp. 86–90.

[4] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. “Learning long-term depen-

dencies with gradient descent is di�cult”. In: IEEE transactions on neural networks
5.2 (1994), pp. 157–166.

[5] Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of machine
learning research 3.Feb (2003), pp. 1137–1155.

[6] Jonathan Berant et al. “Semantic parsing on freebase from question-answer pairs”.

In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. 2013, pp. 1533–1544.

[7] Antoine Bosselut et al. “Simulating action dynamics with neural process networks”.

In: arXiv preprint arXiv:1711.05313 (2017).

[8] Danqi Chen and Christopher Manning. “A fast and accurate dependency parser

using neural networks”. In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP). 2014, pp. 740–750.

[9] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder

for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[10] Philipp Cimiano, Christina Unger, and John McCrae. “Ontology-based interpretation

of natural language”. In: Synthesis Lectures on Human Language Technologies 7.2

(2014), pp. 1–178.

[11] Michael A Covington. “A fundamental algorithm for dependency parsing”. In: Pro-
ceedings of the 39th annual ACM southeast conference. Citeseer. 2001, pp. 95–102.

[12] Li Dong and Mirella Lapata. “Language to logical form with neural attention”. In:

arXiv preprint arXiv:1601.01280 (2016).

[13] Charles J Fillmore and Collin F Baker. “Frame semantics for text understanding”. In:

Proceedings of WordNet and Other Lexical Resources Workshop, NAACL. 2001.

[14] Daniel Gildea and Daniel Jurafsky. “Automatic labeling of semantic roles”. In: Com-
putational linguistics 28.3 (2002), pp. 245–288.

47

Bibliography

[15] Graeme Hirst. Semantic interpretation and the resolution of ambiguity. Cambridge

University Press, 1992.

[16] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[17] Eduard Hovy et al. “OntoNotes: the 90% solution”. In: Proceedings of the human
language technology conference of the NAACL, Companion Volume: Short Papers. 2006,

pp. 57–60.

[18] CT Huang. “On the typology of zero anaphora”. In: (1984).

[19] Jermsak Jermsurawong and Nizar Habash. “Predicting the structure of cooking

recipes”. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. 2015, pp. 781–786.

[20] Dan Jurafsky. Speech & language processing. accessed 10/08/2019. 2018. url: https:

//web.stanford.edu/~jurafsky/slp3/.

[21] Aishwarya Kamath and Rajarshi Das. “A Survey on Semantic Parsing”. In: arXiv
preprint arXiv:1812.00978 (2018).

[22] Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. “Globally coherent text generation

with neural checklist models”. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. 2016, pp. 329–339.

[23] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[24] Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. “Neural semantic pars-

ing with type constraints for semi-structured tables”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. 2017, pp. 1516–

1526.

[25] Chaitanya Kulkarni et al. “An annotated corpus for machine reading of instructions

in wet lab protocols”. In: arXiv preprint arXiv:1805.00195 (2018).

[26] Percy Liang. “Lambda dependency-based compositional semantics”. In: arXiv preprint
arXiv:1309.4408 (2013).

[27] Percy Liang. “Learning executable semantic parsers for natural language under-

standing”. In: arXiv preprint arXiv:1603.06677 (2016).

[28] Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori. “A framework for procedural

text understanding”. In: Proceedings of the 14th International Conference on Parsing
Technologies. 2015, pp. 50–60.

[29] Jonathan Malmaud et al. “Cooking with Semantics”. In: Proceedings of the ACL
2014 Workshop on Semantic Parsing. Baltimore, MD: Association for Computational

Linguistics, 2014, pp. 33–38. doi: 10.3115/v1/W14-2407.

[30] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foundations
of statistical natural language processing. MIT press, 1999.

48

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.3115/v1/W14-2407

[31] Christopher Manning et al. “The Stanford CoreNLP natural language processing

toolkit”. In: Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations. 2014, pp. 55–60.

[32] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building a large

annotated corpus of English: The Penn Treebank”. In: (1993).

[33] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology language

overview”. In: W3C recommendation 10.10 (2004), p. 2004.

[34] Antoine Miech et al. “HowTo100M: Learning a Text-Video Embedding by Watching

Hundred Million Narrated Video Clips”. In: arXiv preprint arXiv:1906.03327 (2019).

[35] Bhavana Dalvi Mishra et al. “Tracking state changes in procedural text: a chal-

lenge dataset and models for process paragraph comprehension”. In: arXiv preprint
arXiv:1805.06975 (2018).

[36] Yoshio Momouchi. “Control structures for actions in procedural texts and pt-chart”.

In: COLING 1980 Volume 1: The 8th International Conference on Computational Lin-
guistics. 1980.

[37] Shinsuke Mori et al. “Flow Graph Corpus from Recipe Texts.” In: LREC. 2014,

pp. 2370–2377.

[38] Joakim Nivre et al. “Universal dependencies v1: A multilingual treebank collection”.

In: Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016). 2016, pp. 1659–1666.

[39] Martha Palmer, Daniel Gildea, and Paul Kingsbury. “The proposition bank: An

annotated corpus of semantic roles”. In: Computational linguistics 31.1 (2005), pp. 71–

106.

[40] Lance A Ramshaw and Mitchell P Marcus. “Text chunking using transformation-

based learning”. In: Natural language processing using very large corpora. Springer,

1999, pp. 157–176.

[41] Michael Ringgaard, Rahul Gupta, and Fernando CN Pereira. “SLING: A framework

for frame semantic parsing”. In: arXiv preprint arXiv:1710.07032 (2017).

[42] Pontus Stenetorp et al. “BRAT: a web-based tool for NLP-assisted text annotation”.

In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics. Association for Computational

Linguistics. 2012, pp. 102–107.

[43] Dan Tasse and Noah A Smith. “SOUR CREAM: Toward semantic processing of

recipes”. In: Carnegie Mellon University, Pittsburgh, Tech. Rep. CMU-LTI-08-005 (2008).

[44] Kristina Toutanova et al. “Feature-rich part-of-speech tagging with a cyclic depen-

dency network”. In: Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology-
Volume 1. Association for computational Linguistics. 2003, pp. 173–180.

[45] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

49

Bibliography

[46] Joseph Weizenbaum et al. “ELIZA—a computer program for the study of natural

language communication between man and machine”. In: Communications of the
ACM 9.1 (1966), pp. 36–45.

[47] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory networks”. In: arXiv
preprint arXiv:1410.3916 (2014).

[48] Liang-Jun Zang et al. “A survey of commonsense knowledge acquisition”. In: Journal
of Computer Science and Technology 28.4 (2013), pp. 689–719.

[49] Junru Zhou and Hai Zhao. “Head-driven phrase structure grammar parsing on Penn

Treebank”. In: arXiv preprint arXiv:1907.02684 (2019).

50

A. Frame Types

A.1. List of Frame Types

We annotated our small 50-recipe dataset with the annotation scheme described in section

4.1.2. This appendix lists the �nal set of frames we decided upon after adjusting the initial

set of frames (which are marked in bold).

Frame name De�nition Example

CleanlinessChange wash or dirty something Wash vegetables well.

Continue continue doing something (no

change)

Let stand for 1 hour.

Divide divide one thing into two or more

individally nameable things

Remove any fat from

the beef.

LocationChange move something from somewhere

to somewhere else

Slide the omelet onto a

plate.

MatterStateChange change the state of matter of some-

thing by melting, freezing, etc.

Melt butter.

Merge merge two or more ingredients such

that they become indistinguishable

Mix eggs, salt and pep-

per.

ShapeChange change the optical shape of some-

thing

Form small rings with

dough.

SizeChange change the size of something by cut-

ting it etc.(afterwards, the pieces are

not individually nameable)

Cut tomatoes into small

cubes.

TemperatureChange heat or cool something Heat butter.

WetnessChange wet or dry something (essentially a

LocationChange of water)

Drain water with a

towel.

A.2. Disambiguations

Natural language is inherently ambiguous. Although we feel like the frames above are

relatively atomic, sometimes it is not clear which of the frames to assign. We have devised

the following disambiguations which help mitigate this issue.

51

A. Frame Types

A.2.1. Divide vs. SizeChange

If something is split up into mutiple parts and the parts can be individually named, it is a

Divide action. Example: “Crack eggs into a bowl.” This action splits up the eggs into egg

whites and egg yolks, which can be individually named.

If something is split up into multiple parts but the parts cannot be individually named,

such as when one cuts something into smaller pieces, it is a SizeChange action. Example:

“Cut carrots into longish pieces.” The carrot pieces afterwards cannot be individually

named.

A.2.2. Merge vs. LocationChange

Ambiguous sentences:

1. “Put the mixture into the bowl.”

2. “Put salt into the mixture.”

If the destination (underlined in each sentence) is a utensil (something inedible), the sen-

tence describes a LocationChange action. Thus, the �rst sentence evokes a LocationChange

frame (“the bowl” is inedible).

If the destination is instead an ingredient (something edible), the sentence describes a

Merge action. Thus, the second sentence evokes a Merge frame (“the mixture” is edible).

52

B. Common Format

B.1. Motivation

To measure and compare the performance of ocra and SLING on trigger identi�cation,

action classi�cation and input identi�cation in our dataset (the metrics de�ned in section

4.4.2.1), a common output format is required. While the Gold labels use brat’s stando�

format [42], ocra outputs a JSON �le per recipe that contains all frames including their

arguments, and SLING creates a special frame object containing an annotated recipe. We

developed a common format and wrote converters for each of the three output formats.

The common format is designed with the three performance metrics in mind. We thus

focus on actions and inputs, and discard location and condition annotations (which are

still part of the annotation schema).

B.2. Description of the Common Format

There is one plain text �le per recipe that contains two di�erent types of lines that represent

action frames and their input and utensil entities:

1. Frame lines describe an annotation of a sequence of tokens (which could be an

action frame or an Entity). Schema:

T<unique_index><tab><sentence_index><tab><frame_type><tab><from>:<to>

The T along with the unique index forms the id of the annotation, which is used to

reference it in link lines (see below). The frame type can either be one of the frame

names listed in Appendix A or one of entity and utensil. from and to are token

indices that give the span that evokes this frame.

2. Link lines describe a relation between two di�erent annotations. Schema:

L<tab><from_frame_id>:<to_frame_id>

from_frame_id and to_frame_id are frame ids in the form T<index> (coming from

frame lines) that describe the head and dependent of the relation, respectively.

53

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Semantic Parsing
	Cooking Recipes

	Contributions of this Work
	Structure

	Background
	Natural Language Processing
	Syntax

	Semantic Parsing
	Task Description
	The Problem of Representation Design
	Semantic Parsing Corpora
	The Problem of Transformation Algorithms

	Commonsense Knowledge
	Project Context
	Commonsense Knowledge Extraction
	Gap Analysis
	Frequency Analysis

	A Case Study: Semantic Parsing of Cooking Recipes
	Semantic Representation
	Semantic Characteristics in Cooking Recipes
	Annotation Schema

	50 Cooking Recipes Dataset
	Syntactic Annotation
	Semantic Annotation
	Syntactic Characteristics
	Semantic Parser Challenges

	Models
	ocra: A Rule-based Parser
	SLING: A Neural Parser

	Evaluation
	Training
	Performance
	Semantic Parser Challenges

	Discussion

	Related Work
	Domain and Problem Formulation
	Cooking Recipes
	Others

	Computational Models
	Surface Structure Prediction
	Tracking the World State

	Future Work
	Inter-sentence Relations
	Representation Design
	Automatic Representation Design

	Training with Weak Supervision
	Additional Inputs

	The How-to Domain
	Model Ensemble
	Commonsense Gaps vs. Parser Errors

	Conclusion
	Bibliography
	Frame Types
	List of Frame Types
	Disambiguations
	Divide vs. SizeChange
	Merge vs. LocationChange

	Common Format
	Motivation
	Description of the Common Format

