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Abstract

In this work we describe the realization of selected standard approaches to
automatic language identification and subsequent improvements. The two ap-
proaches parallel phone recognition (PPR) and parallel phone recognition fol-
lowed by language modeling (PPRLM) will be investigated in detail by means
of theoretical observation and implementation.
We first build PPR and PPRLM baseline systems that produce score-fusing
language cue feature vectors for language discrimination and utilize an SVM
back-end classifier for the actual language identification. Experiments on our
German and English bi-lingual lecture tasks reveal, that the PPRLM system
clearly outperforms the PPR system in various segment length conditions, how-
ever at the cost of slower run-time.
We show ways of improving the baseline systems by using lexical information
in the form of keyword spotting in the PPR framework, and by the incorpo-
ration of additional language models in the PPRLM architecture. In order to
combine the faster run-time of the PPR system with the better performance of
the PPRLM system we finally build a hybrid of both approaches that clearly
outperforms the PPR system while not adding any additional computing time.
Finally we make suggestions for future work including the use of our results in
the KIT lecture translation system.
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1. Introduction

In recent years automatic language processing technologies have seen large improvements
in terms of performance, use and acceptance. Speech recognition and speech-to-speech
translation systems manifest themselves in a large variety of applications. In a globalizing
world and growing multi-cultural societies one of the most important requirements to
spoken language technology is the ability to cope with multiple languages in a robust and
natural fashion. In order to achieve these objectives, technologies are required that enable
the easy use of language without being impeded by language barriers. Today’s smart
systems are capable of multi-lingual speech processing, but usually it is the user’s turn to
decide which language pairs or pools should be worked on. Even the most sophisticated
speech-to-speech and speech-to-text translation systems generally precede, besides the step
of choosing one or more target languages, the explicit declaration of the source language. In
our opinion, a highly desirable feature for intuitive and self-explanatory speech processing
applications is the automation of this additional step, as it is a natural process in human-
to-human interaction to identify the language, that was chosen to enter into a dialogue
with, without asking. In the past decades a vivid interest grew in automatizing language
identification with help of well-established speech processing technologies. The associated
field of research is referred to as automatic language recognition or, more commonly, as
automatic language identification (LID). The main idea is to especially utilize and exploit
the sources of information, which are essential in the human language identification process.

1.1 Language Identification

The task of automatic language identification is the machine-made identification of the
language used by an unknown speaker for voicing an utterance [AD10]. Humans are ca-
pable of recognizing almost immediately the language being spoken, and even if the used
language is unknown, a human listener is often capable of categorizing it into a language
family or similar classes. Humans make use of different sources of information, where the
most important are: Acoustics, phonetics, phonotactics and prosody as well as lexical and
morphological knowledge. The major questions of LID include: How do humans proceed
in identifying a language? Which levels of information are most promising for effective
language identification? Which approaches are best for a given type of application? Which
language specific resources are required for spoken language modeling? How strong is the
correlation between signal duration and identification accuracy [AD10]? For LID by ma-
chines the signal processing is very similar to those of other language processing tasks
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2 1. Introduction

like speech recognition and make use of the same acoustic features. A voiced utterance is
digitalized with use of appropriate recording equipment, followed by pre-processing steps
for transforming the signal into a sequence of acoustic feature vectors. Although certain
systems already perform a classification on those feature vectors, usually a speech decoder
tries to find the most probable sequence of sound units, i.e. phones, according to the
observed sequence. A language decoder scores this sequence given a set of potential target
languages. A back-end classifier performs an optimization of the final output and does the
classification given the obtained language cues, e.g., acoustic or language model scores,
and a classification criterion.
The main functional requirement for an LID system is a classification performance, i.e.
identification accuracy, at the best possible rate, given an input signal of minimal length.
Achieving the least computational complexity possible is of importance for embedded
systems and real-time demanding applications. The acoustic-phonemic and phonotactic
systems became the most popular approaches, being able to do robust identification on
sufficiently short input sequences even for real-time demanding scenarios [AD10, Nav06].
Both approaches benefit from decades of research by computer speech scientists as well
as linguists. Initial works on the field of automatic language identification, which were
published in the seventies, observed the use of acoustic filter banks and documented first
experiments with phonotactic constraints [AD10]. Later research focussed on the incorpo-
ration of linguistic concepts into LID by machines, such as the generation of phone models
and, based on this, phonetic and phonotactic modeling, which are considered the most
popular approaches to automatic LID up to the present day. Further research has been
conducted on various other levels of information, such as prosody, morphology and syntax.
The fusion of approaches is of growing interest in many of today’s research projects. In
the future, the issue of dialect and accent identification, as well as language boundary
detection in cases of code-switching will further challenge the LID research society.

1.2 The JANUS Recognition Toolkit

The speech decoding modules of our systems are realized with the JANUS Recognition
Toolkit (JRTk), which has been developed at the Karlsruhe Institute of Technology and
Carnegie Mellon University as a part of the JANUS speech-to-speech translations system
[FGH+97, LWL+97]. The toolkit provides an easy-to-use Tcl/Tk script based program-
ming environment which gives researchers the possibility to implement state-of-the-art
speech processing systems, especially allowing them to develop new methods and easily
perform new experiments. JANUS follows an object oriented approach, forming a pro-
grammable shell. For this thesis, JRTk Version 5 was applied, which features the IBIS
decoder. IBIS is a one-pass decoder, thus being advantageous with respect to real-time
requirements of today’s ASR and other language processing applications [SMFW01].

1.3 The SRI Language Modeling Toolkit

For the extraction of various language features the SRI Language Modeling Toolkit is used.
SRILM is a toolkit for building and applying statistical language models, primarily for use
in speech recognition, statistical tagging and segmentation, and machine translation. It
has been under development in the SRI Speech Technology and Research Laboratory since
1995 [Sto02]. SRILM is a collection of C++ libraries, executable programs, and helper
scripts designed to allow both production of and experimentation with statistical language
models for speech recognition and other applications. The toolkit supports creation and
evaluation of a variety of language model types based on n-gram statistics, as well as
several related tasks, such as statistical tagging and manipulation of n-best lists and word
lattices.
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1.4. The LIBSVM Library 3

1.4 The LIBSVM Library

For performing the language classification on the basis of the obtained scores and cues
we deploy the LIBSVM library. LIBSVM is an integrated software for support vector
classification, regression and distribution estimation. It has been actively developed since
the year 2000, with the goal to help users to easily apply support vector machines (SVMs)
to their applications. LIBSVM has gained wide popularity in machine learning and many
other areas, as it provides a simple interface where users can easily link it with their
own programs. Main features of LIBSVM include among other things: Different SVM
formulations, multi-class classification and various kernels [CL11].

1.5 Objective of This Work

This thesis addresses the theoretical concepts of automatic language identification and de-
scribes the realization of selected standard approaches and subsequent improvements. A
special focus is on the processed average test segment length in order to determine which
setup is most useful for a real-time demanding scenario, where fast and at the same time
fairly accurate language identification is of high importance. The two approaches paral-
lel phone recognition (PPR) and parallel phone recognition followed by language modeling
(PPRLM) will be investigated in detail by means of theory and implementation of real
systems. The aim is to lay the foundation for an LID system which is capable of being ap-
plicable as a front-end for several systems which would strongly benefit by the utilization
of an LID pre-classifier. I.e., resulting systems should be able to do an accurate identi-
fication of the input language as additional information for a speech processing system,
making manual language identification by a potential user obsolete. We hold the opinion,
that the automation of this identification step greatly improves the usability and access
to a huge variety of modern speech processing systems. We aim at a front-end application
of our proposed LID systems for an existing automatic system for simultaneous speech-
to-speech translation, which has been developed at the Karlsruhe Institute of Technology
(KIT) [Füg09].
This thesis is organized as follows: Chapter 2 outlines basic principles of automatic lan-
guage identification. An overview of the various levels of information, which take part
in the characterization of languages will be given. We eludicate methods of performance
measurement and describe a probabilistic formulation of a statistical approach to LID by
machines. A summary of the well-established approaches is followed by an analysis of var-
ious design decisions. Chapter 3 provides a detailed insight into phonetic and phonotactic
LID approaches, along with some linguistic background. The designs of our system im-
plementations are explicated in Chapter 4. Following the introduction of the the dataset
we are working on, the step-by-step realization our LID frameworks is described in detail.
We proceed from a bilingual, closet set, forced decision case, namely German versus En-
glish. Chapter 5 delivers the experimental results of our test runs, in which we evaluate
both baseline systems against each other. Further on, various system improvements are
described, and we introduce an experimental PPRLM & PPR hybrid system, combining
the previously developed systems to a new framework. The chapter is concluded by an
Analysis of our results. Chapter 6 summarizes our work and gives an outlook on future
work.
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2. Automatic Language Identification

The LID task concerns the identification of the language used for voicing a message and
is therefore different from similar tasks such as speaker identification, speaker verification
or language detection, whose topic is the determination whether or not a speech event
occurred. It is noteworthy that a significant difference between spoken LID and written
LID exists, regarding the issue. At the same time all tasks mentioned above have certain
concepts and approaches in common, whereby progress on these fields of research are
advantageous for solving the language identification task.

2.1 Levels of Information

Each language has a characteristic structure which makes that language sound different
from other languages. The language structure is defined by its phone inventory, syllable
construction, phonotactic rules and prosodic patterns. Phonotactics describes the restric-
tions which combinations of phones are allowed to form syllables, morphemes or words,
given a specific language. The differences in allowed combinations can be vast across
languages. For example, Japanese has very strict phonotactic constraints which roughly
restrict phone combinations to a consonant-vowel (C-V) pattern, in contrast to West Slavic
languages, which even allow words being completely composed of consonants. Prosody is
the rhythm, stress, and the intonation of speech. In terms of acoustics, the prosodics
involve variation in syllable length, loudness, pitch, and the formant frequencies of spoken
language.
Infants are not only able to recognize their future native language, but also to discriminate
it from other, rhythmically different languages, as experiments showed [GM10]. Further re-
search revealed that rhythmical differences were sufficient for discrimination and familiarity
with the languages was not necessary. French newborns for example readily discriminated
between utterances in English and Japanese, two languages they had never heard before
[GM10].
Newborn infants also have surprising abilities to process acoustic information regarding
word forms. They can detect the acoustic cues that signal word boundaries, i.e. typical
stress patterns, the distribution of allophones or statistical regularities of phone co-occur-
rences, i.e. phonotactic constraints. They can discriminate words with different stress
patterns and can distinguish between function words and content words on the basis of
differing acoustic characteristics [GW08].
With aging it becomes more important whether a language is familiar to a listener or not,
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6 2. Automatic Language Identification

due to the increased use of semantic information and metalinguistic knowledge [GW08,
SMB96]. When listening to one’s own language being spoken, the primary awareness is
of the meaning of what was said [LM95]. Listeners attending to the semantic content are
not aware of the phonetic form. But in the absence of meaning, only the acoustic-phonetic
information is available. Several studies were carried out to evaluate the relative impor-
tance of various information levels in language discrimination by adults. Speech signals
were more or less heavily transformed via speech re-synthesis or the shuffling of syllables to
remove syntactic and semantic information from the signal and to gradually isolate broad
phonotactics, rhythm and intonation. The results revealed, that the test subjects were
able to distinguish languages on prosodic informations, given a certain amount of a priori
knowledge about the target languages [RM99, AD10]. With broader knowledge of one
or more target languages the already fair identification accuracy on phonetic and broad
phonotactic information increases as well. Thus, we can assume that language identifica-
tion by humans works with graceful degradation. The information of language identity is
not exclusively encoded in one single level of information, but across different levels, as
partly redundant information [Nav06].
The levels of information elaborated above are utilizable in automatic language identifica-
tion. Figure 2.1 gives a short overview.

P(the|was)·P(was)P(beginning)/th/ /e/

Prosodic information

Syntactic information

Lexical information

Phonetic information

Acoustic information

Supra-segmental level, operating on F0 and amplitude

Constituent level, using language model

Word level, using lexical knowledge

Segment level, operating on phones, syllables etc., using phonotactics

Sub-segment level, operating on feature vectors

"In the beginning was the word"

Figure 2.1: Overview of the utilizable levels of information for automatic language identi-
fication tasks.

Levels of information used in automatic language identification are:

Prosody
Prosodic information such as rhythm, stress and intonation manifest in the speech
signal’s fundamental frequency and the amplitude. Prosodics work on supra-segmen-
tal or sentence level.

Syntax
Syntactic information is approximable with language models, working on constituent
level. Sentence patterns differ across languages, even when the pool of words is not
disjunct.

Lexical information
Identification of individual words belonging to a specific language is working on word
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2.2. Tasks 7

level.

Phonetics & Phonotactics
Identification strategies working on phonemes, syllables and sub-words work on seg-
mental level.

Acoustics
The lowest level is the signal level. Acoustic informations manifest in acoustic fea-
ture vectors generated upon a signal. Differences in acoustic features may roughly
represent phenomena like pronunciations of individual sounds across languages or
the co-articulation of sounds in a sequence [AD10].

2.2 Tasks

LID can be addressed via several classification tasks. Traditionally the problem has been
addressed as a closed-set identification task: A speech input has to be identified as being
voiced by one language l out of an a priori given language set L. Those languages are
modeled via language-dependent models. This is a forced-choice architecture, which will
always identify l as one language out of the closed set, even if l /∈ L. Another setup in
LID is the open-set detection or language verification task: It is to decide whether or not
a voiced utterance belongs to a given target language L, resulting in a YES/NO answer.
A Universal Background Model (UBM) called L̄ is supposed to be complementary to L
and is trained to represent a speaker- and language-independent distribution of features.
The UBM training data should have the same general acoustic features than the expected
input, i.e. type and quality of speech should be similar or equal, as well as the gender ratio
[RQD00]. It is essential that all available languages flow into the model in equal shares
[Rey09]. The most general open-set identification task can be solved by either parallelizing
multiple verification systems or implementing a closed-set identification system followed
by a back-end language verification module which produces a YES or NO answer for the
winning language [Nav06].

L1 L2 LK...

Language
Identification

l*

L

Language
Detection

yes
no

? UBML

Figure 2.2: Schematics of the traditional LID classification tasks, closed-set identification
(left) and open-set detection/verification (right) [AD10].

2.3 Performance Measurement

The quality of language identification tasks can be measured by means of identification
accuracy. Therefor, an identification rate, averaged over all target languages is calculated.
For a given language l the language identification accuracy is defined as

ACCl = 100 · shit
|Sl|

(2.1)

where shit is the amount of correctly identified test sequences of all test sequences Sl voiced
in language l.

7



8 2. Automatic Language Identification

The NIST Language Recognition Evaluation1 is very popular for evaluating LID perfor-
mance. [NIS09] considers the language identification task a detection task: Given an
utterance and a language hypothesis, the task is to decide whether or not that target
language was in fact spoken. Therefor a yes/no decision for each target/non-target lan-
guage pair is necessary. The performance of a system is characterized by its false rejection
rate and false acceptance rate. For each detection task the output comprises: the yes
or no decision, if the target language was spoken, and a score, describing the confidence
of the decision. For each target/non-target language pair the performance is computed
separately in terms of detection miss and false alarm probabilities:

Cmiss(lt) = Cmiss · Ptarget · Pmiss(lt) (2.2a)

Cfa(lt, ln) = Cfa · Pnon−target · Pfa(lt, ln) (2.2b)

where {lt, ln} ∈ L are target and non-target language respectively, Cmiss and Cfa represent
the relative costs of miss and false alarm events, Ptarget and Pnon−target are the a priori
probabilities of the target and non-target languages. On this basis a cost performance
averaged over all language pairs will be computed:

CDET =
1

|L|
·
∑
lt

Cmiss(lt) +
∑
ln

Cfa(lt, ln)

 (2.3)

The results are visualizable in a Detection Error Tradeoff (DET) curve, whereas CDET
will be evaluated for every point along the curve by modifying the score thresholds to
calculate the point with minimum cost [MDK+97]. An alternative visualization is the
Receiver Operator Characteristics (ROC) curve. A comparable performance measure can
in both cases be given as Equal Error Rate (EER), equalizing the contribution of false
alarm and miss rates to the identification error [AD10].

2.4 Probabilistic Formulation

The main approach to automatic LID is very similar to state-of-the-art-approaches to
speech- and speaker-recognition, which use a statistical framework. The core of the most
common approach is the Bayes classifier. With help of mathematical formulation it is
possible to decompose the task into several sub-problems. Identifying a language l∗ upon
a pool L of target languages can be formulated and transformed by the Bayes formula as
follows:

l∗ = argmax
l∈L

P (l|X) = argmax
l∈L

P (X|l) · P (l)

P (X)
= argmax

l∈L
P (X|l) (2.4)

which models the probability of X being observed when l is the spoken language. X is the
acoustic observation according to the processed signal, P (l|X) is the probability of l being
observed, given X. P (X) is the a priori probability of observing X. It is constant for
classification decision and thus negligible. Assuming all languages to be equally probable
we can further simplify by discarding P (l).
According to this formula, the language is considered as a whole. Further decomposition
reveals the components generating the overall probability. [Haz93] defines the acoustic

1http://www.nist.gov/itl/iad/
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2.5. LID Modeling 9

observation X as a compound of acoustic information v, F0 information f , and the most
probable phonetic sequence a∗ and corresponding segmentation sequence s∗. Here v =
{v1,v2, . . . ,vm} and f = {f1,f2, . . . ,fm} are sequences of m vectors which represent
the acoustic information and voicing information respectively. Using standard probability
theory, we can exemplarily decompose equation (2.4) as follows:

l∗ = argmax
l∈L

P (l|a∗, s∗, v, f) = argmax
l∈L

P (a∗|l) · P (v|a∗, s∗, f, l) · P (s∗, f |a∗, l) (2.5)

Whereby (s∗, f) represents the prosodic information, a the phonemic information. The
single components of equation (2.5) correspond to the basic speech components, which
are:

P (a∗|l)
The phonotactic model, describing the frequency of phone co-occurrences. This
probability will further be decomposed into n-grams.

P (v|a∗, s∗, f, l)
The acoustic model. Leaving a out, the model will be independent of phonemic in-
formation, leaving out (s, f), it will be independent of prosodic information. Leaving
out l, the acoustic model will be language independent. In this case, a needs to be
language independent as well.

P (s∗, f |a∗, l)
The prosodic model.

2.5 LID Modeling

State-of-the-art LID systems in principal incorporate the same major components. Figure
2.3 depicts a diagram of a generalized LID system architecture forming a source-channel
model. An acoustic front-end extracts appropriate feature vectors. This preprocessing and
feature extraction is very similar to those of other language processing tasks like language
recognition and make use of the same acoustic features. The Language scoring block is
the main component and comprises a speech decoding and language decoding block. The
former generates the speech unit sequence which is composed of symbols belonging to a
certain sound inventory, i.e. phones. The language decoding block is responsible for scoring
these sequences over a set L of target languages. The back-end module is a specialized
linear or non-linear classifier which optimizes the final output, as in the case of a lattice
based system, where multiple scores have to be normalized or combined in an appropriate
fashion [Nav06]. The classifier makes a final decision based on the available scores. Each
particular module performance has an influence on the final classification power.

Acoustic
front-end

Speech
decoder

Language
decoder

LID scoring

Back-end
classifier l*

v a scores

Figure 2.3: Schematic of the general LID system architecture, comprising the main mod-
ules acoustic front-end, LID scoring (comprising the speech decoder and lan-
guage decoder) and back-end classifier.
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10 2. Automatic Language Identification

2.6 Approaches

The language scoring block knows a large variety of implementations. There exist several
architectures for every level of information, as well as fusion systems combining sources of
information. It is self-explanatory, that each system design has it’s strengths and weak-
nesses and it strongly depends on the field of application which approach will perform
best.

2.6.1 Acoustic

Purely acoustic LID approaches want to capture the essential differences across languages
by modeling the distributions of spectral features [Nav06]. Thus, the differences in short
time acoustics across languages is used. Usually a language independent set of spectral
features will be extracted from a set of training utterances. A statistical classifier is used
to identify the language-dependent patterns in these features. There is no mapping to
explicit linguistic units such as phones. Except the language-specific audio data, no lan-
guage-specific knowledge in form of transcriptions is needed for training, making this type
of architectures easily expandable to further target languages [AD10].
Early approaches were developed on the basis of Linear Predictive Coding (LPC) analy-
sis and performed a simple spectral pattern matching [AD10]. An improvement was the
use of Vector Quantization (VQ) for creating an acoustic code-book with more than just
one reference pattern per language. Today most commonly used are Gaussian Mixture
Model (GMM), Artificial Neural Network (ANN) and Support Vector Machine (SVM)
approaches.
For the GMM approach, a GMM model is estimated for each language. The core princi-
ple is: an acoustic feature vector is assumed to be generated by a multivariate stochastic
source with a probability density function [Nav06]. GMMs don’t represent temporal de-
pendencies very well, but with extended feature sets such as the Shifted Delta Cepstra
(SDC), representing longer time spans, some compensation for this disadvantage is possi-
ble [AD10]. ANNs were introduced as an alternative. One strategy is to train an ANN for
mapping feature vectors to one of several broad phonetic classes. These classes are then
used for further LID. The disadvantage of this technique is the relatively high amount of
required training data [Nav06]. An SVM system transforms the feature vector input into
a high-dimensional feature space, in a way that a linear classification on averaged vectors
can be peformed. The extension to multi-class classification can be done with several
two-class SVMs in parallel [AD10].

2.6.2 Phonetic (PPR)

Systems using phonetic information require a certain amount of language-specific knowl-
edge, in contrast to the acoustic approaches. Required are phone inventories and labeled
acoustic training data. The assumption is, that different languages use different sound
inventories. With phone-based Hidden Markov Models (HMMs), sound units such as
phonemes can be modeled. HMM-based models most commonly consist of three states,
forming a feed-forward, left-to-right topology, giving HMMs improved temporal modeling
capacities. Each state comprises different GMMs for the modeling of specific sounds.
For each target language a separate phone recognizer is used. For that reason a phone
inventory has to be defined and a set of acoustic phone models is needs to be trained.
Language models, generally bigrams or trigrams, are estimated for modeling phone co-oc-
currences, i.e. phonotactic constraints, which will be applied during the decoding process
of every single phone recognizer. Thus, the scores of PPR systems incorporate acoustic,
phonetic and phonotactic informations. A back-end classifier determines the identity of the
spoken language by comparing the recognizer scores against each other. A disadvantage
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2.6. Approaches 11

of the PPR approach is the required amount of language-specific knowledge for training,
making it difficult to extend the systems to minority languages or languages lacking enough
training material.

2.6.3 Phonotactic

The language-specific probabilities of sound unit occurrences and co-occurrences are one
of the most widely used cues for language discrimination in state-of-the-art LID systems.
Phonotactic LID is built on a probabilistic framework and uses the strong language-spe-
cific dependencies between individual phones, as well as individual frequencies of phone
observations. The phonotactic constraints are modeled by n-gram phone based language
models, which are, as for the PPR approach, most of the time bigrams or trigrams. Given
an example phone sequence resembling the word “this”, and n target languages a typical
observation probability would be calculated as:

P (/DIs/|li) = P (/s/|/D/, /I/, li) · P (/I/|/D/, li) · P (/D/|li), i ∈ 1, . . . , n (2.6)

The inequality P (/DIs/|li) > P (/DIs/|lj), i 6= j should be true for /DIs/ occurring most
frequently in language li.
The difference to the PPR approach is, that the acoustic decoding component no longer
incorporates the language models [Zis96, AD10]. The decoder now serves as a mere speech
tokenizer, which produces a discrete symbol sequence without applying language-specific
phonotactic constraints.

2.6.3.1 PRLM

In the PRLM approach each language-specific n-gram phonotactic model is fed with the
sequence of tokens that was generated by a language independent or multilingual phone
decoder. The phone decoder or tokenizer is a research issue for itself, because finding an
universal symbol inventory, which covers most of the phones occurring in the majority of
languages, especially the target languages of a proposed PRLM system, is not trivial. Used
in today’s systems are broad phonetic classes, shared among different languages, IPA-like2

inventories, or the union of several language-dependent inventories. A general rule is, that
the performance increases with increasing size of the set, provided there is enough training
material available [AD10].

2.6.3.2 PPRLM

The latter approach can be improved by running several PRLM systems in parallel, lead-
ing to the PPRLM approach. The parallel decoders may for example each be a language-
dependent tokenizer, generating multiple streams of phones which are each scored by a
separate set of phone set-dependent language models, one for every target language. The
resulting scores will be normalized and combined for every language.
Just as for PRLM, the parallelized version requires language-specific labeled resources
only for the acoustic model training for the speech tokenizers. A larger number of target
languages may be covered simply with the training of further language models and lan-
guage-scoring back-ends. Additional language-specific audio data for the training is the
only resource needed.

2http://www.langsci.ucl.ac.uk/ipa/ipachart.html
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12 2. Automatic Language Identification

2.6.4 Prosodic

Different languages are also characterized by differing intonation and rhythm patterns.
Measurable are the fundamental frequency (F0) variations, energy and duration. The
difficulty in using prosodic cues for LID is the large number of additional factors influencing
F0 and amplitude, such as: speaker characteristics (voice, speaking rate and emotions),
lexical choice (differing lexical tone and word characteristics) and content of the utterance
(being a question, statement, emphasis, etc.). One of the open challenges is, how to
separate irrelevant characteristics from the desired information. Purely prosody-based LID
systems are rare. One of the recent studies made use of the temporal behavior of prosodic
cues to segment and label test utterances into sets of discrete units, that represent 10
different prosodic classes, for example describing segment duration, falling and rising F0
and the energy. The evaluations demonstrated that prosody dynamics contain utilizable
language-dependent information [AD10].

2.6.5 LVCSR

The approaches closest to the situation of human listeners being familiar with several
languages are the ones that use knowledge about lexical and grammatical structure. Sys-
tems of that category use fully fledged Large Vocabulary Continuous Speech Recognizers
(LVCSR) [Nav06]. Such a system decodes an utterance into a sequence of words and makes
an analysis for language-specific patterns. The basic principle can be called a “brute-force”
approach: an utterance in an unknown language is processed by all available LVCSR sys-
tems for all potential target languages to choose from [Nav06]. The language, whose speech
recognizer system yields the highest score wins.
A huge advantage of this approach is, that the results are more accurate and less noisy
than those of the low-level approaches. This is due to the application of high-level con-
straints, modeled by a lexicon and a language model. On the other hand, the complexity
is a disadvantage because of the huge amount of required training data, which is only
given for the most commonly spoken languages. Further, the computation is much more
complex and requires more resources, which may pose a problem for hand-held devices
etc.

2.6.6 Fusion

Today’s research focuses on the combination of several systems to optimize the accuracy
of LID. Especially the fusion of heterogeneous systems makes it possible to cope with the
individual limitations of single systems. Most common fusion implementations combine the
outputs of the individual components such as acoustic, phonotactic and prosodic scoring
modules. A higher-level back-end classifier combines the scores in an appropriate way to
make a final hypothesis. The fusion systems make their decisions based on multiple partly
redundant information levels and thus imitate the human LID process.
Prosodic modeling was not performing very well as stand-alone systems. But as extension,
i.e. to phone-based approaches, the performance was enhanced by exploiting prosodic
features for example on syllable-level [AD10]. Another option is to incorporate lexical
information for LID systems, for instance as a keyword spotting module, without fully
modeling the language with a language model. This may be an option in situations, where
the choice of words can be predicted in a way. An example might be flight scheduling
services or comparable applications.
Instead of parallel fusion a conceivable alternative is a hierarchical structure. A novel
framework called Hierarchical LID clusters language hypotheses in a way to form a tree-
like structure [YAC08]. Each leaf is an individual language hypothesis, and the nodes are
groups of languages with similar classifications. Thus, an utterance is classified level by
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2.7. Design decisions 13

level, in a way, that at each level the most discriminative feature is used. Phonotactic and
LVCSR components may also be combined, so that the phonotactic component performs
a pre-classification and a smaller set of LVCSR systems undertakes a more fine-grained
analysis [Nav06].

2.7 Design decisions

Depending on the purpose of a system, there are various design decisions to make. Trade-
offs especially exist between the utilized level of information and

• the accuracy and robustness

• the minimum test segment length

• the duration of computations

• the amount of required training data.

The size of the language pool to choose a target language from, and whether or not
rejection classes are used may also cause huge differences in identification accuracy and
system complexity [YAC08].

2.7.1 Minimal Test Segment Length

One of the most important factors for the evaluation of LID systems, especially in real-
time application environments, is the required time for a satisfactorily accurate average
identification performance. The tolerable latency depends on the field of application. A
conceivable real-time demanding application is a simultaneous speech translation system,
where the knowledge about the spoken language of a user is not given a priori. That might
as well be the case in multilingual telephone information systems, such as flight booking
services. On the other hand, a low error rate could be much more of interest when the
costs of errors in identification is very high. This may be the case in offline translation
systems or speech-to-text dictation applications. It may be costly to restart the process,
when the language in the first run was mis-identified.
Experiments in human LID have shown, that there is a positive correlation between test
signal duration, language knowledge of the listener and the classification accuracy. The
more languages a listener is aware of and the more comprehensive the language-specific
knowledge is, the better is his performance, even on very short utterances [SMB96, LM95].
When asked, which types of cues the subjects used to discriminate the languages, they
gave answers like typical sounds in form of syllables or short words, such as “ich” in Ger-
man language, increased occurrence of nasals, words often ending in a vowel, etc., as well
as prosodic features like a “sing-sang-rhythm” in Vietnamese [MJC94, LM89, Nav06].
The phonotactic techniques like (P)PRLM or syntactic techniques like LVCSR-based sys-
tems need sufficiently long input sequences to gain enough statistically significant informa-
tion to provide accurate results. Those systems perform best on utterances with lengths
greater than 10 seconds and remain competitive on shorter test durations. Given even
longer test sequences, the results of the high-level LVCSR approaches are the best com-
pared to all other approaches [Nav06]. Systems working on a sub-phonetic level, meaning
acoustic events, are able to make fair decisions in less than a handful of seconds. Acous-
tic systems make use of the fact, that languages have unique sounds (nasals etc.), which
can be identified even in short segments, also the transitions of sounds (e.g. aspirated
vs. un-aspirated), which are characteristic for languages, are extractable from short seg-
ments [GP03]. A solution to this task may be a system, that extracts multiple phonetic
features from an utterance in parallel. The phonetic features are abstract classes related
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14 2. Automatic Language Identification

to articulatory properties such as voiced, nasal, or vowel, which can then be grouped into
subset of feature classes, e.g. a place of articulation class. During testing, the signal is
passed through parallel feature recognizers, followed by feature n-grams which compute
the probabilities of each feature stream given a certain language [KP01].

2.7.2 Comparison of Approaches

In terms of performance, LVCSR systems are the most effective architectures, presumably
due to their heavy incorporation of high-level information. Their great disadvantages are
the high computational cost, along with the requirement of a large amount of labeled
training data. Given ready-to-use speech recognizers, it is relatively simple to expand an
existing LVCSR-based LID system. However, this approach is ill-suited for the expansion
to minority languages.
Considering the performance-to-cost ratio, the phonotactic approaches yield the best over-
all performance [Nav06]. Labeled training data is required only for the training of the
phone recognizers. With the decoders up and running, it is possible to train n-gram lan-
guage models for any requested target language. That makes them the first choice for
situations involving the necessity to discriminate a larger number of languages, as well as
the work on rare languages or languages without sufficiently large training pools.
The PPR approach yields fair identification results even on test segments of only several
seconds in length, because acoustic, phonetic and phonotactic information levels jointly
contribute to the classification process [AD10]. Also, acoustic approaches tend to be very
promising for short-time language identification with solid performance in ranges under 5
seconds. However, their overall capabilities as stand-alone systems remain under those of
phonetic, phonotactic or LVCSR systems. Therefore, acoustic as well as prosodic language
cues serve as supporting sources of information in today’s fusion systems [Nav06].
Table 2.1 gives a rough overview of the LID standard approaches, considering the diverse
fields of application.

2.7.3 Conclusion

During the decision-making procedure, which approaches to implement within the scope of
this thesis, we isolated the phonetic and phonotactic approaches as most promising, since
purely acoustic systems do not seem to yield satisfactory identification results for our pur-
poses, and LVSCR architectures lack the ability to perform well in real-time demanding
scenarios. Thus, we had a closer look at the individual advantages and disadvantages of
the proposed systems, according to literature:
PPR systems tend to deliver fast and solid classification results on sufficiently long inputs,
whereas the (P)PRLM architectures are able to gain very good identification results even
on shorter test durations. Despite the need for a higher amount of input data for robust
classification, today’s phonotactic systems outperform the approaches that were imple-
mented in the first place to address the short-time identification task [Nav06, AD10].
A major disadvantage of the PPR approach is the limited expandability to further target
languages, as there is an appropriate pool of data required for each new phone recognizer
to affiliate. On the other hand, if already trained acoustic models and language models are
at hand, e.g. used by full speech recognizers, it needs only a few steps to build a language
identification system from scratch. For most of the major languages, there already exist
various sets of reliable models to work with.
For the PRLM approach, it may not be easy to find an appropriate phone inventory for
the front-end, in such a way that most of the phones occurring in the languages to discrim-
inate are covered. On the other hand, the use of several phone tokenizers in parallel by
PPRLM frameworks may considerably enhance the acquisition of information with the aid
of complementary sound inventories representing a single input signal in multiple ways.
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2.7. Design decisions 15

Approach Test du-
ration

Strengths & weak-
nesses

Identification
accuracy

Exemplary fields
of application

Acoustic ∼3 s Fast computation, no
labeled data needed,
sub-standard stand-
alone performance

Good (for
small lan-
guage pools)

Real-time scenar-
ios, low cost

Phonetic >10 s Fast computation,
simple framework,
costly in training

High System with large
language pool

Phonotactic >5 s Good performance-to-
cost ratio, no labeled
data needed for LM
training, easily ex-
pandable

High, very
high for
longer inputs

System with large
language pool
and/or rare lan-
guages

Prosodic �10 s Tolerant towards
channel mismatches,
not suitable as stand-
alone system

Low Pre-classification
module

Syntactic >5 s High-accuracy solu-
tion, high computa-
tional and training
costs

Very high Multilingual di-
alog/translation
system

Table 2.1: Comparison of the LID standard approaches, under consideration of common
test time duration, strengths and weaknesses, average identification accuracy
and exemplary fields of application [Nav06].

It is another strength of the (P)PRLM approaches, that the training for new target lan-
guages is very easy, since only the n-gram models for the phonotactic constraints have to
be computed upon automatically tokenized audio data.
Despite the disadvantages, the proposed approaches tend to fit our requirements. Those
are in detail:

High overall performance
According to the research community, PPR and (P)PRLM systems yield about
equally competitive results on test signal lengths above 10 s [Zis96]. Only LVCSR
architectures seem to perform slightly better, with the major drawback of high costs
in terms of training data and computation.

Solid short-time identification results
(P)PRLM seem to require test segments with at least 5 s of length for reliable
identification results, PPR systems tend to require slightly more data. However,
even on shorter test signals today’s common phonotactic systems outperform acoustic
approaches, assumedly due to the use of higher-level information.

Low computational costs
PPR architectures undertake faster Viterbi path computations in the decoding pro-
cess due to the incorporation of a language model. In terms of computation, the
(P)PRLM approaches are generally more costly than PPR, because the speech de-
coding step is a mere tokenization without the application of phone sequence con-
straints. However, in consequence of the very small dictionary, containing only the
phone inventory, the decoding complexity is much lower than those of full speech
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16 2. Automatic Language Identification

recognition tasks, hence much faster than LVCSR-based LID systems.

Easy expandability
Both, the phonetic and phonotactic levels of information have high discrimination
power even on larger language sets, compared to the lower-level approaches [Nav06].
The (P)PRLM architecture is predestined for the application in scenarios, where easy
expandability to new target languages is crucial. Given several ready-to-use acoustic
model and language model sets, the disadvantage of the PPR approach carries not
much of a weight.
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3. Phonetic and Phonotactic Language
Identification

The approaches to LID using phonetic and phonotactic cues are among the most success-
fully applied stand-alone architectures today. Their high language discrimination power on
the one hand and their relatively simple implementation on the other justify their success.
Since the early nineties, the parallelization of multiple phone decoders is a very popular
LID architecture design [AD10].

3.1 Linguistic Background

Linguists know several sub disciplines dealing with the role of sounds in a specific lan-
guage, the structural characteristics of sounds and sound co-occurrences, as well as their
acoustic characteristics and their articulation and perception by humans. The discipline
of emphphonetics aims at an objective description of sound acoustics with a focus on
linguistically relevant aspects [AD10]. The assumption is, that different languages make
use of different sound inventories. Even when there are significant parts shared between
certain inventories, the realization of sounds and their occurrences might be very diverse
regarding a specific language pair. Those differences can especially be modeled by lan-
guage-specific sets of phone based Hidden Markov Models (HMMs) as they are already
used since decades in speech recognition systems. Typical phone inventories range from
20 to 60 symbols [AD10]. The inventory generation strongly depends on the correspond-
ing language and its specific sound characteristics. The inventory size may for example
significantly increase when tonal information or gemination effects are embodied in dis-
crete phonemes [AD10]. The principles in finding appropriate symbol sets are precision,
robustness, modularity and transferability, as explained in detail in [ST95].
The linguistic field of emphphonology knows various types of information which help to
discriminate one language from another. One is the said language-specific sound inventory,
namely the phone set itself. Although many sounds are shared among languages, the com-
positions of those language-dependent sets may be very distinctive for various language
pairs. There even exist very special sounds which can by themselves be language discrimi-
nating, or at least indicating the class of a language, for example the click consonant found
solely in southern and eastern African languages [NP03]. The International Phonetic Al-
phabet (IPA) is today’s most commonly used alphabetic system of phonetic notation. It
was developed by the International Phonetic Association as a standardized representation
of the entirety of all distinctive sound characteristics, i.e. phonemes, intonation and seg-
mentation specifics in the world’s languages [Ass99]. Phonotactics is a branch of phonology
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18 3. Phonetic and Phonotactic Language Identification

and deals with the rules that define all legal co-occurrences of phones, given a language.
Phonotactics focuses on the functional and linguistically distinctive roles of sound repre-
sentations in a language system [AD10]. Consequently, phonotactic constraints are highly
language-specific. In order to utilize phonotactic constraints for automatic language iden-
tification they are preferably modeled by n-gram language models, being the most popular
representational structure [Nav06]. The models are calculated by analyzing the phone
co-occurrences in each language on an adequate amount of training data. The phono-
tactic constraints can be incorporated into an LID system in at least two different ways.
The first variant is to use the phonotactic model during phone recognition by the speech
decoding block. Thus, the phonotactic rules have a direct effect on the phone sequence
generation. This way of incorporating the models leads to the parallel phone recognition
(PPR) approach. The second way of application is as back-end analyzer for a generated
sequence of phones, thus the phonotactics are part of the language decoding block. The
latter is done in the phone recognition followed by Language modeling (PRLM) approach.
The parallel phone recognition followed by language modeling (PPRLM) approach finally
incorporates multiple PRLM systems running in parallel.

3.2 Parallel Phone Recognition (PPR)

The PPR approach utilizes several single-language phone recognition front-ends, which
run in parallel. The phone recognizers make use of phonotactic constraints during the
decoding process. The resulting streams of sound tokens are directly influenced by the
applied phonotactic rules. It is required to find appropriate phone inventories and to train
acoustic models for every language l in the set of potential target languages L. Therefore
it is crucial to have a sufficiently large pool of labeled training data for each language-spe-
cific phone recognizer. The labels could either be phonetic transcriptions or orthographic
transcriptions along with a phone based pronunciation dictionary [Zis96]. For most of the
world’s major languages suitable labels are available in sufficient amounts in order to esti-
mate accurate models which reliably represent the acoustic language characteristics. For
that reason, the drawback of the PPR approach is the poor expandability to languages
with only very sparse training data pools and minority languages, especially languages
without a writing system. To date numerous cultures exist without a written language:
In the rain forests of Brazil, Venezuela and Columbia, in the Sahelian zone in the jungle
of Malaysia, in the mountain valleys of Papua New Guinea and the Australian outback,
each comprising only several hundred to thousand speakers [Haa07]. The vast number of
different languages without a writing system renders this issue not neglectable.
Language identification is performed by conducting a Viterbi decoding of a test utter-
ance by each single language-specific phone recognizer. A back-end classifier compares the
scores generated by the decoders, representing the likelihood of the Viterbi path by each
module. The language modeled by the winning recognizer is the language l∗ ∈ L most
likely being spoken. The phone sequence generated by the winning recognizer is optimal
by means of the combination of acoustics and phonotactics, which also implies improved
phone based transcriptions of the test data [Zis96].
Several design decisions for implementations include, but are not restricted to:

Alternative sound units
Sound inventories other than phones may be syllables or words.

Modeling sound context
Acoustic models can either be context-independent or context-dependent. In the
latter case, phone-based sound units are known as polyphones.

n-gram language model characteristics
For the n-gram language models it is decidable which n to use. In most of the cases
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3.3. Phone Recognition Followed by Language Modeling (PRLM) 19

n ∈ {2, 3}. It is possible to use higher order n-grams such as fourgrams, but it has
been shown that trigrams a sufficient to appropriately model phonotactics and show
performance gains of 30% - 40% in comparison to bigrams, whereas the benefits of
fourgrams remain insignificant [AD10]. Further, data sparseness is a problem con-
cerning the training of accurate higher-order language models. Regarding smoothing
or discounting techniques, the commonly used standards seem to do well for the pur-
pose of phonotactic model training [AD10].

Phone recognizer l1

AMl1 LMl1

Phone recognizer l2

AMl2 LMl2

Phone recognizer lK

AMlK LMlK...
l*

Back-end
classifier

Figure 3.1: Schematic of a parallel phone recognition (PPR) system, which incorporates
language models for language-dependent phone-based decoding and uses the
recognizer scores for classification [AD10].

3.3 Phone Recognition Followed by Language Modeling
(PRLM)

The PRLM approach uses only one single phone recognizer as decoding front-end. In con-
trast to the PPR system design the recognizer serves as a mere tokenizer. The decoding
process produces a discrete symbol sequence without any language model influence. In-
stead, language models serve as back-end language scoring modules.
The symbol inventory of the phone tokenizer can be language independent or language
dependent. The latter case implies several issues concerning the choice of appropriate sym-
bols satisfying the language independency as well as the phone coverage, the robustness
dependent on available training data and the overall precision. Another design decision is
the size of the symbol set. Performance seems to improve with increasing size of the phone
inventory, provided that the amount of training data is sufficiently large. Commonly used
phone inventories include IPA-like phone sets or unions of several language-specific phone
sets [AD10]. In case of the proposed use of a language-specific phone tokenizer, recognizers
trained on English data seem to be the common choice because of the very good avail-
ability of accurate acoustic models or professionally labeled speech corpora for running a
model training. Experiments revealed that single-language decoding followed by language
model scoring yields solid identification results [ZS94].
The language decoding back-end consists of a bank of language-dependent phone based
n-gram language models. For the training of the models, language-specific utterances are
tokenized by the phone recognizer to be used in the LID system, resulting in a phone based
training corpus for each future target language. From each corpus an n-gram language
model is trained, resembling the specific phonotactics represented by the phones belonging
to the inventory of the front-end tokenizer. Identification is performed as follows: During
recognition the test utterance is tokenized and the phone sequence passes each language-
specific n-gram model. A score for each model is generated, which represents the likelihood
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20 3. Phonetic and Phonotactic Language Identification

of the utterance being voiced in the respective language. The language of the model with
the highest score is selected as the language of the test message [Zis96].

l*

Language model l1
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Language model l2

Language model lK

...

Phone
recognizer

Back-end
classifier

a

Figure 3.2: Schematic of a phone recognition followed by language modeling (PRLM) sys-
tem, doing a phone-based tokenization and back-end language scoring, thus
applying phonotactic constraints after decoding [AD10].
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Figure 3.3: Schematic of a parallel phone recognition followed by language modeling
(PPRLM) system, using several PRLM subsystems in parallel. Classification is
done via averaged language model scores, combined in a language-wise fashion
[AD10].

3.4 Parallel Phone Recognition Followed by Language Mod-
eling (PPRLM)

The PPRLM approach makes use of several PRLM systems running in parallel for the
multiple tokenization of an utterance. Following each tokenization, recognizer phone set
dependent phonotactic models are applied, which produce likelihoods that the message was
voiced in each of the respective languages. The models are trained for each target language
and phone tokenizer pair. As for the PRLM approach, the phone sets of each tokenizer can
either be language specific, or cover several multi language or multi phone category sets.
It is even possible to additionally use other sound units, i.e. syllables. The assumption
is, that the sounds in the target languages do not always occur in the inventory used to
train the phone recognizer front-end [Zis96]. This approach gains an advantage by the
higher coverage of recognizable phones or sound units in general. Generally, the PPRLM
architectures tend to outperform PRLM systems, likely due to the improved robustness
by using multiple sets of phonotactic models created for each of the tokenizers [Nav06].
As for the previous approach, a language model for language l is trained for each phone
tokenizer r resulting in l ∗ r phone language models λrl . This is done by decoding training
data with each tokenizer and subsequent analysis of the phone occurrence and phone co-
occurrence statistics. Another advantage for this approach is, that labeled training data

20



3.4. Parallel Phone Recognition Followed by Language Modeling (PPRLM) 21

is only needed for the training of the phone tokenizers. Thus the expandability to other
languages is very easily done by training additional language models per front-end for each
new target language.
To perform language identification, an utterance is processed by all PRLM subsystems in
parallel. The language model outputs will be appropriatly combined per language , e.g.
averaged in the log domain [Zis96]. Classification is done on the fused overall language
scores.
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4. System Designs

We implemented two standard approaches using the levels of phonetic and phonotactic
information as baseline systems for initial experiments. The first system is a PPR frame-
work, which is evaluated against the second system, a PPRLM architecture. Our test
scenario is a bi-lingual case, comprising the target languages German and English. During
evaluation a special focus was on short test durations, because it is intended to use the
results for the realization of LID front-ends for existing and future projects, which demand
low latency identification performance.
We orient ourselves by the explications of [Zis96] and [AD10] for the baseline systems,
except that we use an SVM back-end for output optimization and final language classifi-
cation. The languages of the training data for the acoustic front-ends are the same as the
target languages, that means we use German and English audio material for training the
phone decoders. For the baseline systems, the SVM back-end classifiers do a classification
on the specific features of each approach, that means acoustic scores for the PPR approach
and language model scores for the PPRLM approach.

4.1 Test Database

Our test database, on which the experiments are run, is composed as follows: The Ger-
man audio material mainly consists of recorded lectures, that were held at the Karlsruhe
Institute of Technology (KIT) and the Carnegie Mellon University (CMU). The set is
completed by several recordings of Landtag speeches as well as various talks of ceremonial
acts. The English database is also comprised of lectures in large parts. It additionally
contains audio material of TED Talks1. The total amount of recorded German data is 51
hours and the English data comprises 12 hours.
All of the data has been transcribed manually. Each transcription of a recording is orga-
nized in turns, whereas a new turn begins at the beginning of a new sentence or after a
position in the audio signal which encompasses more than 300 ms of silence. All record-
ings are available in 16 kHz and 16 bit quality, most of them were done with close-talk
microphones.
With the help of the transcription and turn boundary informations we generated five sets
of audio segments per test language, differing in average segment length, namely 30s, 20s,
10s, 5s and 3s average. For the generation of the sets we used a partitioning algorithm,
which iterates over every turn of a record and merges the current turn with a subsequent

1http://www.ted.com
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turn, as long as various thresholds are not exceeded, where the constraints for considering
a segment as legal are:

A maximum of 20% of silence within the segment, whereby only the silence between
turns is taken into account. That means, the amount of pure speech within a segment
may be significantly shorter than the overall segment length if there is a high amount
of short parts of silence encompassed in the respective part of the audio signal.

A maximum of 20% of foreign words per segment, whereby the foreign words are iden-
tified by language tags in the transcriptions. Not all foreign words are tagged ac-
curately, hence there may be more foreign words in a segment than the correctly
identified foreign words.

A maximum of 20% variance in the segment length, compared to the intended average
length. As long as the maximum length is not exceeded, new turns will be added to
the currently processed segment. In case of an exeedance the current turn will be
cut off. The following turn is the starting point for the next segment to determine.

Each database entry consists of a segment ID, a speaker ID, the segment length and time
span in the original audio signal, an audio file path and file ID as well as the identity
of the spoken language. For most of the segments, but not all, exists a phone-based
transcription, which was generated by doing a Viterbi alignment of the existing word-
based transcriptions. Because it was not possible to perform an alignment for all segments
due to missing vocabulary entries, some remained untranscribed. The transcriptions were
of importance for the performance evaluation of the phone recognizer front-ends, which
will be discussed later.
The segments with 30 seconds of length are divided in a training set and a test set. The
training set is used to train the SVM back-ends, which do the final language classification.
The test set is used for the experimental tests. This split up is done in a way that the
resulting sets of segments are speaker and recording disjunct. That means, that a quantity
of segments originating from the same recording is not allowed to be distributed to more
than one of the sets. Because the shorter segments of length 20s, 10s, 5s and 3s are
generated upon the same recordings and thus comprise the same audio material than the
segments of the 30s category, all recordings and speakers used in the training set for the
SVM classifiers are dismissed. All test sets comprising the segments shorter than 30s use
only the audio material which is also basis for the test segments of 30s length to guarantee
that every test set is speaker and recording disjunct to the classifier training set.
Due to the vast amount of recorded data from one specific speaker, which in its entirety
makes up to 47% of all available segments, we were forced to use the material of this
speaker in both types of sets. Data of this specific speaker covers approximately 50% of
the training set and on average 37% of each test set. However, the recording disjointedness
is still maintained. Table 4.1 shows the amount of segments for each set of a specific length
and purpose.

4.2 Feature Extraction

The acoustic front-ends of our proposed systems have been trained and tested with the
help of the Janus Recognition Toolkit (JRTk), which features the IBIS single-pass decoder
[SMFW01]. The feature extraction is done equally for each of our systems. The pre-
processor is a variation of the ones used in [SKN11] by the KIT systems participating in
the Quaero2 2010 speech-to-text evaluation campaign.
During training and decoding, spectral features are obtained every 10 ms by a Fourier

2http://www.quaero.org
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30s 20s 10s 5s 3s

Training Set
DE 1856 - - - -
EN 523 - - - -

Test Sets
DE 1715 2436 3959 5224 5207
EN 387 532 917 1325 1453

Table 4.1: Speaker-disjunct and recording-disjunct fragmentation of the database into a
training set composed of the segments with lengths of 30 s, and test sets for
each test duration category.

transformation using a Hamming window. Following the absolute value calculation a
Mel filter bank reduces the spectral feature vectors into a 30 dimensional space. After
logarithmic calculation an inverse cosine transform is applied, resulting in 30 Mel frequency
cepstral coefficients (MFCCs), where the 13 lowest coefficients are selected as features.
The mean and variance of the cepstral coefficients are normalized on a per-utterance
basis [SKN11]. For the incorporation of temporal information seven adjacent frames are
combined via vector stacking into one single feature vector. A linear discriminant analysis
reduces the vectors to 42 dimensions and maximizes the discrimination of the classes.

4.3 Acoustic-phonetic Modeling

Our phone recognition front-ends employ left-to-right Hidden Markov Models (HMMs),
which model each phone with three HMM states. Each state features a self loop and a
transition to the next state. We use language-specific phone recognizers, incorporating
acoustic models trained for the same languages covered by our set of potential target lan-
guages, German and Enlish. For each of the target languages a separate phone set is
trained. The German set consists of 45 phones, the English of 52 phones, including noise
tags and silence tags. All models are semi-continuous quintphones that use 16.000 distri-
butions over 4.000 codebooks, trained by an incremental splitting of Gaussians training
and subsequent Viterbi training [SKN11]. Each model has up to 128 Gaussians. We have
used training material from multiple domains. The majority of the data is from the web,
and another large percentage is covered by broadcast news data and European parliament
plenary sessions (EPPS). Table 4.2 lists the sources of training data for both phoneme
sets.

Source Amount [h] Source Amount [h]

Tagesschau 17.5 EPPS 80
ISL database 16 TED talks 9.8
Globalphone 17 auto-transcribed EPPS 80
Verbmobil 57 HUB-4 corpus 140
Landtag BW 123
KIT/CMU recordings 25
Quaero training data 19.5

Sum 275 Sum 309.8

Table 4.2: Data sources for training the acoustic models.
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26 4. System Designs

4.4 PPR System

The parallel phone recognition approach was the first strategy we implemented as a real
system. Given fully fledged speech recognizers for German and English, which took part
in the Quaero 2010 speech-to-text evaluation campaign, we were able to do a “warm start”
by using the available resources. We re-trained the acoustic-phonetic models for each
phone recognizer front-ends without vocal tract length normalization (VTLN), but the
overall architectures remained the same. The word based dictionary of each decoder is
replaced by a dictionary comprising the respective phone set, thus enabling a phone based
tokenization of an audio input instead of a fully word based speech recognition. Further,
the phone-based language models as an integral part of each phone recognizer in the PPR
approach had to be trained. The SVM back-end classifier was trained with language cue
feature vectors, which include the recognizer scores for each training utterance.

l*
Phone recognizerDE

AMDE LMDE

Phone recognizerEN

AMEN LMEN

SVM
classifier

v→M

scoreEN

scoreDE

Figure 4.1: Schematic of our PPR system, using German and English phone recognizers.
Classification is done by an SVM back-end classifier and the Janus-specific
recognizer scores, stacked to a language cue vector ~v.

4.4.1 Training Language Models

In the PPR approach, phonotactic knowledge is directly incorporated in the decoding
process of a test utterance. Thus, phonotactic, as well as acoustic-phonetic knowledge
equally contribute to a generated decoder score.
Phonotactic information is modeled by phone-based n-gram language models, generated
upon large training corpora. We trained two language models for both decoder front-ends.
For that purpose we read out the labels of the data used to evaluate the KIT systems of the
Quaero evaluation campaign, as mentioned in 4.2. The phone sequences form phone-based
and language-specific training corpora. The German corpus comprises 10.362 sentences
with a total amount of 1.936.001 phones, the English corpus consists of 159.046 sentences
and 11.840.864 phones respectively. We used the SRILM toolkit for the computation of
all n-gram co-occurrences and the generation of the n-gram language models. Because
of the sufficiently large amount of training data we decided to use trigrams. According
to [AD10] all standard smoothing methods seem to do well for phonotactic modeling.
However, experiments in [WAC06] showed, that the Witten-Bell discounting method works
best given a LID system utilizing phonotactic constraints in a PPRLM architecture. We
used the same technique in all our architectures.
The general idea behind the Witten-Bell discounting is to look at a zero-frequency n-gram
as to an event that just did not happen yet [WB91]. If it will happen, than it will be the
first time it is observed. Thus, the probability of the observation of a zero-frequency n-gram
can be modeled with the probability to see this n-gram for the first time. This probability
is calculated by counting the initial observations of all different n-grams. The n-gram
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counts are conditioned on a history: In order to exemplarily calculate the probability of
an unseen bigram “wxwi” the probability of seeing a new bigram accoring to the scheme
“wx

∗” is used, making the new estimates of zero-frequency bigrams specific to this history
[JM09]. The total probability mass of all zero-frequency n-grams is defined as:

P (next n-gram is novel) =
∑

i:c(wxwi)=0

p∗(wi|wx) =
T (wx)

N(wx) + T (wx)
(4.1)

where T (wx) is the number of types, i.e. all distinct n-grams, occurred so far, N(wx) is
the number of all seen n-grams, and c(wxwi) is the n-gram count for n-gram wxwi. The
parameters are conditioned to a history wx. The new n-gram probabilities for the cases
c(wxwi) = 0 (n-gram wxwi was not seen in the training corpus) and c(wxwi) > 0 (n-gram
wxwi was observed at least once) respectively, are:

p∗(wi|wx) =


1

|N0(wx)|
· T (wx)

N(wx) + T (wx)
if c(wxwi) = 0

c(wxwi)

N(wx) + T (wx)
if c(wxwi) > 0

(4.2)

where wxwi ∈ N0(wx), ∀i : c(wxwi) = 0. In order to gain the probability mass needed to
generate non-zero probabilities for the zero-frequency n-grams, it is necessary to discount
all observed n-grams in the way equation (4.2) shows. The smoothed probability of zero-
frequency n-grams is higher, if more n-grams with history wx were observed.
Table 4.3 shows the compositions of our phone-based n-gram language models used by the
decoders.

LMDE LMEN

Corpus size (#phones) 1936001 11840864

1-grams 48 55

2-grams 1917 2420

3-grams 27858 55837

Table 4.3: Size of the training corpora and the n-gram counts for each n-gram language
model applied during the decoding process of the respective phone recognizer.

4.4.2 Decoder Parameter Tuning

The PPR approach does a classification on the phone recognizer scores, which incorporate
the acoustic score and the language model score in the same way. In order to achieve the
most likely phone sequence as hypothesis to a test utterance during the decoding step, it is
required to tune the parameters of each decoder which regulate the impact of the language
model on the tokenization process. Each decoder should yield optimal recognition results
for utterances voiced in the language the phone recognizer is trained for. The IBIS decoder
used by JANUS scores the hypothesis related to an input utterance as follows:

P (W |X) =
p(X|W ) · P (W )lz · lp|W |

p(X)
(4.3)

The lz parameter defines the language model weight, i.e. determines the impact of the
language model on the decoding process relative to the acoustic model. The parameter
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lp is a hypothesis length penalty or more precisely a word transition penalty, helping to
normalize the sequence lengths of words W [SMFW01]. In case of our phone recognizers
this parameter constitutes a phone transition penalty, as the only words in the search
dictionary are phones. The adjustment of the lz, lp value pair was done manually for each
recognizer. Therefor we utilized the data pool presented in 4.1. In each case we used 2
hours of randomly selected data from the data pool presented in 4.1 for calibration. For
performance measurement, a simple phone recognition rate (PRR) was calculated for each
utterance hypothesis and reference pair:

PRR = 100 · (1− Nsub +Nins +Ndel

N
) (4.4)

where N is the total amount of phones in the reference. Nsub, Nins and Ndel are the
amounts of phone substitutions, phone insertions and phone deletions respectively, counted
during the matching of the hypothesis to the reference transcription. During testing, noise
tags and silence tags were discarded. With a PRR of 57%, the German phone recognizer
yields a noticeably better performance than the English, achieving 53%. This might be
due to the smaller number of elements in the German phoneme set, hence the risk of
confusion may be smaller. The IBIS decoder enables the use of lattice rescoring during
the decoding process: The best hypotheses generated with different lz/lp values are read
from the search graph. A subsequent modification of the language model weight for this
specific graph leads to a new one-best hypothesis. Because of the neccessary re-calculation
of probabilities within the graph, this method is called rescoring [SMFW01]. We decided
to take this option into account for our experiments, dut to potential improvements in the
overall system performance.

4.4.3 Back-end Classifier

The language classification is done by the analysis of language cue feature vectors: For
each test input, a vector combining language-specific cues is generated upon the phone
recognizer outputs. For our baseline system, a feature vector corresponding to an input
consists of a phone recognizer score according to equation (4.3) for each of the decoder
front-ends.
Our proposed system utilizes an SVM for the vector classification. The classifier is trained
from all feature vectors vi = {liID, scoreiDE , scoreiEN} each corresponding to a segment si
of the training set. Both, SVM training and later classification runs are done with the
tools of the LIBSVM library (see Section 1.4). Due to the bilingual task, a two-class SVM
is sufficient, but with the utilized tools it is easily possible to extend the proposed classifier
to a multi-class scenario. We decided to use the C-Support Vector Classification (C-SVC)
formulation, as it is the original SVM formulation [CV95], and fits our requirements. Given
a training set of vectors xi, i = 1, . . . , l and a class-assigning vector y ∈ Rl,yi ∈ {−1, 1},
the solution of the following optimization problem is required:

min
ω,b,ξ

1

2
ωTω + C

l∑
i=1

ξi (4.5)

yi(ω
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

where φ maps xi into a high-dimensional space [CL11]. The SVM will find a hyperplane in
this space, which separates the the classes in a linear fashion and with a maximal margin
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between them. The soft margin parameter C > 0 is a penalty parameter of the error term.
The decision function for classification is:

sgn

(
l∑

i=1

yiαiK(xi,x) + b

)
(4.6)

where K(xi,xj) ≡ φ(xi)
Tφ(xj) is the kernel function [CL11]. According to test runs on

a small set of randomly selected data, the linear kernel type function K(xi,xj) = xTi xj
seems to work best for us. During classifier training, the linear penalty parameter is
determined automatically via a grid-search. For evaluation purposes, the SVMs are trained
for probability estimates.
We decided in favour of the SVM approach because of several advantages over other
commonly used classifiers, such as the naive Bayes classifier or ANN:

Training complexity
The SVM training is extremely fast, provided a suitable choice of features, that hold
good discrimination capabilities.

Model complexity
SVM models are represented in an easy fashion, due to the sole need of support
vectors defining the classes and class boundaries.

Classification complexity
Because of the kernel trick, an actual calculatory transformation of the vectors into
a high-dimensional space is not necessary, which makes classification very fast.

Generalization
SVMs are maximum-margin-classifiers, hence their architecture aim at optimal gen-
eralization by establishing a margin of maximal width between the classes to dis-
criminate.

Linear separability
The kernel trick enables linear separability of non-linear problems in a high-dimen-
sional space. With adjustment of the linear penalty function parameter C, further
flexibility is provided by allowing a certain amount of penalized misclassifications.

Bias compensation
During training, SVMs implicitly compensate for biased features: Scores of different
recognizer systems usually are not comparable directly. Differences in the structures
of underlying models, as well as the training and test data, cause biased scores in a
way that scores of a recognizer r are higher, on average, than scores from another
recognizer s [Zis96].

4.4.4 Performing Language Identification

Language identification with our PPR system is performed by doing a Viterbi decoding
of a test utterance for each single language-specific phone recognizer. Each recognizer
calculates the most likely path through the search graph, influenced by phonotactic con-
straints in form of phone-based n-gram language models. A log-likelihood score for the
test utterance, given the modeled language, is generated by each decoder. The scores are
normalized by utterance frame count and combined to a language cue feature vector for
SVM classification. The SVM back-end classifier makes the language identity decision and
outputs the hypothesis l∗ ∈ L = {DE, EN} given the test utterance.
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30 4. System Designs

4.5 PPRLM System

The phone recognizers of our proposed PPRLM system use exactly the same models as
the PPR architecture. The difference is, that the decoders no longer incorporate language
models for the application of phonotactic constraints during the decoding process. Instead,
phonotactics are modeled by language model back-ends. We implement the PPRLM sys-
tem by training two PRLM systems: For both phone recognizers each, back-end language
models for our two target languages are trained. This results in two times two phone set
dependent and language-specific language models. During testing, an utterance is pro-
cessed by each of the PRLM sub-systems in the same way: The test signal is tokenized by
the phone recognizer. This token-dependent symbol stream is analyzed by the back-end
n-gram models, which results in a language model score for each target language.
After PRLM processing, the generated scores are combined language-wise, and stacked to
a feature vector. An SVM back-end classifier generates the hypothesis for the language
being spoken. Besides the use of differing features, the SVM is trained in the same way as
for the PPR system.
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Figure 4.2: Schematic of our PPRLM system, using German and English phone tokenizers.
Classification is done by an SVM back-end classifier and the combined and
averaged language model sentence scores, stacked to a language cue vector ~v.

4.5.1 Training Language Models

In order to perform a pure tokenization of the input messages, the language model weight
parameter of both phone recognizers is set to lz = 0, excluding any language model in-
fluence during the decoding process. With the length penalty parameter set to lp = 0,
the average hypothesis length to average reference length mismatch is minimal for both
decoders. Lp values differing from 0 resulted in a higher mismatch of the average lengths,
tested on the sets we also used in 4.4.2.
We ran the training of the back-end language models separately for each of our phone rec-
ognizer front-ends using audio data of the KIT 2010 Quaero evaluation campaign, resulting
in two times two phone set dependent and language-specific phone-based n-gram language
models. By tokenizing language-specific German and English data we get a phone-based
corpus each, which ought to cover the phonotactic characteristics of the respective lan-
guage. Both corpora are dependent on the specific tokenizer phone set. We calculated
the language models upon the phone co-occurrence statistics of tokenized data with the
SRILM tools, using the same settings as for the previous system.

Hence, each target language is modeled with it’s natural phone set and the phone set of
the opposing target language. The language scoring module has the following structure:
The German phone tokenizer is followed by a German and an English language model,
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λDEDE λENDE λDEEN λENEN
Corpus size (#phones) 2217564 20999643 2054232 10114569

1-grams 48 48 55 55

2-grams 2012 2021 2695 2700

3-grams 53580 79027 71362 104185

Table 4.4: Size of the training corpora and the n-gram counts for each n-gram language
model applied as back-end language scoring modules for the PPRLM system.

both modeled upon the German phone set. The English phone tokenizer is followed by
language models of the same languages, but modeled upon the English phone set. Thus,
an utterance is represented by two streams of phone symbols instead of just one, as for
the simple PRLM approach, which implies more information for the purpose of language
discrimination.

4.5.2 Back-end Classifier

Again, the SVM back-end classifier is trained with the training set of our database and
LIBSVM, with exactly the same settings as for the PPR language models. Each training
segment is decoded by the phone tokenizers, resulting in two separate streams of symbols.
Both streams are analyzed by the respective n-gram model back-ends: Let T = {DE, EN}
be the set of target languages, Wr = {wr1, wr2, . . . , wrm} with r ∈ T be the phone sequence
produced by the decoder front-end using the phone set of language r, and be l ∈ T , then

L(Wr|λrl ) =

m∑
i=2

logP (wi|wi−1, λrl ) (4.7)

is the log probability, that Wr is produced by the language model λrl for target language
l, trained upon the phone set r. Thus, the German phone set dependent language models
generate scores for both modeled target languages each, given the stream consisting of
German phones, with the procedure being the same for the English phone stream. Both
scores of a particular target language l are averaged in the log domain, as both decoders are
seen as working independently of each other, resulting in a joint language score L(M |l) for
a given test message M , incorporating the scoring informations of both PRLM subsystems:

L(M |l) =

∑
r∈T L(Wr|λrl )

f
(4.8)

where f is the amount of used phone recognizers, i.e. the number PRLM sub-systems. In
our case is f = |T |.
A feature vector which represents a test utterance for SVM processing comprises the ID
of the language actually being spoken, and the previously generated language scores for
each of the target languages.

4.5.3 Performing Language Identification

For language identification, a Viterbi decoding of a test utterance is done by each sin-
gle language-dependent phone tokenizer. Attention should be paid to the fact, that the
decoding is done without language model influence, in contrast to the decoding in PPR
architecture. For each resulting phone stream Wr, log-likelihood sentence scores are calcu-
lated for every language model λrl . The scores are combined and averaged language-wise,
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followed by a length normalization according to the utterance frame count. Finally, the
scores are stacked to a language cue feature vector for SVM classification. The SVM
back-end classifier generates a hypothesis l∗ ∈ T , given a feature vector.
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5. Experimental Results

The two baseline systems were compared by performing bilingual, forced-choice classifi-
cation experiments on sets of test messages with various average lengths. We tested on
the segment lengths 30s, 20, 10s, 5s and 3s. Our focus was on the system’s performances
on the very short segment category, as the systems are evaluated with the aim to gain
knowledge about the expectable performance in (near) real-time language identification
scenarios. According to the conclusions of [Zis96], it was to expect, that the PPR and
PPRLM approaches in general perform about equally.
The results for the baseline system experiments are shown in table 5.2. As can be seen,
the PPRLM system outperforms PPR, regardless of the segment length category. This is
not surprising, as PPRLM systems are able to gain more information from an input signal
due to the use of multiple phone sets for message decoding. The PPR system solely relies
on the phone recognizer scores, which are generated by each front-end separately during
decoding. The information displayed by these scores apparently are of less quality for
appropriate language discrimination, at least for the observed message lengths. However,
with the test messages getting shorter, PPR performance decreases less fast, compared to
the PPRLM system. This may lead to the assumption, that the phone recognizer scores,
which incorporate acoustic as well as phonotactic valuation, are more robust, compared
to the phonotactic scores delivered by language model back-ends, as they need a sufficient
amount of statistically relevant data for proper probability estimation.

DE EN
PRR lz/lp PRR lz/lp

PPR 57.1 28/-22 53.1 27/-16

PPRLM 46.9 0/0 40.9 0/0

Table 5.1: Phone recognition rates and lz/lp values of the front-ends used in our PPR and
PPRLM frameworks respectively.

During parameter optimization for the recognizer front-end, we measured the phone recog-
nition accuracy on the native language for each recognizer. As measurement we used the
phone recognition rate (PRR), as explicated in equation (4.4). The results are shown in
table 5.1. As mentioned before, we tried to take advantage of lattice rescoring, especially
for the PPR phone recognizers, in order to potentially enhance the classification perfor-
mance of the SVM back-end. Experiments on our database showed, that the use of lattice
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rescoring did not affect the phone recognition performance at all. As a result we discarded
the application of lattice rescoring during the phone recognition process.
With the baseline PPRLM system already working very well by utilizing the language
model scores as language cues, we took the opportunity to test the language discrimina-
tion capabilities of the perplexity (PPL) measurement, which can be easily computed with
help of the SRILM toolkit we used for language model training. The PPL of a language
model λl for language l, given a test example message W = w1, w2, . . . , wN is defined as:

PPL(λl,W ) = 2
∑N

i=1
1
N

logP (wi|w1,...,wi−1,λl) (5.1)

The idea is to evaluate, how well a language model may predict a test message, which for
the test case is assumed to originate from λl. Thus, the perplexity makes a statement as
to what extent a given language model is qualified to predict events presumably belonging
to this model. A language model λ∗ will assign a higher probability to a test message W ,
if it is more suitable to describe it. Thus, the PPL will be lower for λ∗, since the model
is “less surprised” by this specific sample [Sch99]. The language used for voicing a specific
message may be classified as the language of the model with the lowest PPL, as it seems
to be most suitable to describe the message.
For each target language of our system, an averaged perplexity is computed:

PPLl =

∑
r∈T PPLλrl
|T |

(5.2)

where PPLλrl is the perplexity of the language model for l ∈ T corresponding to the
phone set of the language-dependent phone recognizer r. As reminder, in our system each
phone tokenizer corresponds to one target language, i.e. it is r ∈ T . The averaging by |T |
must be viewed as the averaging over the amount of phone tokenizer front-ends, or PRLM
sub-systems, rather than the amount of target languages.
Using the averaged language model perplexities as features for language discrimination
results in a slight deterioration of identification accuracy on very short segments. However,
we made a noteworthy observation concerning the SVM model complexity: Surprisingly,
utilizing the language model scores resulted in a SVM model consisting of an amount of
support vectors 40 times higher than the quantity of vectors for the classification by PPL
based features. One reason might be, that the transformation (5.1) of the language model
scores in the form of equation (4.7) is more suitable for the discrimination by our SVM,
already given a proper kernel function and optimized parameters. With that in mind, we
observed both feature types as alternative approaches throughout further experiments.

System 30s 20s 10s 5s 3s

PPR 91.1 90.9 89.4 87.7 86.5

PPRLM (LM scoring) 99.7 99.7 98.8 96.0 92.0

PPRLM (PPL scoring) 99.8 99.6 98.9 95.7 91.1

Table 5.2: Identification accuracy (in %) of the PPR and PPRLM baseline systems and
each test segment length category. Tests were done for the language model
sentence scoring and perplexity measure scoring respectively.

5.1 Experiments on System Improvements

The purpose of further experiments was to evaluate potential performance gains by addi-
tional features such as scores of keyword spotting techniques, phone sequence statistics,
multiple language model types, as well as specific feature combinations.
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5.1.1 Experiments on the PPR System

Initial attempts to boost the PPR system included to test alternative scores to the score
generated by the phone recognizers: A score generated by a JRTk-based recognizer system
comprises several informations according to the hypothesis for a processed signal, namely
an acoustic model score, the contribution of the language model, a word penalty (in this
case a phone penalty), normalizing the amount of elements in the hypotheses, and a filler
word/phone penalty. We isolated the pure acoustic score and ran tests using this score
as sole feature for language discrimination. With purely acoustic scores, the performance
dropped by 3% relative for 30s segments to 9% relative for the 3s category. The experimen-
tal combination of both, the unmodified recognizer scores plus the purely acoustic scores
as additional feature, caused an improvement of 7% relative for the longest test samples,
whereas the tests on short segments experienced a performance drop of 2% relative. That
leads to the assumption, that a multiplication of acoustic information increases the dis-
crimination capabilities, given sufficiently long input messages, whereas the performance
on short segments suffers from lack of enough significant data. We decided to hold on
to the unmodified scores, as the performance of the original setting seems to fit best for
short-time testing.
Another attempt to increase the discrimination capabilities of the SVM classifier was to
incorporate statistical knowledge regarding the phone sequence hypotheses. We tried to
utilize the average hypothesis length, according to the amount of phones, and the average
phone duration length, as this might display characteristics of the decoder’s segmentation
procedure. However, none of the additional features had a positive effect on the system’s
performance. Assumedly, the informations added in this way are too general.

5.1.1.1 Keyword Spotting

We tested on the incorporation of language-specific lexical knowledge into the PPR frame-
work. The assumption is, that a test message Wl in language l would generate more phone
sequences resembling common words of language l, than a test message in a language
l′ 6= l. We generated lists of the 100 most common words per language, using existent
word frequency lists, which are computed upon corpora of transcribed TV and movie
recordings [Wik11]. The corpora comprise 25 million words for German and 29 million
words for English. For the 100 most common words per language, the pronunciations,
including pronunciation alternatives were automatically extracted from large dictionary
files. Finally, the lists were checked and modified manually, e.g., by deleting words or
pronunciation alternatives consisting of single phones, such as the English “a”.
We tested on two variants of application, the first approach is the use of generic n-gram
language models, which are computed upon the word lists and the corresponding phone
set, where the pronunciations of the keywords have a very high count, being the same for
each word, and the phone set slips in with single phone counts of 1. The generic language
models are applied as back-ends for the phone recognizers. The expansion of the baseline
architecture resulted in a performance gain for all but the shortest test segment category.
Furthermore, the classification accuracy became unbalanced, according to the per-language
error rate. A more straight-forward approach of keyword spotting yielded more promising
results. A phone sequence parser checks a recognizer hypothesis for sequences listed in the
keyword pronounciation dictionary. The dictionary search runs sorted by phone sequence
length, i.e. a phone already associated to a keyword cannot be associated again to a second
keyword. Phones assumedly belonging to a keyword are marked as such. Best language
discrimination results were obtained by computing a keyword-phones to hypothesis length
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ratio, normalizing the accumulated amount of keyword phones by hypothesis length N :

∑N
i=1m(i)

N
,m(i) =

{
1 if wi is marked

0 else
(5.3)

Using this keyword coverage value as additional feature for language classification, the
identification accuracy significantly increased for longer test messages, whereas the per-
formance of the short-time tests remained almost the same. The combination of both,
the generic language model back-ends and the latter expansion, yielded an overall best
performance for our PPR system. It was hardly possible to boost the performance on the
3s test length case, whereas the identification accuracy on longer test segments increased
by up to 4% relative.
Our proposed method of keyword parsing is a very rough approximation. The miss-
ing informations about word boundaries as well as the significantly worse recognition rate
compared to a word based hypothesis computation constrain the possibilities of word spot-
ting on phone sequences. Further performance gains may be achieved by more advanced
definitions of keywords, as by pronunciation dictionaries containing recognizer-generated
transcriptions instead of“ideal”phone sequences. Since the phone recognizer generated hy-
potheses are less accurate, keywords with linguistically correct phone transcriptions are less
likely to be mapped to sub-sequences of decoded message. Flawed, recognizer-dependent
pronunciations may reflect the characteristics of typically generated hypotheses, thus en-
abling an advanced keyword coverage computation.

System 30s 20s 10s 5s 3s

PPR Baseline 91.1 90.9 89.4 87.7 86.5

PPR + Keyword LM 92.8 92.9 90.8 88.1 86.2

PPR + Keyword ratio 95.0 94.7 91.6 89.0 86.8

PPR + Keyword LM & ratio 96.9 96.6 93.8 90.5 87.0

Table 5.3: Identification accuracy (in %) of the enhanced PPR systems and each test seg-
ment length category.

5.1.2 Experiments on the PPRLM System

During system implementation, we experimented with several variations of back-end lan-
guage models. One concept was to clean the corpora of all non-phone tokens, such as noise
tokens, silence and filler tags. The PPRLM system equipped with language models gener-
ated from this cleaned data produced comparable results to the baseline version. This is
not surprising, as the estimated hypotheses are cleaned of non-phone tokens, before they
are processed by the language scoring block, i.e. the back-end language models. However,
a combination of both language model types, which results in two sets of averaged lan-
guage model scores, or averaged PPL respectively, seems to benefit the system’s language
discrimination capabilities. Regardless of the utilized score, the performance on very short
test segments slightly increased by 0.4% to 0.6% absolute. The PPRLM framework using
language model sentence scores achieves the best overall performance of our implemented
and tested LID architectures. It yields an identification accuracy of 99.8% on 30s average
test messages, and 92.4% on the average 3s category.
Further experiments, focussing on the application of expansions we tested for the PPR
system, had no positive effect on the system’s accuracy: Neither the keyword spotting
techniques, nor the hypothesis statistics as additional features were advantageous. This is
assumedly due to the worse phone recognition accuracy as a result of the pure tokenization
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without language model involvement, which adversely affects the parsing for sequences key-
word of pronunciations. Again, the hypothesis length and average phone duration statistics
we utilized supposedly were too general to carry any additional information for language
discrimination purposes.

System 30s 20s 10s 5s 3s

PPRLM Baseline (LM scoring) 99.7 99.7 98.8 96.0 92.0

PPRLM + cleaned LMs (LM scoring) 99.8 99.8 99.0 96.3 92.4

PPRLM Baseline (PPL scoring) 99.8 99.6 98.9 95.7 91.1

PPRLM + cleaned LMs (PPL scoring) 99.8 99.8 99.0 96.1 91.7

Table 5.4: Identification accuracy (in %) of the enhanced PPRLM systems and each test
segment length category. Tests were done for the language model sentence
scoring and perplexity measure scoring respectively.
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Figure 5.1: Schematic of our enhanced PPR system. Additional language cues are scores of
the generic language-dependent keyword n-gram models and a keyword phones
to hypothesis length ratio.

5.2 PPRLM & PPR Hybrid System

Our special interest was in the evaluation of a hybrid system, merging the PPRLM and
PPR approaches. The idea was to investigate, if a combination of both architectures
would result in an even more effective identification system. The system we observe uses
the phone recognizers of the PPR framework as front-ends for phone recognition, fol-
lowed by the PPRLM language model back-ends: The phone recognizers each generate
a best hypothesis by means of acoustic and phonotactic scores, combined in the JRTk-
specific recognition score. Each stream of phones is processed by the respective unmodified
phone-dependent language models, which compute a language model scores or PPL scores
respectively. The scores are averaged language-wise and stacked, together with the phone
recognizer front-end scores, to a language cue feature vector for SVM classification.
Compared to the baseline PPR system, a significant performance boost is observable for
long test data and both methods of language scoring. The LM sentence scoring back-end
type yields a significantly better identification accuracy on the very short test segments,
whereas the performance on the hybrid system using PPL scoring drops rapidly with
shorter test durations. Despite noticeable improvements compared to the baseline and
enhanced PPR systems, our final PPRLM system remains unmatched in terms of identi-
fication accuracy. Nonetheless, the hybrid approach might act as a good basis for further
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Figure 5.2: Schematic of our enhanced PPRLM system. Additional language cues are
language model sentence scores of additional language models, computed upon
cleaned training corpora.

research. Combining the unmodified PPR and PPRLM modules without further adap-
tation certainly limits the capabilities of language discrimination. The keyword spotting
expansions of our PPR framework may have potential to boost a hybrid system, provided
that several adaptations will raise their beneficing.

Considering the performance in terms of runtime, the hybrid system beats our best PPRLM
framework, given the fact, that the complex computations of the decoders consume most
of the computation time, whereas the language score computation, as well as the SVM
classification run very fast. Real time factor analyses revealed, that the phone recognizers
of the PPRLM system, which don’t use any language models during decoding, each need
about 20%-40% more computation time than the language model-incorporating recognizers
used by the PPR framework. For performance measurement, we computed the real time
factor

RTF =
durtest
durinput

(5.4)

for every single phone recognizer, where durtest is the accumulated test duration for all
processed test utterances with an accumulated utterance duration of durinput. We tested on
a randomly generated test set containing test utterances with a total length of 30 minutes
per language. Using the PPR front-ends gives the hybrid system a major advantage over
the PPRLM architecture, enabling a potential speed-up of up to 40%. One might accept
the lower accuracy of this hybrid approach for the sake of faster language identification.
The PPRLM-like language model back-ends seem to compensate for the weaknesses of
the pure PPR approach on short-duration testing. Hence, our proposed PPRLM & PPR
hybrid outperforms even the improved PPR system with a relative increase of 5% in
accuracy on the 3s test condition.

5.3 Analysis

Our experiments revealed, that the PPRLM approach outperforms the PPR architectures
for all test conditions, especially on shorter test durations. Assumedly, the lower perfor-
mance of the parallel phone recognition framework is induced by the shortage of the test
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ends of the PPR approach, and the language model scoring back-ends of the
PPRLM framework. The language cure vector v is generated by stacking both,
the phone recognizer scores and combined and averaged language model scores.

System 30s 20s 10s 5s 3s

PPRLM & PPR Hybrid (LM scoring) 97.7 97.7 96.4 93.2 91.2

PPRLM & PPR Hybrid (PPL scoring) 98.3 98.1 95.8 91.2 86.6

Table 5.5: Identification accuracy (in %) of the PPRLM & PPR hybrid systems and each
test segment length category.

messages. The scarcely available statistically relevant data seems to be insufficient for a
proper identification performance. We were able to significantly boost the language iden-
tification accuracy of the baseline PPR system by applying keyword spotting techniques
in form of back-end modules for the phone recognizers. A combination of a generic n-gram
language model describing the language-specific keywords, and the computation of an ac-
cumulated keyword phones to hypothesis length ratio yielded the best results. However,
even the capabilities of the baseline PPRLM system exceed those of the modified PPR
framework. The higher phone coverage in consequence of the parallel phone tokeniza-
tion followed by multiple token-dependent language models per language seems to exploit
far more information from a test signal. We were able to further improve the PPRLM
performance by doubling the amount of back-end language models by using additional
model banks that were trained on cleaned data. The idea was to extract more channel-
independent information, which may have additional language discrimination capabilities.
Additionally, we tested the suitability of the perplexity (PPL) measure as substitute for
the sentence score as feature for language discrimination purposes. Our experiences are,
that both scoring methods perform about equally, but the commonly used sentence score
proved to have slightly higher language discrimination powers on very short test segments.
The utilization of PPL scores tends to result in less complex SVM models, according to
the number of required support vectors. It might be, that the characteristics of these
alternative scores are more suitable for the SVM training than the original log-probability
sentence scores. Experiments on implementing a hybrid framework, which makes use of
the PPR phone tokenizer front-ends and the PPRLM language scoring back-ends resulted
in a system, which outperforms our best PPR system, but does not reach the capacities
of our winning PPRLM system.
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Runtime tests, which we ran on an Intel Pentium Dual-Core E5700, 2GB RAM machine
revealed, that the most complex computations take place during the message decoding
process. Phone recognition runs with 1 × real-time for the PPR recognizers, and 1.5 ×
real-time for the PPRLM tokenizers. That qualifies both systems for real-time language
identification demanding scenarios. Our hybrid system uses the superior fully fledged
phone recognition front-ends. Hence, it may embody an acceptable alternative to the
more accurate, but less fast PPRLM system in very time-critical applications.
The data we used for the experimental test runs is unbalanced, because we had far more
German data available. In order to verify a balanced error proportion we examined the
miss rates for each language, averaged over all segment length categories. Table 5.6 lists
the language-specific miss rates for the three winning PPR, PPRLM and hybrid systems
respectively, according to the overall performance.

System missDE missEN

PPR baseline 12.4 7.7

PPR + Keyword LM & ratio 7.7 10.8

PPRLM baseline (LM scoring) 3.6 3.8

PPRLM + cleaned LMs (LM scoring) 3.3 3.9

PPRLM & PPR Hybrid (LM scoring) 5.4 6.2

Table 5.6: Miss rates (in %) for each system and language pair, averaged over all segment
length categories.
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6. Summary

The aim of this project was to implement two standard approaches for automatic lan-
guage identification using phonetic informations and phonotactic constraints. The focus
during experimental test runs and evaluation was on the suitability for use in real-time
identification scenarios. Thus, we aimed for reasonable performance on short-time inputs,
where our minimal test durations were 3 seconds. Our baseline systems resemble the PPR
and PPRLM approaches respectively. The PPRLM framework proved to be superior to
the PPR system, with the latter significantly decreasing in performance on shorter input
messages. We were able to boost the accuracies of both baseline systems with various ex-
pansions. Our enhanced PPR system benefits from a keyword spotting back-end based on
n-gram models phone sequence parsers. The PPRLM architecture gained a slight increase
in accuracy by doubling the language model back-ends with the addition of models trained
on cleaned corpora. Further, an experimental PPRLM & PPR hybrid system combines
modules of both approaches in a way, that it easily outperforms the PPR system, but
does not reach the accuracy of the PPRLM framework. However. it is considered to be a
conceivable alternative to the PPRLM system in real-time demanding applications, as it
benefits from faster phone recognition.

6.1 Future Work

Our experimental results showed, that the PPRLM framework is more costly in terms of
computation time, but clearly exceeds the identification accuracy of the computationally
less complex PPR system. Our hybrid approach is considered a middle course with a
theoretically faster identification process but at the same time a moderate loss of accuracy.
In order to evaluate the performance of our proposed systems in real scenarios, further
work will consist of their application as language identification front-ends for existing
systems. We aim at the expansion of a system for simultaneous translation of lectures and
speeches which has been developed at the KIT and embodies the first existing automatic
system for simultaneous speech-to-speech translation [Füg09]. The focus of this system
is the automatic translation of (technical oriented) lectures and speeches from English to
Spanish [Füg09]. Hence, further tasks include the expansion of our existing LID systems
to new target languages such as Spanish and French, which will lead to new evaluations
regarding the identification accuracy and runtime performance in multilingual language
identification scenarios.
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