
Audio Segmentation
for Robust Real-Time Speech Recognition

Based on Neural Networks

Bachelor’s Thesis of

Micha Wetzel

at the Department of Informatics

Institute for Anthropomatics and Robotics, Interactive Systems Labs

Reviewer: Prof. Dr. Alexander Waibel

Second reviewer: Prof. Dr.-Ing. Rainer Stiefelhagen

Advisor: M.Sc. Matthias Sperber

15. June 2016

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 15/6/2016

. .

(Micha Wetzel)

Abstract

Multimedia content hurts the recognition accuracy and speed of automatic speech recog-

nition (ASR) systems. This bachelor thesis introduces a segmenter to increase the perfor-

mance of an real-rime ASR system by detecting music and noise segments in an audio

source and replacing it with silence. A two step approach is proposed, consisting of frame

classi�cation and smoothing. Audio frames of size 10 milliseconds are classi�ed as speech,

music or noise with a classi�cation model. Multiple settings with neural nets and support

vector machines as model are compared, resulting in an classi�cation accuracy of 87%.

In the second step the smoothing algorithm considers the temporal context to prevent

rapid class �uctuations. The proposed segmenter yields a transcript quality of an ASR

system en-par with manual removal of the music segments, while maintaining a real-time

applicable delay of 270 milliseconds.

i

Zusammenfassung

Automatische Spracherkenner (ASR) reagieren generell schlecht auf eine Audioeingabe, die

Musik oder Störgeräusche enthält. Die Spracherkennung verzögert sich dabei, da es keine

wahrscheinlichen Thesen gibt. Zusätzlich nimmt dadurch die Anzahl der falsch erkan-

nten Wörtern zu. Es ist daher erstrebenswert Abschnitte herauszu�ltern, die Musik oder

Störgeräusche enthalten, wodurch die Wortfehlerrate (WER) ebenso wie die Verzögerung

verringert wird. Besonders wichtig ist dies im Kontext der Echtzeit-Spracherkennung,

bei der das Transkript mit wenigen Sekunden Verzögerung verfügbar sein muss, um von

Nutzen zu sein. Eine Verzögerung von maximal 5 Sekunden wird im Allgemeinen noch als

akzeptabel bewertet.

In dieser Arbeit wird ein Segmentierungsverfahren zur Unterscheidung von Sprache,

Musik und Störgeräuschen in einem Audiostream präsentiert. Dieses Verfahren ist dazu

geeignet als Vorverarbeitungsschritt für einen Echtzeit-Spracherkenner genutzt zu wer-

den. Das Segmentierungsverfahren nutzt einen zweistu�gen Ansatz: Zuerst wird der Au-

diostream in Frames aufgeteilt und diese klassi�ziert, danach werden die Klassi�zierungen

geglättet. Zur Klassi�zierung werden markante Merkmale aus den Audioframes extrahiert,

welche auf Mel Frequency Cepstral Coe�cients und der Zero-crossing Rate basieren.

Zwei Klassi�kationsmodelle werden evaluiert, zum einen Neuronale Netze, zum anderen

Support Vector Machines. Dabei werden verschiedene Parameter der Merkmalsextraktion

sowie der Klassi�kationsmodelle optimiert, wobei der Augenmerk auf der Fehlerfreiheit

und einer geringen Latenz liegt. Da der Spracherkenner selbst im Allgemeinen schon einige

Sekunden Latenz erzeugt, muss die durch den Segmentierungsalgorithmus entstehende

Latenz sehr klein gehalten werden (idealerweise unter 0.5 Sekunden). Im zweiten Schritt

wird die Klassi�zierung der Frames geglättet, um Segmente von Audioklassen zu erhalten

und kleinere Falschklassi�kationen auszumerzen. Dafür werden die Frames kurz vor und

nach dem aktuellen Frame zur Klassi�kation zu Rate gezogen. Zusätzlich werden Frames

der letzten Sekunden mit in Betracht gezogen. Dieser Glättungsschritt ist vonnöten, da eine

Klassi�zierung, die nicht perfekt ist, eine Verschlechterung des entstehenden Transkripts

zur Folge haben kann.

Um die Klassi�kationsmodelle zu trainieren wird der ö�entliche Datensatz MUSAN

genutzt, welcher Musik, Sprache und Störgeräusche unterschiedlicher Art enthält. Die

letztendliche Leistung des Segmenters wird durch einen Vergleich der Transkriptqualität

einer ASR mit vorgeschaltetem Segmenter sowie derselben ASR ohne Segmenter beurteilt.

Dabei ersetzt der Segmenter alle Musik- und Störgeräuschsegmente mit Stille.

Die Ergebnisse zeigen, dass es möglich ist, mit einem Neuronalen Netz, welches eine

Architektur von 30x20x10 hat, Frames der Größe 10 Millisekunden mit einer Genauigkeit

von 87% zu klassi�zieren. Dabei wird ein zeitlicher Kontext von 130 Millisekunden genutzt,

was zu einer Latenz von 70 Millisekunden führt. Durch einen zweiteiligen Glättungsalgo-

rithmus ist es möglich eine Transkriptqualität zu erreichen, die genauso gut ist, wie wenn

iii

alle Musiksegmente von Hand entfernt werden. Dieser Algorithmus erzeugt eine Latenz

von nur 200 Millisekunden. Im ersten Schritt wird dabei der Median von den Klassen der

benachbarten Frames im Umkreis von 200 Millisekunden genutzt, um das aktuelle Frame

neu zu klassi�zieren. Im zweiten Schritt wird sichergestellt, dass ein Klassenwechsel von

einem Frame zum nächsten im Falle von Musik bzw. Störgeräusch nur möglich ist, wenn

die Mehrheit der letzten 3 Sekunden als Musik bzw. Störgeräusch klassi�ziert wurde.

iv

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Background 3
2.1 Automatic Speech Recognition . 3

2.2 Audio Segmentation . 4

2.3 Hidden Markov Model . 5

2.4 Support Vector Machine . 5

2.4.1 Maximal Margin Hyperplane . 6

2.4.2 Soft-margin . 7

2.4.3 Kernel Trick . 8

2.5 Arti�cial Neural Network . 9

2.5.1 Perceptron . 9

2.5.2 Multilayer Perceptron . 12

2.6 Sound Features . 14

2.6.1 Mel Frequency Cepstral Coe�cients 14

2.6.2 Zero-crossing Rate . 15

3 Prior Work 17
3.1 Classi�cation Models . 17

3.2 Segmentation Models . 18

4 Method 21
4.1 System overview . 21

4.2 Feature Extraction . 21

4.3 Classi�cation . 23

4.3.1 Multilayer Perceptron . 23

4.3.2 Support Vector Machine . 23

4.4 Smoothing . 25

5 Experiments 27
5.1 Setup . 27

5.2 Tools . 28

5.2.1 Python . 28

5.2.2 scikit-learn . 29

5.2.3 TensorFlow . 29

v

Contents

5.2.4 openSMILE . 29

5.2.5 Janus Recognition Toolkit . 29

5.3 Datasets . 29

5.3.1 MUSAN . 30

5.3.2 PBC . 30

5.3.3 STC . 30

5.4 Evaluation . 31

5.4.1 Multilayer Perceptron Model . 31

5.4.2 Support Vector Machine Model 34

5.4.3 Feature Analysis . 34

5.4.4 Smoothing Analysis . 36

5.4.5 Segmentation Analysis . 38

6 Conclusion 43
6.1 Future Work . 43

Bibliography 45

vi

1 Introduction

Automatic speech recognition (ASR) systems generally respond poorly to music and

noise input. The recognition delay increases due to a missing likely interpretation of

the audio. The number of insertions increases in those segments due to falsely detected

speech. Filtering those segments out is desirable to increase the accuracy of the ASR and to

improve the average recognition speed. This is especially important for real-time systems,

where a small delay is required, and processing power is generally limited. A delay of

less than 5 seconds for the speech recognition is considered to be real-time, as humans

perceive a caption delay of less than 5 seconds as acceptable [Las+12].

This work proposes and evaluates a segmentation algorithm to discriminate speech,

music and noise from an audio stream, which can be used as a preprocessing step for an

online ASR. In this context online refers to stream decoding. Music and noise segments are

replaced by silence and therefore the ASR does not need to spend valuable computation

time on those segments, and does not produce wrong transcripts for those music and noise

segments. As the ASR already needs a couple of seconds create the transcript, the delay

caused by the segmentation algorithm needs to be small (< 0.5 seconds) in order to satisfy

the real-time constraint.

The segmentation uses a two step approach, consisting of classi�cation and smoothing.

Two machine learning models are investigated to classify audio frames into speech, music

and noise: A multilayer perceptron and a support vector machine. Features based on

Mel frequency cepstral coe�cients and the zero-crossing rate are used as input for the

classi�cation. Di�erent model parameters, as well as feature extraction parameters, such

as frame size and frame context are evaluated regarding accuracy and induced latency.

The second step consists of a smoothing algorithm, which smoothes the classi�ed frames

to create segments of certain audio types and removes small misclassi�cations. Di�erent

smoothing parameters are compared. This step is necessary as using an imperfect classi�er

can actually lead to a decrease in transcript quality. The transcript quality is measured by

the word error rate (WER).

To train and evaluate the machine learning models the MUSAN [SCP15] dataset is

used, which is a publicly available audio dataset containing music, speech and noise. The

end-to-end performance is evaluated by comparing the resulting transcript quality of the

ASR with results of the ASR having the segmenter as preprocessing step, replacing music

and noise with silence.

The results show that a classi�cation model consisting of a multilayer perceptron with

an 30x20x10 layer architecture is e�cient at classifying 10 millisecond audio frames

taking a temporal context of 130 milliseconds into account, with an accuracy of 87%,

while maintaining a latency of 70 milliseconds. The results additionally show a two step

smoothing algorithm to achieve good end-to-end performance results with the transcript

quality en-par with the manual removal of all music segments while maintaining a small

1

1 Introduction

latency of 200 milliseconds. In the �rst step the smoothing algorithm replaces each frame

with the mode of the adjacent frames withing a neighbourhood of 400 milliseconds. The

second step assures that a class switch of the current frame to music / noise is only

performed when the majority of audio frames in the last 3 seconds have been classi�ed as

music / noise.

2

2 Background

This chapter is supposed to give an insight to the background required for this thesis. First

of all an overview of automatic speech recognition is presented, followed by a section

about audio segmentation. The next section presents a short introduction into hidden

Markov models, which are used in the �eld of automatic speech recognition, as well as

audio segmentation. The two following sections present classi�cation models. First an

introduction in support vector machines is presented, then the concept of arti�cial neural

networks is explained. In the last section two audio features which are used in this work

are presented.

2.1 Automatic Speech Recognition

Automatic speech recognition is a sub�eld of spoken language processing focusing on the

transcription of spoken language into word sequences. It has various applications, such as

dictation, spoken language interfaces, entertainment systems, subtitle creation and aiding

disabled people.

There are multiple di�culties in speech recognition, such as the vocabulary size, speak-

ing style, speaker mode and signal quality. Applications like digit recognition for voice

based calling achieve a higher accuracy then dictation, since the vocabulary size is much

smaller. Recognizing isolated words is simpler than recognizing continuous speech. In

continuous speech words are pronounced di�erently, depending on the words before

and after. Whether the continuous speech is read or spontaneous makes a big di�erence

in the recognition. Di�culties in spontaneous speech include the high variation of the

speech rate, the use of dialect, discontinued words, repetitions of the same word, increased

articulatory sounds like breathing and smacking sounds, bad or incorrect pronunciation

and grammatically incorrect constructs. The quality of the signal, which su�ers from

background sounds like music or muttering, can have a big impact on the recognition

accuracy [Ada10; Rog05].

A typical automatic speech recognition system consists of signal processing, decoding

and adaptation. Feature vectors are extracted from the audio signal and then fed to the

decoder, which generates word sequences that have the maximum posterior probability

given the feature vectors. This probability is usually based on acoustic and language

models. An Acoustic model refers to the representation of knowledge about phonetics,

acoustics, environment variability, microphone type and di�erences among speakers like

gender and dialect. It is usually based on hidden Markov models (see section 2.3 for an

introduction into HMMs). A language model includes the possible vocabulary, possible

semantics, the likelihood of a word in a certain context and how likely di�erent word

3

2 Background

sequences are. The adaptation component modi�es the models with the aim to represent

the current environment situation, so that the performance can be improved [JM09, pp. 5].

To �nd likely word sequences in a reasonable time, the Viterbi beam search is commonly

used. The beam search uses a breadth-�rst style search, but expands only nodes that are

likely to succeed at each level, pruning the unlikely paths. For the beam search to be

e�cient, it is important that for a given observation there are word sequences which are

more likely than others. Otherwise pruning cannot be applied safely since there are no

nodes which are more promising than others, and all need to be traversed. In practice

this leads to delay spikes for the transcription output of those word sequences, which also

in�uence the transcription delay of the following words.

Noise and music as audio input lead to the absence of likely word sequences, and therefor

the beam search causes high delays. By �ltering out the noise and music segments in

audio the corresponding delay spikes are removed, and the average delay is reduced.

This section is based on [HAH01], [JM09] and [Rog05].

2.2 Audio Segmentation

Segmentation of audio into multiple audio classes has a broad spectrum of usage: For

instance, it is used in audio coding to switch between di�erent music and speech coders

based on the audio signal [Ram99]. Meta data about the content of an audio �le can be

automatically created [MB03]. Spoken language in radio broadcast can be detected to

switch to another channel, in order to only listen to music [Sau96]. Furthermore other

tasks, such as video segmentation can be aided by the segmentation of the corresponding

audio [BW98]. As this work shows the performance of automatic speech recognition can

be improved by �ltering out non-speech segments. This could also be applied to improve

automatically generated subtitles for videos.

The segmentation task can be split into two types: O�ine and online segmentation.

In the case of o�ine segmentation the segmentation is performed on complete audio

�les, and the process is not time critical. Pre- and post-processing steps can be applied

to increase the segmentation accuracy. Temporal information can be used extensively to

make segmentation decisions. When performing online segmentation there is only limited

temporal information, segmentation decisions are made in real-time based on the incoming

audio stream. As this work focuses on online segmentation the o�ine segmentation is not

further investigated.

When segmenting online the audio stream is typically split into small frames from which

feature vectors are extracted. Multiple feature vectors form a (sometimes overlapping)

window, which is then classi�ed by a classi�cation model. The most commonly used

models are based on Gaussian mixture models (GMMs) and hidden Markov models. The

stream of classi�cations is usually smoothed within a small context to remove small

misclassi�cations, forming the �nal segmentation.

4

2.3 Hidden Markov Model

P (Bt = o1 |Xt−1 = s1)P (Xt = s1 |Xt−1 = s1)
P (Xt = s2 |Xt−1 = s2)

P (Xt = s1 |Xt−1 = s2)

P (Bt = o1 |Xt−1 = s2)

P (Bt = o1 |Xt−1 = s2)

P (Bt = o2 |Xt−1 = s1)

P (Xt = s2 |Xt−1 = s1)s2
s1

o2

o1

Figure 2.1: HMM with two hidden states s1, s2 and two possible outputs o1,o2. A solid edge

indicates the probability of a state change from si to sj , whereas a dashed edge

indicates the probability of observing the output oi given that the state is sj .

2.3 Hidden Markov Model

This section gives an short overview of hidden Markov models (HMMs), based on [HAH01;

Rab89]. Only HMMs with a discrete state space are discussed. A HMM is a statistical

method to characterize hidden states based on observations.

Let S = {s1, · · · , sm} be a set of symbols, and X = {X1, · · · ,Xn} be a discrete sequence of

random variables of S where the Markov assumption holds, which states that each random

variable Xt depends only on the preceding value:

P (Xt |Xt−1, · · · ,X1) = P (Xt |Xt−1)

The sequence is then called Markov chain. By interpreting S as set of states, the probability

P (Xt = si |Xt−1 = sj) can be seen as the probability of being in state si at time t , given that

the state was sj at time t − 1. When including the probabilities πi = P (X1 = si), stating

that the initial state is si , the chain is called observable Markov model.
The hidden Markov model is an extension of the observable Markov model, where the

states are note directly observable. Instead the output of states can be observed. Let

B = B1, · · · ,Bn be a sequence of random variables in O = {o1, · · · ,od }, where O is the set

of output symbols. The probability of observing the output oj given the hidden state si at

time t is

P (Bt = oj |Xt = si).

A simple example HMM can be seen in Figure 2.1.

The parameters of an HMM can be trained with the Baum-Welch algorithm, also known

as forward-backward algorithm. In each of multiple iterations the new parameters are

modi�ed to maximise the likelihood of the observation given the old parameters. This

algorithm converges against a local maximum in the parameter space [Rab89, pp. 264]. To

get the most likely sequence of hidden states given a sequence of states (called decoding

problem), the Viterbi algorithm can be used, which is based on dynamic programming.

2.4 Support Vector Machine

In its basic form a support vector machine is a binary classi�er. Given some data points

from two classes in the space H of dimension d , the SVM aims to separate those data

5

2 Background

points with a d −1 dimensional hyperplane h. From all possible separating hyperplanes the

one that has the largest margin between the two classes is chosen. To classify non-linear

separable classes, kernel functions can be applied, which transforms the feature space into

another with possibly higher dimension, where the classes are more likely to be linearly

separable.

The content of this section is based on [BH03] and [DHS00].

2.4.1 Maximal Margin Hyperplane

Let S = ((x1,yi), · · · (xn,yn)) be the linearly separable training data, with xi ∈ H and

yi ∈ {−1, 1} being 1 if xi belongs to class A, and −1 if xi belongs to class B. Then the

hyperplane h with maximal margin between the samples of the two classes is searched. h
can be de�ned through arbitrary w ∈ H , and b ∈ R as

h = {x ∈ H |w · x − b = 0}

with the margin being the space between the two hyperplanes h−1 and h1.

h−1 = {x ∈ H |w · x − b = −1}

h1 = {x ∈ H |w · x − b = 1}

The geometrical distance between h−1 and h1 is

d =
2

‖w ‖

as seen in Figure 2.2 for H = R2. So in order to maximize the margin, ‖w ‖ or equivalently

〈w,w〉 must be minimized, while each point xi needs to be outside the margin and on

the right side of the margin to not be misclassi�ed. This is enforced by the following

constraint:

∀i ∈ {1, · · · ,n} : yi (〈w,xi〉 − b) ≥ 1

This leads to the following convex optimization problem to �nd the maximal margin

hyperplane:

minimizew,b〈w,w〉

subject to ∀i ∈ {1, · · · ,n} : yi (〈w,xi〉 − b) ≥ 1

The classi�cation decision rule is then given by f (x) = sдn(〈w,x〉 + b).

Dual representation By forming the Lagrangian dual problem [BV04] the optimization

problem can be e�ciently solved by quadratic programming algorithms. The dual problem

is:

maximizeα

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαj〈xi ,xj〉

subject to ∀i ∈ {1, · · · ,n} :
n∑
i=1

yiαi = 0 ∧ αi ≥ 0

6

2.4 Support Vector Machine

Figure 2.2: Example of a maximal separation hyperplane h de�ned by w,b in a 2 dimen-

sional space (from [Wik11]).

Let α∗ be the solution to this problem. Then the weight vector of the maximal margin

hyperplane is w∗ =
∑n

i=1yiα
∗xi , and b∗ can be calculated by solving the Karush-Kuhn-

Tucker conditions, which state that the optimal solution must satisfy

∀i ∈ {1, · · · ,n} : α∗i
(
yi

(
〈w∗i ,xi〉 + b

∗) − 1) = 0.

The corresponding decision rule is

f (x) = sдn(
n∑
i=1

yiα
∗
i 〈xi ,x〉 + b

∗)

where αi , i = 1, · · · ,n are the Lagrange multipliers. The Karush-Kuhn-Tucker conditions

also imply that for the optimal solutions α∗,w∗,b∗ only the α∗i of the points xi , which are

on the margin border are non-zero. Only those are needed to calculate the decision. The

corresponding points are therefore called support vectors. Let the set of the indices of

those xi be de�ned as SV . The decision rule can then be shortened to:

f (x) = sдn(
∑
i∈SV

yiα
∗
i 〈xi ,x〉 + b

∗)

2.4.2 So�-margin

A few noisy or error prone training points can greatly a�ect the margin and thus can make

the data non-linearly separable. To make the decision hyperplane more robust to noisy

7

2 Background

and erroneous data slack variables ξi are introduced, which allow training points to be on

the wrong side of the decision boundary. This is achieved by modifying the constraint:

∀ ∈ {1, . . . ,n} : yi (〈w,xi〉 − b) ≥ 1 − ξi ∧ ξi ≥ 0

To limit the amount and severity of margin violations the slack variables ξi are added to

the optimization problem as error terms

minimizew,b,ξ 〈w,w〉 +C
n∑
i=1

ξ 2i

subject to ∀i ∈ {1, . . . ,n} : yi (〈w,xi〉 − b) ≥ 1 − ξi ∧ ξi ≥ 0

with C being a parameter to control the tradeo� between the margin size and the classi�-

cation errors.

Dual representation Similar to the last section, the dual optimization problem can be

formed as:

maximizeα

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαj (〈xi ,xj〉 +
1

C
δij)

subject to

∑n
i=1yiαi = 0

αi ≥ 0

for i = 1, · · · ,n

with δij being the Kronecker delta, which is 1 if i = j and 0 otherwise.

2.4.3 Kernel Trick

To separate non-linear separable data, the data can �rst be transformed into a more

powerful feature space F and then be linearly separated. For the transformation a mapping

ϕ : H → F is needed. The dual decision rule can be calculated using only the inner

product of test and training points. Similarly solving the dual optimization problem can

be evaluated using only the inner product between training points.

f (x) = sдn(
∑
i∈SV

yiα
∗
i 〈ϕ (xi),ϕ (x)〉 + b

∗)

This makes it possible to implicitly de�ne the mapping ϕ and the feature space F by

de�ning the inner product K : H × H → F , K (a,b) = 〈ϕ (a),ϕ (b)〉 as a function of the

original feature space. Such a function is called kernel function. Thus the decision rule can

be written as:

f (x) = sдn(
∑
i∈SV

yiα
∗
i K (xi ,x) + b

∗)

8

2.5 Arti�cial Neural Network

w0

wn

w1 ∑
sдn

xn

...

x0

x1

Figure 2.3: Graphical representation of a perceptron with weightsw0, · · · ,wn, input values

x0, · · · ,xn and the sign function as activation function.

The domain of the kernel function and the function K itself can be arbitrary, as long as it

is possible to prove that the implied mapping ϕ exists and is well de�ned. Kernels used

commonly in SVM based classi�cation include

K (a,b) = 〈a,b〉 (linear)

K (a,b) = (〈a,b〉 + c)d (polynomial)

K (a,b) = e−
‖a−b ‖2

2σ 2 (radial basis function)

K (a,b) = tanh(γ 〈a,b〉 + r) (sigmoid)

where all unde�ned variables are parameters for the corresponding kernel.

2.5 Artificial Neural Network

An arti�cial neural network (ANN) is a general, practical and robust approach at approx-

imating a target function. ANNs are inspired by biological learning systems consisting

of many interconnected neurons, which is a highly parallel process. This parallelism

allows the use of highly parallel computer systems to train and evaluate ANNs. The

backpropagation learning algorithm makes the model robust against errors and noise in

the training data.

2.5.1 Perceptron

The most primitive type of ANNs is a perceptron. It takes a vector X̃ = (x1,x2, · · · ,xn) ∈ R
n

as input and has some internal weightsW = (w0,w1, · · · ,wn) ∈ R
n+1

. Its output function

o(X̃) is a linear function, that returns 1 for values above a certain threshold (de�ned by

w0), and −1 otherwise.

o(X̃) =



1 w0 +w1x1 +w2x2 + · · · +wnxn > 0

−1 otherwise

9

2 Background

De�ning x0 = 1 and X = (x0,x1, · · · ,xn), the output function can be simpli�ed to:

o(X) = sдn(W · X) = sдn(
n∑
i=0

wixi)

A graphical representation of a perceptron can be seen in Figure 2.3. Each weight wi

represents the contribution of the input xi to the output o. How well the perceptron

models the target function t depends on these weights. The space containing all possible

output functions is called hypothesis space. It is important that the hypothesis space

contains a function that models the target function su�ciently close. The hypothesis space

of a single perceptron contains only linear functions and is therefore quite limited. A

classical example for the restriction of the perceptron is the XOR function x1 ⊕ x2, which

can not be separated by a linear function.

A perceptron is as powerful as a linear support vector machine. The di�erence between

perceptrons and linear SVMs is mainly the way they are trained. As seen in section 2.4

SVMs are trained by solving a quadratic minimization problem under some constraints,

while perceptrons are trained by gradient descent [CB04].

Activation Function To be able to use backpropagation to train multiple perceptrons as

seen later, the output function o of a perceptron needs to be di�erentiable. Therefore o
needs to be continuous. When rede�ning the output function as o(X) = σ (

∑n
i=0wixi),

di�erent activation functions σ can be used. Possible activation functions are:

σ (y) =




−1 y ≤ 1

y −1 < y < 1

1 y ≥ 1

(linear)

σ (y) =
1

1 + e−y
(sigmoid)

σ (y) = tanh(y) (hyperbolic tangent)

Multiple layers of neurons with a linear activation function can only produce a linear

output function. To produce a good approximation of a target function often a highly

nonlinear function is needed. With a nonlinear activation function a multilayer perceptron

can produce a nonlinear output function. This can be compared to the kernel functions of

support vector machines, which allow nonlinear decision functions. Usually the sigmoid

function σ is used, since its derivative can be computed easily as
dσ (y)
dy = σ (y) · (1 − σ (y))

and the function is nonlinear.

Training by use of Gradient Descent The weights of a single perceptron can be trained by

using gradient descent. Gradient descent is an optimization algorithm used in order to �nd

a local minimum of a function by taking the gradient at the current position and shifting

the weights in the opposite direction, until a minimum is found. In general the function is

not convex, and only a local minimum is found.

10

2.5 Arti�cial Neural Network

To apply gradient descent a function (usually called loss function) representing the

quality of the prediction for a certain set of weights W = (w0, . . . ,wn) is needed. One

possible loss function is the squared error over all predictions for the training data D. Let

td be the label of the input vector d = (x0, . . . ,xn) ∈ D, and o(d) = σ (
∑n

i=0wixi) be the

predicted label. The squared error loss function is then de�ned as:

loss (W) =
1

2

∑
d∈D

(td − o(d))
2

The gradient of loss consists of the partial derivatives with respect to wi :

∇loss (W) = (
∂loss

∂w0

,
∂loss

∂w1

, · · · ,
∂loss

∂wn
)T

Each partial derivative can be calculated by:

∂loss

∂wi
=
∂

∂wi

1

2

∑
d∈D

(td − o(d))
2

=
∑
d∈D

(td − o(d))
∂

∂wi
(td − o(d))

=
∑
d∈D

(o(d) − td) ·
∂o(d)

∂wi

The weights can now be updated using the following rule:

4wi = −α
∑
d∈D

(o(d) − td) · o
′
i (d)

ŵi = wi + 4wi

where o′i (d) is
∂o(d)
∂wi

and α is called learning rate, since the parameter a�ects how big the

gradient descend steps are. If α is too small, the algorithm converges very slowly towards

a (possibly only local) minimum. If it’s to large, minima can be overstepped. To overcome

this problem, a dynamic α can be used.

Stochastic Gradient Descent For a large dataset of size n gradient descent takes a long

time, since for each step and weight a sum with n summands has to be calculated. To speed

this up, stochastic gradient descent (SGD) can be used. This method considers only one

data point to calculate the stochastic gradient, the idea being to approximate the gradient

descent.

4wi = −α (o(d) − td) · o
′(d)

The smaller the parameter α is, the closer the SGD method approximates the true gradient

descent. As a tradeo� batch stochastic gradient descent can be used, which updates the

weights in small batches B of data.

4wi = −α
∑
d∈B

(o(d) − td) · o
′(d)

11

2 Background

... h0,nHidden Layer 0

o0

h0,0 h0,1

d0 d1

...

dk...Input Layer

o1 omOutput Layer

Figure 2.4: A MLP with one hidden layer. The input layer consists of k nodes, the hidden

layer of n nodes, and the output layer ofm nodes.

2.5.2 Multilayer Perceptron

A multilayer perceptron (MLP) contains multiple layers, including an input layer x , an

output layer y and at least one hidden layer. A hidden layer hi consists of a number of

neurons, where the input of a neuron is the output of all nodes in layer hi−1. In contrast

to a single perceptron, a MLP with the sigmoid activation function can approximate any

continuous function f : R → R with just one su�ciently large hidden layer [HSW89].

However the training algorithm is not guaranteed to �nd the right parameters to represent

the function [IC16]. An increasing number of hidden layers can increase the generalisation

with respect to the number of parameters as shown in [Goo+13].

Figure 2.4 shows the graphical representation of a MLP with one hidden layer. The

evaluation and training can be realised with forward and backward propagation. The

following notation is used to explain the forward and backward propagation:

ini = input of node i

oi = output function of node i

outi = oi (ini) = output of node i

up (i) = the set of nodes that are in the layer above i (closer to the input)

down(i) = the set of nodes that are in the layer below i (closer to the output)

wij = the internal weight of node j, which is applied to the output of node i

Forward Propagation To calculate the output of the MLP forward propagation is used.

For simplicity this is shown with one hidden layer. Let L be the set of input nodes, dl the

input value of node l ∈ L, H the set of hidden nodes, and N the set of output nodes. The

12

2.5 Arti�cial Neural Network

output of each node n ∈ N can be calculated by forward propagation as:

on (X) = σ (
∑
j∈H

wjn · σ (
∑
i∈L

wijdi))

Backward Propagation The backward propagation algorithm trains the weights of the

MLP, using an approach similar to stochastic gradient descent. For every data point a

loss function is calculated and the weights are updated in the opposite direction of the

derivative of the loss function. This process is repeated until a certain condition is met.

The MLP can have multiple output units y, so the loss function needs to be modi�ed:

lossd (W) =
1

2

∑
k∈y

(tdk − ok (d))
2

∂loss

∂wij
=
∂loss

∂inj

∂inj

∂wij
= δj

∂

∂wij

∑
k∈down(j)

wkj · outk

= δj · outi

Where the calculation of δj =
∂loss
∂inj

depends on the type of layer the node j belongs to. For

j being a node in a hidden unit δj can be calculated as:

δj =
∂loss

∂inj
=

∑
k∈up (j)

∂loss

∂ink

∂ink
∂inj

=
∑

k∈up (j)

δk ·
∂

∂inj

∑
l∈down(k)

wlk · ol (inl)

=
∑

k∈up (j)

δk ·wjk · o
′
j (inj)

And for j being a output unit δj can be calculated as:

δj =
∂loss

∂inj
=
∂

∂inj

1

2

∑
k∈N

(tk − ok (ink))
2 =

∂

∂inj

1

2

(tj − oj (inj))
2

= (oj (inj) − tj) · o
′
j (inj)

Similar to the gradient descent the weights can now be updated by the following rule,

where α is again the learning rate:

4wij = −α · δj · outi

ŵij = wij + 4wij

Since the search space contains multiple local minima in general, the algorithm most

likely won’t �nd the global minimum, but will converge to a local minimum. Despite this,

backpropagation is in practice a good algorithm to approximate functions. [Mit97]

13

2 Background

2.6 Sound Features

Choosing features that represent the sound signal while being of low dimensionality is

important in the task of audio classi�cation. Multiple features are used in audio classi�-

cation. The two most common features are Mel frequency cepstral coe�cients and the

zero-crossing rate, which are therefore presented.

2.6.1 Mel Frequency Cepstral Coe�icients

MFCCs are short-term spectral-based features. They are commonly used in speech recog-

nition, since they can represent the speech amplitude spectrum compactly. There are

multiple similar de�nitions of MFCCs, so this section focuses on the de�nition of [HAH01,

pp. 313] and [Log+00].

Splitting into frames The �rst step to calculate the MFCCs is dividing the signal into

short frames. This is usually done by applying the Hamming window function to �xed

intervals of 20 ms. An aliased cepstral feature vector (x0, · · · ,xN−1)
T

is created for each

frame.

Discrete Fourier Transformation The discrete Fourier transformation is taken from each

feature vector, yielding N complex spectral components X0, · · · ,XN−1 with

Xk =

N−1∑
n=0

xn · e
−2π ikn

N ,k = 0, . . . ,N − 1

Mel-scaling and energy bin creation The spectral components are reduced to M spectral

bins. The bins are distributed according to the Mel scale, since lower frequencies seem to

be more important than higher frequencies. The Mel scale is a perceptual scale, mapping

an actual frequency to pitch as perceived by human listeners. The conversion of x Hz into

B (x) mel can be calculated by:

B (x) = 1125 · ln(1 +
x

700

)

B−1(x) = 700 · (e
x

1125 − 1)

Let l f and lh be the lowest and highest possible frequency in Hz, and F the sampling

frequency in Hz. The boundary points f0, · · · , fM of the bins are calculated as:

fm =
N

F
· B−1

(
B (l f) +m

B (h f) − B (l f)

M + 1

)
A triangle �lter bank with M �lters H1, · · · ,HM is used to calculate the average power

spectrum around each boundary point fm. The �lters are de�ned as:

14

2.6 Sound Features

Hm[k] =




k−fm−1
fm−fm−1

fm−1 ≤ k ≤ fm
fm+1−k
fm+1−fm

fm < k ≤ fm+1

0 otherwise

, for 0 ≤ m < M

Now an energy bin can be created from the output of each �lter. The logarithm is taken

and the log-energy bins can be computed as:

S[m] = ln *
,

N−1∑
k=0

|Xk |
2Hm[k]+

-
, for 0 ≤ m < M

Discrete Cosine Transformation To decorrelate the overlapping bins a discrete cosine

transformation is applied to the log-energy bins, forming M Mel frequency cepstral coe�-

cients.

mf cc[j] =
M−1∑
m=0

S[m] · cos *
,
π j

m + 1

2

M
+
-

2.6.2 Zero-crossing Rate

The zero-crossing rate measures the number of sign changes in the signal per window. It

is de�ned as

zcr =
1

T − 1

T−1∑
t=1

f {stst−1 < 0},

where s is the sound signal with the length of the window beingT , and f being de�ned as

f {X } =



1 X is true

0 otherwise

Analysis of the zero-crossing rate o�ers a simple and low dimensional feature to describe

the spectrum. However because of its simplicity it is not su�cient by itself as an accurate

description of the spectrum. [Ked86].

15

3 Prior Work

In this chapter an overview over previous work focusing on segmenting audio is given.

The literature focuses mostly on speech and music discrimination, with greatly varying

delay. Di�erent classi�cation models as well as features are used to achieve the task.

Models based on Gaussian mixture models are most commonly used. Some segmentation

approaches apply a form of smoothing to increase the accuracy. Mostly the classi�cation

accuracy of audio frames is investigated, the actual performance increase of ASR systems

is rarely measured. We are only aware of one previous work [Hec+13] that measures

the word error rate. In contrast this work focuses on the improvement of online ASR

systems. Additionally previous work focuses on delays of more than a second to obtain

high accuracies, which is barely real-time applicable, while this work focuses on obtaining

a small delay of less than 0.3 seconds, in order to provide a good real-time capability.

Unfortunately there is no general audio corpus on which the di�erent models are

compared. Recently the MUSAN dataset, containing speech, music and noise, has been

published, which could serve as a general corpus for audio classi�cation in future work

[SCP15]. The datasets of the previous work vary greatly, making it di�cult to compare

results.

3.1 Classification Models

This section presents prior work that focuses on the frame wise discrimination of audio

classes.

Harb and Chen [HC03] propose an algorithm that discriminates speech and music based

on limited training data (80 seconds), in order to be able to retrain the classi�er fast, so

di�erent audio conditions can be accommodated. Features are based on the Mel frequency

spectral coe�cients and extracted in 30 ms frames with an 20 ms overlap. The �rst

order statistics are taken from the mean and variance of the frames withing a 0.2 second

window and used as the feature vector. As classi�er a Multi Layer Perceptron is used,

which outperformed the also tested k-Nearest Neighbour algorithm by 7%. Tests showed

the context-independent classi�cation accuracy to be 93%, while the context-dependent

classi�cation accuracy was 96%.

The work [PT14] uses a deep architecture consisting of Restricted Boltzmann Machines

in order to di�erentiate music and speech. The spectrogram of the signal and 13 MFCCs

are compared as features. For the MFCC features the audio is split into 50 ms frames and

the delta and double delta coe�cients are added to the feature vector xi , as well as the

frames xi−1 and xi+1. A con�dence threshold where frames are left unclassi�ed if all class

probabilities are below a certain threshold is applied. A classi�cation error between 8%

(FFT) and 12% (MFCC) has been achieved without a con�dence threshold. This could be

17

3 Prior Work

reduced to between 4% (FFT) and 5% (MFCC) with a con�dence threshold of 0.9 having

between 10% (FFT) and 20%(MFCC) of unclassi�ed frames.

In [MB03] four di�erent features are compared for the task of classifying audio �les. The

possible main classes are classical music, popular music, speech, noise and crowd noise.

The popular music class is further divided into 7 subclasses. The features are based on

low-level signal properties, MFCCs, psychoacoustic features like roughness and sharpness,

and an auditory model representation of temporal envelope �uctuations. Features are

retrieved by taking 743 ms windows, each containing half-overlapping frames of size 23

ms. Quadratic discriminate analysis and Gaussian mixture models are used to classify the

feature windows. The classi�er with low-level signal based features reached an accuracy

of 86%, with the other features it reached an accuracy of about 92%.

Saunders proposes an algorithm to discriminate speech from music in broadcast FM

radio in [Sau96]. A multivariate-Gaussian classi�er is used to classify 2.4 second windows

consisting of features taken from 16 ms frames. The features are primarily based on energy

based features and the zero-crossing rate (ZCR). Both feature types use the number of

values below or above a statistic based threshold as features. Zero-crossing based features

are created by counting the di�erence between the number of frames with a high ZCR

and a low ZCR. An accuracy of 98% could be achieved by this algorithm.

3.2 Segmentation Models

In this section prior work is presented that investigates the segmentation of audio, com-

monly by relabeling audio frames based on the surrounding frames.

In the publication [PT05] an algorithm is proposed to split audio into silence, speech

and music segments. First the audio is segmented, then the segments are classi�ed. The

segmentation is based on the Root Mean Square (RMS) of 20 ms signal frames, with a

minimum segment length of 1 second. It causes a 3 second delay and is therefore near

real-time applicable. A 97% detection probability of a segment change could be achieved,

where the accuracy of the change instant was mostly within an interval of 0.2 seconds. The

segments are then classi�ed with multiple threshold tests based on RMS and zero-crossing.

A classi�cation rate of 95% has been reported for this method.

In [WGY03] a fast near real-time speech/music segmentation algorithm is presented. A

novel feature called modi�ed low energy ratio is used with a frame size of 20 ms and a

window length of 1 second. The Bayes maximum a posteriori probability decision rule

is used to classify the feature windows, achieving a classi�cation accuracy of about 91%.

A context-based post-decision approach to smooth the classi�cation is presented, which

starts a new segment only if 4 consecutive windows are not classi�ed as the class of the

current segment. Using this approach, the accuracy could be increased to almost 98%, with

a dynamic delay between 1 and 4 seconds.

In the work [LZL03] audio is discriminated into �ve di�erent audio classes: Silence,

music, background sound, pure speech and non-pure speech. Multiple features based on

MFCCs and perceptual features are used. The frame size is 25 ms with a window size of 1

second. Support Vector Machines (SVMs) are used to classify the feature windows. The

di�erent classes are arranged as leaf nodes in a binary tree with a SVM at each inner node

18

3.2 Segmentation Models

to classify into two groups of subclasses. Smoothing is performed by three simple rules

considering the window before and after the current window. Excluding the silence, the

smoothed classi�cations reached an accuracy of 92%. Other models, namely K-Nearest

Neighbour and Gaussian Mixture Model, are compared to the SVM classi�cation, which

performed worse. Smaller window sizes were tested, and a window size of 0.3 seconds

yielded an accuracy of about 85%. The algorithm is real-time applicable, as the inherent

delay is only two times the window size.

In [Hec+13] an algorithm to segment recorded telephone conversations into speech and

non-speech is proposed. SVM and GMM based classi�ers are compared. The features are

based on MFCCs. The features for the SVM based method are taken from 16 ms frames with

a frame shift of 10 ms. 15 adjacent frames are stacked and linear discriminant analysis is

applied to form a feature vector. To smooth the classi�cation, a step of erosion followed by

a step of dilation is applied. Additionally speech segments with a distance of less than 0.5

seconds are merged. Recordings of multiple not so well investigated languages are used for

training and testing. To evaluate the algorithm the WER of an ASR with this segmentation

was compared to the performance of an ASR with manual segmentation. The relative

WER was between a 2% increase compared to the manual segmentation (Tagalog) and a

decrease by 1.2% (Pashto). The smoothing process of this work is inspired by [Hec+13].

In [Mal+00] a real-time speech music discrimination algorithm is proposed, with an

inherent delay of 20 ms. A quadratic Gaussian classi�er is used to classify audio frames.

The features are based on Line Spectral Frequencies and higher order crossings. Features

are retrieved from frames of size 20 ms. To smooth the classi�cations the immediate two

preceding frames in�uence the current frame classi�cation. The smoothing increased the

performance by 5% to 10%. The reported accuracy is 78%. Using 50 frames as a 1 second

window to be classi�ed, an accuracy of 96% could be reached.

19

4 Method

This chapter describes the conception and realisation of the proposed method. In Section

4.1 the segmentation process is outlined. The following sections 4.2 to 4.4 describe the

processing steps in detail, and state parameters that are getting evaluated in the next

chapter.

4.1 System overview

The segmenter acts as a preprocessing step for the automatic speech recognition system.

It consists of three steps as seen in Figure 4.1. The initial step is the feature extraction,

in which the audio stream is split into small segments from which feature vectors are

extracted. In the second step, the classi�cation, the audio class to which a feature vector

belongs to is predicted. To avoid small misclassi�ed segments, the predictions are smoothed

in the smoothing step. The audio stream is then segmented according to the smoothed

predictions, and non speech segments are replaced with silence. The resulting audio

stream is then used as input for the ASR which outputs the transcript.

4.2 Feature Extraction

Expressive spectral and temporal features are required to achieve high accuracy in audio

discrimination. Mel frequency cepstral coe�cients are used extensively in speech recogni-

tion in general [Log+00] , and have proven to be successful at discriminating speech and

music as seen in previous work [MB03]. This work focuses on MFCC and Zero Crossing

based features.

In online discrimination the length of the time window used for feature extraction needs

to be small, in order to keep the inherent delay small. Humans need windows of about

200ms to easily achieve classi�cation [HC03]. As the evaluation shows, a window length

of 130 ms is su�cient to discriminate with an accuracy of 87.5%.

Audio Stream Feature Extraction

Segmenter

Classification Smoothing Speech Recognition Transcript

Figure 4.1: This �gure shows the processing steps from audio to transcript. The output of

the classi�cation is evaluated, as well as the output of the speech recognition.

21

4 Method

si−c

· · ·pi

si−1· · ·

fi

pi+1

si+c

· · · pi−1

si

pi+c

si+1

pi−c

· · ·

Figure 4.2: The extraction of feature vectors is shown in this �gure. The i-th audio segment

si of length len(s) (ms) is used to compute the preliminary feature vector pi .
Statistic functions are applied to the adjacent vectors pi−c , · · · ,pi+c , where c is

the feature context, to create the feature vector fi .

The feature extraction process can be seen in Figure 4.2. Features are extracted by

splitting the audio stream in frames si with a length of len(s) = 10 ms, and computing

MFCC and Zero Crossing preliminary features vectors pi from these frames. The number

of MFCCs is denoted bym.

pi = (mf cc0,mf cc1, · · · ,mf ccm−1, zc)
T

Adjacent preliminary feature vectors are combined into the feature vector bi , where c = 6

is the feature context.

bi = (pi−c , · · · ,pi+c)

By adding adjacent vectors, the window size is increased, and temporal change is taken into

account. The resulting feature vectors bi ,bi+1, · · · have a dimension of bd = len(p) · (2c+1).
To reduce the dimension, and thereby increasing classi�cation speed, statistic functions

are taken from the vector bi to create the vector fi .

fi =(mean(bi,0),mean(bi,1, · · · ,mean(bi,len(p)),

(variance (bi,0),variance (bi,1, · · · ,variance (bi,len(p)))
T

Having n di�erent statistic functions, the dimension is reduced to f d = len(p) · n. To

prevent early saturation of the neural net, each feature vector fi is scaled to [−1, 1]. The

delay caused by the feature extraction is (1 + c) · len(s). Computationally caused delay is

neglected for the evaluation, since it depends on implementation and hardware.

Feature Parameter The following parameters are optimized in section 5.4.3, with the goal

to achieve a good precision while maintaining a small delay: The length of audio frames

len(s), the number of MFCC buckets m, the feature context c , the combination of statistic

functions in {mean,variance, stddev} and the combination of features in {mf cc, zerox }.

22

4.3 Classi�cation

4.3 Classification

The feature vectors are classi�ed in either speech, music or noise. An accurate and fast

classi�er is required to accommodate for the real-time delay constraint. For this reason a

multilayer perceptron is proposed as classi�cation model. MLPs have been proven to be

successful at discriminating speech and music as seen in [HC03]. As section 5.4.1 shows

that an architecture with small hidden layers is su�cient, the computation overhead is

quite small with about 1 ms on a single core of an AMD Opteron 6136 Processor with a

clock speed of 2.4 GHz. A Support Vector Machine is used as comparison model. SVMs

have been shown in previous work to be successful at discriminating speech and music

[LZL03].

4.3.1 Multilayer Perceptron

The architecture of the Multilayer Perceptron can be seen in Figure 4.3. It consists of the

input layer, three hidden {h0,h1,h2} layers, and the output layer. The input layer contains

feature dimension f d nodes, followed by the hidden layers consisting of size (h0) = 30,

size (h1) = 20 and size (h2) = 10 neurons. The output layer o consists of 3 neurons, one for

each class. Each layer uses the sigmoid function as activation function. To retrieve class

probabilities, the output of layer o is fed to the so f tmax function.

so f tmax (xi) =
exi∑

j∈{0,1,2} e
x j

Where xi is the weighted and biased output of the i-th neuron in layer o. As loss function

the partial squared error is used.

Classification Parameter To increase the classi�cation of the multilayer perceptron the

following parameters are optimized in section 5.4.1. The learning rate, the number of

nodes in the hidden layers, the batch size and the number of training steps. Since a small

number of hidden nodes is shown to be su�cient, the number of hidden layers is not

investigated. Additionally the small MLP architecture prevents over�tting from being a

problem.

4.3.2 Support Vector Machine

A Support Vector Machine is used as comparison model. However the focus of this work

is on the neural net based classi�cation and therefore the SVM based model is only used

to evaluate the classi�cation, and not for the segmentation evaluation.

Since the decision surface of a support vector machine classi�es into two class spaces,

an additional algorithm for multi-class classi�cation is needed. In this work the one vs all

approach, as seen in [HL02] is used. In this approach one SVM classi�er is used per class to

�t the class against all other classes. For a feature vector the class where the corresponding

classi�er has the largest value of the decision function is chosen.

23

4 Method

Hidden Layer 0

Music

o2

h1,19

...

h0,29

...h2,0 h2,1

...

Output Layer

d0 d1

Hidden Layer 2

Class Probabilities

...

o1o0

h0,0 h0,1

h1,1h1,0

Input Layer

Softmax Function

Speech

d62

Noise

Hidden Layer 1

h2,9

Figure 4.3: The architecture of the multilayer perceptron in use to classify the features.

The input consists of a 63-dimensional feature vector. Three hidden layers

h0,h1,h2 are used, with layer h0 containing 30, h1 20 and h2 10 nodes. The

output of the output layer is fed to the softmax function, in order to retrieve

class probabilities for each audio class.

24

4.4 Smoothing

Classification Parameter To �nd good model parameters, a random search is conducted.

The following parameters are getting optimized in section 5.4.2: The penalty factor C of

the error term, the gamma parameter of the kernel function, and the kernel being selected

from {poly, rb f , siдmoid }.

4.4 Smoothing

Removing small segments within a speech section can greatly decrease the speech recog-

nition performance. For this reason small segments classi�ed as non-speech in a bigger

speech segment should generally be relabeled to speech, as it is most likely that they have

been misclassi�ed. This is based on the assumption that speech and music segments are

generally long. The smoothing process aims to remove those small misclassi�cations, and

generate long continuous segments.

The process is split into four di�erent steps. First a mode based �lter, with a small

context, is used to remove small misclassi�cations. The second and third step consist of

erosion and dilation, as commonly used in image processing. This has been proposed

to use in audio segmentation by [Hec+13]. Through erosion small speech segments are

removed, dilation increases the size of the speech segments. The �nal step consists of

changing current class only if the previous frame classi�cations support this change.

Mode Smoothing In this step the label li of the classi�ed audio frame ai is recalculated

by taking the mode of the labels {li−c , li−c+1, · · · , li+c } where c is the mode context.

Erosion The erosion step removes small segments of speech or noise occurring in music,

by relabeling the label li to music if a label in {li−c , li−c+1, · · · , li+c } is music. C being the

erosion context. Noise is not used for erosion, since small noise segments are likely to

occur, and there is no bene�t in widening them.

Dilation After the erosion step is performed, the speech segments are dilated. This is

done by relabeling li to speech if at least one label in {li−c , li−c+1, · · · , li+c } is speech. In

this case c is the dilation context.

Minimum Change Support To prevent fast reoccurring class changes, the mean of the

lastminx frames {ai−minx ,ai−minx+1, · · · ,ai } needs to be class x , to change the label li to x .

Each class x has its ownminx parameter, since the current classi�cation needs to change

faster for some classes than others. It is more important to get all speech frames, than to

falsely classify music or noise as speech. Thereforeminspeech should be small.

Smoothing Parameter To optimize the e�ectiveness of smoothing, multiple parameters

can be tuned. The di�erent contexts of mode smoothing, erosion and dilation can be tuned.

By setting a context to zero the whole step is e�ectively disabled. This can be used to

compare which steps are necessary and give the biggest performance boost. Generally

small contexts are preferred, since they each contribute to the delay by c · len(f rame)

25

4 Method

ms. minspeech ,minmusic andminnoise are optimizable parameters, where zero can be used as

well to disable the step, however they do not contribute to the delay and can therefore be

bigger. Section 5.4.4 focuses on the optimization of the smoothing parameters.

26

5 Experiments

This chapter describes the proposed experiments, and presents the evaluation of those ex-

periments. Tools used to create the experimental environment are presented in section 5.2.

The datasets on which the tests are performed are introduced in section 5.3. In section 5.4

the experiments and their results are presented.

5.1 Setup

This chapter describes the setup of the di�erent kinds of experiments. For the ease of

testing and implementation, the segmentation is done as an o�ine preprocessing step,

while carefully adhering to the real-time constraints laid out in chapter 4. WAVE audio

�les are used as audio input. However, this does not a�ect the online capability of the

segmentation, as seen in chapter 4.

Classification Setup The classi�cation model is trained and tested on the MUSAN (sec-

tion 5.3.1) corpus, the PBC dataset (section 5.3.2) is used as an out of domain test. All audio

data has a sample rate of 16 kHz, uses one channel, and has a precision of 16 bit.

The MUSAN corpus is split into training, validation and test sets for training and

evaluation. The split is based on audio �les, and assigns 80% of each class in the corpus to

the training set, and 10% each for the validation and testing set. The distribution of speech,

music and noise is chosen to be even. Another possibility is to take a distribution more

realistic to the real occurrence to where it is used. For example lectures would generally

have a higher amount of speech. However the method aims to be applicable in multiple

environments without retraining, so an even distribution approach is used. Additionally

the segmentation part already favours speech and - to a certain extent - makes up for

the even classi�cation. This way the classi�cation results are more comparable to other

work by themselves. To get an even distribution, not all data can be used for training

and evaluation. The amount of chosen audio for the training dataset is 250 minutes, for

the validation and test dataset 25 minutes each. As evaluation criteria the classi�cation

accuracy and the inherent delay caused by the feature extraction is used. The accuracy is

de�ned as:

accuracy =
number of correctly classi�ed frames

number of frames

The feature extraction induced inherent delay d f eature is based on the frame size fs and

context fc , additional computational delay is not considered since it is negligible. The

inherent delay can be calculated as:

d f eature = fs · (fc + 1)

27

5 Experiments

Smoothing Setup Evaluating the quality of the smoothing parameters is not straight

forward. One approach is to compare the resulting segmentation of an audio �le to a

manually created segmentation. However segment borders are perceived di�erently by

di�erent humans [Eri09]. The approach used in this work is to use the transcriptions

created by the ASR as a quality measure. This has the advantage that the parameters

chosen through this quality measure create segmentations that are favorable for ASR

systems, even if they might be biased towards increasing speech segments.

In more detail: First the frames of the audio �le are classi�ed with the standard model

from the classi�cation setup. Then the classi�cation is smoothed according to the smooth-

ing parameters, and the resulting segmentation is used to modify the audio �le by replacing

noise and music segments with silence. The resulting audio �le is fed to an automatic

speech recognition system, and the transcript hypothesis is compared to the reference

transcript by calculating the word error rate (WER). The WER is a commonly used metric

to compare the performance of ASR systems. It is de�ned as:

WER =
subr→h + delr→h + insr→h

wr

where subr→h is the number of substitutions, delr→h the number of deletions, and insr→h

the number of insertions, to get from the reference transcript r to the hypothesis h, andwr

is the number of words in the reference r . Di�erent smoothing parameter are compared

by comparing the resulting word error rates of the transcribed segmented audio �les.

Additionally a baseline is used to show how well the smoothing performs compared to no

segmentation at all.

Two audio �les have been chosen on which the smoothing is evaluated: The audio �le

from the STC.TA test set, as well as the audio �le from the STC.G test set. Both test sets are

discussed in more detail in section 5.3.3. The STC.TA �le consists of a TED talk including

arti�cially added music, and is good to see how well the smoothing performance is when

the music and speech well separated. The STC.G �le consists of a guitar lecture and is a

lot more challenging for the segmentation, since the transition between music and speech

is not so clear, and sometimes overlapping.

Additionally to the WER, the delay caused by the smoothing is taken into account as a

quality factor, since it is important for an online ASR system to have a small delay.

5.2 Tools

This section describes the main tools that have been used to create the experimental

environment.

5.2.1 Python

Python is a high level programming language which is very popular for scienti�c comput-

ing. A wide range of scienti�c libraries are available in python, making it an ideal choice

as the main language to implement the experiments of this work (in version 2.7.6).

28

5.3 Datasets

5.2.2 scikit-learn

scikit-learn [Ped+11] is an open source machine learning library for the python program-

ming language. It contains a wide range of state-of-the-art supervised and unsupervised

machine learning algorithms, aiming to create an e�cient yet easy to use library. The

support vector machine implemented in this work is based on scikit-learn in version 0.17.0.

5.2.3 TensorFlow

TensorFlow [Mar+15] is an open source software library which was originally developed

by Google for machine learning and deep neural network research. It has since grown

to a more general numerical computation library based on data �ow graphs. It features

portability for computation on CPUs and GPUs for a wide variety of platforms. Additionally

it provides an C++ interface as well as an Python interface. The neural networks in this

work are implemented with TensorFlow (version 0.6.0).

5.2.4 openSMILE

openSMILE [Eyb+13] is an comprehensive audio feature extraction tool that can be used in

real-time. It can use �les in the Waveform Audio File Format as in- and output in addition

to live sound recording and playback. Multiple general audio signal processing functions

like windowing functions, fast Fourier transformation (FFT) and cepstrum are available.

A vast number of features is provided, with the additional possibility to create feature

summaries (statistical functions). Components can be easily connected via a con�guration

�le. In this work openSMILE (in version 2.1.0) is used to retrieve audio features and create

frame based statistics.

5.2.5 Janus Recognition Toolkit

The Janus Recognition Toolkit (JRTk) is an automatic speech recognition toolkit developed

at the Interactive Systems Lab at Karlsruhe Institute of Technology and Carnegie Mellon

University. The JRTK is implemented in C, and provides an object oriented Tcl/Tk script

based environment. It contains various techniques for acoustic pre-processing, acoustic

modeling and decoding. The ASR system used for the evaluation is based on the JRTk

[Sol+01; Lav+97].

5.3 Datasets

The main dataset used for classi�cation training and testing is MUSAN, as it is publicly

available, and therefore is suitable for comparison among di�erent work. Furthermore it

provides a good range of audio sources, increasing the possibility of generalisation. As the

PBC corpus contains only data from one speci�c source it is well suited as a out of domain

test dataset. The available transcript makes the PBC corpus usable to test the bene�t of

segmentation. To evaluate the ASR performance the segmentation test corpus is used,

which consists of multiple recordings, including transcripts.

29

5 Experiments

5.3.1 MUSAN

MUSAN [SCP15] is a corpus containing speech, music and noise from various audio

sources. It has been published on October 2015, and created with the aim to provide a

standard corpus without copyright issues. The audio �les are in the US Public Domain or

under a Creative Commons license.

Speech The corpus contains about 60 hours of speech. From those 20 hours and 21

minutes are read speech from LibriVox, where each audio �le is an entire chapter of a

book. About half of the recordings are in English, the other half being from eleven other

languages. The remaining 40 hours contain US government hearings, committees and

debates, obtained from the Internet Archive and the Missouri Channel senate archives.

Music 42 hours and 31 minutes of the corpus consists of music from various sources. The

music contains various genres from the following sources: Jamendo, Free Music Archive,

Incompetech and HD Classical Music.

Noise Around 6 hours of the corpus is noise. The source of the noise is the Sound Bible

and Free Sound. The noise contains technical noises, such as dial tones and fax machine

noises, as well as ambient sounds like car idling, thunder, wind, footsteps, paper rustling,

rain, animal noises, crowd noises.

5.3.2 PBC

The PBC Corpus originates from recordings at the Peninsula Bible Church in Silicon Valley.

The Interactive Systems Lab at KIT has a pilot project at the church, with the goal of aiding

deaf and deaf-mute people at understanding the church service. Multiple communication

channels are used as aid, namely lip reading, weak acoustic signals for the near deaf,

presentation charts (PowerPoint) and speech recognition with a small delay.

The corpus consists of multiple church service recordings, of which 158 minutes are

speech, and 370 minutes are music. Noise is not explicitly classi�ed. For the speech parts

transcripts were crowd sourced, although the quality of the transcriptions is therefor not

�awless it can still be used to compare di�erent segmentation settings and setups.

5.3.3 STC

The segmentation test corpus consists of �ve test sets, each containing an audio �le and a

reference transcript.

STC.G -Guitar lecture This test consists of 8 minutes of a guitar lecture. The audio consists

of frequent changes between guitar performance and explanation. Occasionally the guitar

is played in the background while explaining.

STC.T - TED talk The second set consists of the TED talk "A garden in my apartment"

from Britta Riley. It consists purely of 7.5 minutes of speech.

30

http://www.librivox.org

5.4 Evaluation

STC.TA - TED talk including artificially addedmusic This set is based on the same TED talk

as STC.T, but contains 2.5 minutes of arti�cially inserted music. The music is usually

surrounded by short moments of silence.

STC.P - PBC recording A recorded church service from the PBC dataset is used for this

test set. The whole recording is 89 minutes long, with about 48 minutes of speech, and

41 minutes of music. The music consists mostly of a choir accompanied by various

instruments.

STC.PC - PBC recording, music cut out This set is based on the same recorded church

service as STC.P, excluding all music, which has been cut out.

5.4 Evaluation

This section presents the evaluation results. First the MLP model is investigated, then the

features are investigated. Afterwards the smoothing is evaluated, followed by an evaluation

of the complete segmentation. As most evaluation sections focus on one speci�c part

of the classi�cation / smoothing, Table 5.1 presents a list of default feature extraction

parameters that are used for the evaluation, if not stated otherwise.

Parameter Value

statistics mean, variance, stddev

features MFCC, ZCR

MFCCs 20

frame size 10 ms

frame context 6

Table 5.1: Default parameters for the feature extraction.

5.4.1 Multilayer Perceptron Model

To �nd a MLP architecture that performs well on the given classi�cation task, the following

parameter have been tested with multiple values: The batch size, the learning rate, the

number of nodes per hidden layer, and the number of training steps. The number of hidden

layers has been chosen to be 3 , which proved to be su�cient. The activation function is

also not investigated in more depth and has been selected to be the sigmoid function. A

greedy search found the values seen in Table 5.2 to be good parameters.

The most interesting parameter is the number of nodes per hidden layer, as it greatly

a�ects the computational delay. Figure 5.3 shows that the number of nodes a�ects the

accuracy greatly, until about 50 nodes per hidden layer. A MLP with h0 = 30, h1 = 20 and

h2 = 10 nodes for the three hidden layers also seems promising, with an accuracy close to

the MLP model with 50 nodes per hidden layer. The according confusion matrix can be

31

5 Experiments

Speech Music Noise
Predicted Class

Speech

Music

Noise

Tr
ue

C
la

ss

0.927 0.025 0.048

0.030 0.908 0.062

0.073 0.145 0.782

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.1: Confusion matrix of the accuracy of the MLP tested and trained with the

MUSAN data.

seen in Figure 5.1. The computational delay caused by this classi�cation model has been

tested to be 1 ms on a single core of an AMD Opteron 6136 Processor with a clock speed

of 2.4 GHz.

Parameter Value

batch size 1000

learning rate 0.001

hidden layer architecture h0 = 30, h1 = 20, h2 = 10

training steps 2 · 106

activation function sigmoid

Table 5.2: Good parameters for a multilayer perceptron given the classi�cation task.

Out of domain test To �nd out how well the classi�cation model performs on unseen

data, the PBC dataset is used as an out of domain test. The out of domain test resulted in

an accuracy of 84% compared to the in domain test, which had an accuracy of 87%. The

heat map seen in Figure 5.2 shows that the speech precision is quite high with about 90%,

and that only 3% of the music is classi�ed wrongly as speech.

32

5.4 Evaluation

Speech Music Noise
Predicted Class

Speech

Music

Noise

Tr
ue

C
la

ss

0.896 0.024 0.080

0.032 0.780 0.188

0.000 0.000 0.000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.2: Confusion matrix of the accuracy of the MLP tested with the PBC data.

0 100 200 300 400 500

Number of nodes per hidden layer

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
cc

ur
ac

y

Figure 5.3: Evaluation of the number of nodes per hidden layer. The blue dot represents a

MLP with a hidden layer architecture of h0 = 30, h1 = 20, and h2 = 10 nodes.

33

5 Experiments

5.4.2 Support Vector Machine Model

A SVM is used as a comparison classi�cation model to the MLP. The SVM classi�es the

frames extracted by the feature extraction process with parameters as seen in Table 5.1.

A random search with 20 iterations was conducted to �nd the optimal parameters. The

resulting parameters were: A polynomial kernel, a C of 0.001, and a gamma of 100. Those

parameter led to an accuracy of 83%.

5.4.3 Feature Analysis

To �nd the most promising feature set multiple tests with di�erent features are performed.

The accuracy of the classi�cation is used as evaluation criteria. Additionally the caused

inherent delay is used as another evaluation criteria. Tests showed that the feature

extraction process with parameter as seen in Table 5.1 causes a computational delay of <
1 ms.

FeatureCombinations This paragraph shows the accuracy of purely MFCC based features,

compared to features based on MFCC and ZCR. The computational delay is taken into

account as evaluation criteria. The results can be seen in Figure 5.4. The advantage of

including the zero-crossing is most noticeable for a small delay of ≤ 50 ms, possibly because

more spectral information becomes more important when less temporal information is

given.

Statical Features To decrease the feature space, feature statistics are used as features.

Combinations of the statistic functions mean, standard deviation and variance are investi-

gated. The results are shown in Figure 5.5. Using the mean function led to a classi�cation

accuracy of 79%, while standard deviation and variance both led to an accuracy of 61%.

Combining mean with standard deviation or variance led to an accuracy increase to 86%

in both cases. The combination of standard deviation and variance lead to an accuracy of

66%, which is surprising, since the two functions are strongly correlated. Using all three

functions lead to a small accuracy increase to 87%.

Mel FrequencyCepstral Coe�icients As the number of MFCCs in�uences the feature space

dimension, and therefore the computation cost and delay, a small number of MFCCs is

preferred that still provides a high accuracy. As the computational delay is quite small,

the accuracy is more important than the feature space dimension. Figure 5.6 shows that

more than 20 MFCCs do not increase the accuracy anymore, but less than 20 coe�cients

decrease the accuracy noticeably.

Inherent Delay A small inherent delay is important for real-time recognition, however

the accuracy su�ers when there is not enough temporal information. As the inherent

delay is directly linked to the frame size and context, those parameters are investigated.

Figure 5.7 shows how multiple frame sizes perform given a maximum inherent delay

(which �xes the frame context). For a inherent delay below 90 ms a small frame size (10

ms) seems to have a small advantage. Between 100 ms and 180 ms a frame size of 20 ms

34

5.4 Evaluation

0 50 100 150 200 250

Inherent delay in ms

0.84

0.85

0.86

0.87

0.88

0.89

0.90
A

cc
ur

ac
y

MFCC + ZCR MFCC

Figure 5.4: Accuracy of MFCC based features compared to MFCC and ZCR based features.

87.3%

85.9% 85.5% 66.0%

Standard Deviation
61.1%

Variance
60.8%

Mean
79.2%

Figure 5.5: The accuracy of the classi�er with multiple applied statistical functions and

combinations of those. The combinations are indicated by the union of the

incoming edges. Using mean, standard deviation and variance led to an accuracy

of 87.3%.

35

5 Experiments

5 10 15 20 25 30 35 40

Number of MFCCs

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88
A

cc
ur

ac
y

Figure 5.6: Number of Mel frequency cepstral coe�cients which are extracted for each

feature vector compared to the classi�cation accuracy.

seems to be preferable. Overall there is a clear trend that a bigger inherent delay leads to a

noticeable increase in accuracy. A small delay of 30 ms leads to an accuracy of 85%, while

a delay of 200 ms reaches an accuracy of 90%.

5.4.4 Smoothing Analysis

The following tests are performed to �nd out if the smoothing increases the ASR perfor-

mance, and which smoothing parameters are most successful. An MLP with parameters

as seen in Table 5.2 is used as classi�er, with features extraction parameters as presented

in Table 5.1.

Mode, Erosion, Dilation To evaluate the mode, erosion and dilation context, the inherent

delay is split into the relative contribution of each context. The percentage caused by the

mode context is denoted as pm, for erosion as pe , and pd for the dilation context. Multiple

di�erent relative contributions are investigated. To see if the context contributions should

be di�erent when the support method is also applied, an additional test is done for each test

�le (STC.G and STC.TA) where the support algorithm is also applied, with the parameters

minspeech = 2,minmusic = 30 andminnoise = 30. The results are shown in Figure 5.8.

The setting pm = 0.0,pe = 0.4,pd = 0.6 seems to be good for a inherent delay of 0.2

seconds, but performs worse with higher delays. Probably due to the erosion process,

which removes small speech segments. When using the minimum change support making

use of all three contexts is always outperformed by a mean context only. This is most

36

5.4 Evaluation

0 50 100 150 200 250

Inherent delay in ms

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

A
cc

ur
ac

y

fs = 10 ms fs = 20 ms fs = 30 ms

Figure 5.7: Classi�cation accuracy compared to the inherent delay for di�erent frame sizes.

The frame context depends on the inherent delay.

37

5 Experiments

likely caused by the fact that for a given inherent delay just using the mean results in the

biggest temporal information.

Minimum Change Support As the minimum change support does not a�ect the inherent

delay, much temporal information can be used, however too big support values can lead

to too much misclassi�cation and be more harmful for the overall ASR performance.

To evaluate the performance of the three parameters minmusic , minspeech, and minnoise , a

baseline b is used, for which each parameter is calculated as minx = b · px , with px as a

new parameter for each class x . The results can be seen in Figure 5.9.

The parameters pspeech = 0.5,pmusic = 1.0,pnoise = 1.0 perform well when the music,

noise and speech parts are clearly distinct as in test STC.TA, with a baseline smaller than

150. However the parameters perform badly when the distinction between music, noise

and speech is not so easy, and the parts change quickly as in STC.G. Reducing pspeech to 0.0
or 0.1 yields a slightly worse performance in the STC.TA test, but performs signi�cantly

better in the STC.G test. It can be reasoned that a big minspeech value omits the beginning

of speech segments, which is especially bad with many small segments. Decreasing pnoise
to 0.2 performs worse on both tests, but especially on STC.G. It seems that multiple small

noise segments within speech segments lead to classifying parts of the speech segments

as noise (with a small pnoise).
pspeech = 0.0,pmusic = 1.0,pnoise = 1.0 seems to be a good setting of parameters, as it

performs well on both tests and both functions have a similar course, indicating robustness

against di�erent segment distributions. A baseline of 300 yields the best results, decreasing

the WER of STC.G from 29.3% to 24.5%, and the WER of STC.TA from 8.2% to 6.6%.

5.4.5 Segmentation Analysis

This section describes the tests performed to evaluate the a�ect of the segmentation on

the speech recognition task. The parameters used for the smoothing process are shown in

Table 5.3. The total inherent delay is 270 ms. The results are shown in Figure 5.10.

All tests that include music (STC.G, STC.TA and STC.P) show a decrease in the word

error rate. The tests without music (STC.T and STC.PC) show that the segmenter does not

decrease the transcript quality compared to no segmentation when no music is present.

The biggest quality increase can be seen in the STC.P test, where a relative WER reduction

of 41% could be achieved.

As the STC.TA test is just the STC.T test with added music, the transcript results can be

compared. Using the segmentation in the STC.TA test leads to the same WER as the STC.T

test, indicating that the segmenter performs as well as removing the music manually. STC.P

with segmentation and STC.PC without segmentation show the same results, providing

further evidence that the segmenter performs as well as manually removing music.

38

5.4 Evaluation

0.0 0.1 0.2 0.3 0.4 0.5
24
26
28
30
32
34
36
38
40

W
ER

in
%

STC.G

0.0 0.1 0.2 0.3 0.4 0.5

Inherent delay in seconds

24
26
28
30
32
34
36
38
40

W
ER

in
%

0.0 0.1 0.2 0.3 0.4 0.5

6.5

7.0

7.5

8.0

8.5
STC.TA

0.0 0.1 0.2 0.3 0.4 0.5

Inherent delay in seconds

6.5

7.0

7.5

8.0

8.5

pm : 0.0 pe : 0.4 pd : 0.6

pm : 0.1 pe : 0.4 pd : 0.5

pm : 0.3 pe : 0.3 pd : 0.4

pm : 1.0 pe : 0.0 pd : 0.0

Figure 5.8: This �gure shows the speech recognition word error rate for di�erent values

of the mean, erosion and dilation context for the STC.G and STC.TA test �les.

The values are implicitly de�ned by the relative contribution of each context

(pm,pe ,pd) to the inherent delay. The �rst row uses segmentation without

the minimum change support, while the second row uses a minimum change

support with parameters minspeech = 2 ,minmusic = 30 andminnoise = 30. The

green line (unmarked) indicates the WER without any segmentation.

39

5 Experiments

0 50 100 150 200 250 300 350
24

25

26

27

28

29

30

31

W
ER

in
%

STC.G

0 50 100 150 200 250 300 350

Baseline in number of frames

6.5

7.0

7.5

8.0

W
ER

in
%

STC.TA

pspeech : 0.0 pmusic : 1.0 pnoise : 1.0

pspeech : 0.1 pmusic : 1.0 pnoise : 0.2

pspeech : 0.1 pmusic : 1.0 pnoise : 1.0

pspeech : 0.5 pmusic : 1.0 pnoise : 1.0

Figure 5.9: Di�erent minimum change support settings are shown for the tests STC.G

and STC.TA. A minimum change support for class x is calculated as minx =
px · baseline. The green line (unmarked) represents the transcription WER

without segmentation.

40

5.4 Evaluation

STC.G STC.T STC.TA STC.P STC.PC
0

5

10

15

20

25

30

W
ER

in
%

No segmentation With segmentation

Figure 5.10: The comparison of the transcript quality with segmentation, compared to the

quality without segmentation. Measured in the word error rate.

41

5 Experiments

Parameter Value

mode context 200 ms

dilation context 0 ms

erosion context 0 ms

minspeech 0 ms

minmusic 3000 ms

minnoise 3000 ms

Table 5.3: Parameters for the smoothing.

42

6 Conclusion

In this work a system to increase speech recognition transcript quality by �ltering out

music and noise segments from the audio stream has been developed and evaluated,

while focusing on a low delay to maintain real-time capability. In contrast to previous

work, the actual transcript quality has been evaluated. A neural network has been used

to classify audio frames into speech, music and noise based on Mel frequency cepstral

coe�cients and zero-crossing rate features. The feature space has been reduced by taking

statistics over multiple frames. The neural network has been compared to a support vector

machine, which performed slightly worse. Multiple feature extraction parameters have

been optimized with the aim of a good transcript quality while maintaining a small delay.

By using the extensive publicly available audio dataset MUSAN the classi�cation results

are comparable to possible future work. On this dataset an accuracy of 87 % could be

achieved with a real-time delay of 70 ms.

In addition to the classi�cation a smoothing algorithm has been developed, which

removes small misclassi�cations and creates smooth audio segments. The erosion and

dilation smoothing step has shown to be unnecessary when the mode smoothing is applied.

The minimum change support step, which takes the class of the previous 3 seconds into

account, has shown to be important to increase the transcript quality. However test results

indicated that when switching to speech the previous seconds should not be taken into

account, resulting in a faster switch to speech.

The results have shown that the segmentation algorithm was able to decrease the

relative word error rate of a transcript by 41% for an audio stream containing 40 % music,

yielding similar results to manually cutting the audio out of the audio stream. Using

the algorithm in a real-time environment creates an acceptable delay of 270 ms, plus a

negligible computational delay due to its small neural network architecture.

6.1 Future Work

As seen in previous work, di�erent features can be explored to possibly increase the

classi�er performance. However the results indicate that the smoothing makes up for a

classi�er that is not perfect and it seems that the task of improving the smoothing is more

promising.

One way the smoothing could improved is by increasing the start boundary of the

speech segment. The beginning of a speech segment could be shifted by a small amount,

to make sure that the start of the speech is included in the segment. This could be achieved

by sending the ASR the previous frames when a change to speech is detected by the

segmenter. As the ASR would receive a short burst of additional audio it would shortly

have a higher delay.

43

6 Conclusion

Even though the segmentation algorithm performs as well as a human, a more complex

smoothing in addition to a higher classi�cation accuracy could possibly allow for a smaller

delay, improving the real-time ability.

Even though the evaluation in this work used an out of domain tests for the audio

segmentation, few tests were used and some data is not public. As there is no extensive

publicly available test set for audio segmentation beyond pure classi�cation yet, creating

such a test set would make work in this research area more comparable.

44

Bibliography

[Ada10] André Gustavo Adami. “Automatic speech recognition: From the beginning to

the Portuguese language”. In: The International Conference on Computational
Processing of Portuguese. 2010.

[BH03] Michael Berthold and David J. Hand, eds. Intelligent Data Analysis: An Intro-
duction. 2nd. Springer-Verlag Berlin Heidelberg, 2003, pp. 169–197.

[BV04] S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004, pp. 215–288.

[BW98] J. S. Boreczky and L. D. Wilcox. “A hidden Markov model framework for video

segmentation using audio and image features”. In: Acoustics, Speech and Signal
Processing, 1998. Proceedings of the 1998 IEEE International Conference on. Vol. 6.

1998, pp. 3741–3744.

[CB04] Ronan Collobert and Samy Bengio. “Links Between Perceptrons, MLPs and

SVMs”. In: Proceedings of the 21st International Conference on Machine Learning.

ACM, 2004, pp. 23–.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi�cation. 2nd.

Wiley-Interscience, 2000, pp. 259–264.

[Eri09] Lars Ericsson. “Automatic speech/music discrimination in audio �les”. MA

thesis. School of Media Technology, Royal Institute of Technology, Sweden,

2009.

[Eyb+13] Florian Eyben, Felix Weninger, Florian Gross, and Björn Schuller. “Recent

Developments in openSMILE, the Munich Open-source Multimedia Feature

Extractor”. In: Proceedings of the 21st ACM International Conference on Multi-
media. ACM, 2013, pp. 835–838.

[Goo+13] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay

D. Shet. “Multi-digit Number Recognition from Street View Imagery using

Deep Convolutional Neural Networks”. In: Computing Research Repository
abs/1312.6082 (2013).

[HAH01] X. Huang, A. Acero, and H.W. Hon. Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development. Prentice Hall PTR, 2001.

[HC03] H. Harb and Liming Chen. “Robust speech music discrimination using spec-

trum’s �rst order statistics and neural networks”. In: Proceedings of the 7th
International Symposium on Signal Processing and Its Applications. Vol. 2. 2003,

pp. 125–128.

45

Bibliography

[Hec+13] Michael Heck, Christian Mohr, Sebastian Stüker, Markus Müller, Kevin Kil-

gour, Jonas Gehring, Quoc Bao Nguyen, Van Huy Nguyen, and Alex Waibel.

“Segmentation of telephone speech based on speech and non-speech models”.

In: Speech and Computer. Springer, 2013, pp. 286–293.

[HL02] Chih-Wei Hsu and Chih-Jen Lin. “A comparison of methods for multiclass

support vector machines”. In: IEEE Transactions on Neural Networks 13.2 (2002),

pp. 415–425.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-

ward networks are universal approximators”. In: Neural Networks 2.5 (1989),

pp. 359–366.

[IC16] Yoshua Bengio Ian Goodfellow and Aaron Courville. “Deep Learning”. Book

in preparation for MIT Press. 2016.

[JM09] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.

Pearson Prentice Hall, 2009.

[Ked86] B. Kedem. “Spectral analysis and discrimination by zero-crossings”. In: Pro-
ceedings of the IEEE 74.11 (1986), pp. 1477–1493.

[Las+12] Walter Lasecki, Christopher Miller, Adam Sadilek, Andrew Abumoussa, Do-

nato Borrello, Raja Kushalnagar, and Je�rey Bigham. “Real-time captioning by

groups of non-experts”. In: Proceedings of the 25th annual ACM symposium on
User interface software and technology. 2012, pp. 23–34.

[Lav+97] Alon Lavie, Alex Waibel, Lori Levin, Michael Finke, Donna Gates, Marsal

Gavalda, Torsten Zeppenfeld, and Puming Zhan. “JANUS-III: Speech-to-speech

translation in multiple languages”. In: Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing. Vol. 1. IEEE. 1997, pp. 99–

102.

[Log+00] Beth Logan et al. “Mel Frequency Cepstral Coe�cients for Music Modeling.”

In: Proceedings of the 1st International Society for Music Information Retrieval.
2000.

[LZL03] Lie Lu, Hong-Jiang Zhang, and Stan Z Li. “Content-based audio classi�cation

and segmentation by using support vector machines”. In: Multimedia systems
8.6 (2003), pp. 482–492.

[Mal+00] K. El-Maleh, M. Klein, G. Petrucci, and P. Kabal. “Speech/music discrimination

for multimedia applications”. In: Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing. Vol. 6. 2000, pp. 2445–2448.

[Mar+15] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensor�ow.org. 2015.

[MB03] Martin F McKinney and Jeroen Breebaart. “Features for audio and music

classi�cation.” In: ISMIR. Vol. 3. 2003, pp. 151–158.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997, pp. 81–127.

46

Bibliography

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in Python”. In:

The Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[PT05] C. Panagiotakis and G. Tziritas. “A speech/music discriminator based on RMS

and zero-crossings”. In: IEEE Transactions on Multimedia 7.1 (2005), pp. 155–

166.

[PT14] Aggelos Pikrakis and Sergios Theodoridis. “Speech-music discrimination: A

deep learning perspective”. In: Proceedings of the 22nd European Signal Process-
ing Conference. IEEE. 2014, pp. 616–620.

[Rab89] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected appli-

cations in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–

286.

[Ram99] S. A. Ramprashad. “A multimode transform predictive coder (MTPC) for speech

and audio”. In: Workshop on Speech Coding Proceedings. IEEE. 1999, pp. 10–12.

[Rog05] Ivica Rogina. Spachliche Mensch-Maschine-Kommunikation. Unpublished, 2005.

[Sau96] John Saunders. “Real-time discrimination of broadcast speech/music”. In: Pro-
ceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing. IEEE. 1996, pp. 993–996.

[SCP15] David Snyder, Guoguo Chen, and Daniel Povey. “MUSAN: A Music, Speech,

and Noise Corpus”. In: Computing Research Repository abs/1510.08484 (2015).

[Sol+01] Hagen Soltau, Florian Metze, Christian Fügen, and Alex Waibel. “A one-pass

decoder based on polymorphic linguistic context assignment”. In: Workshop
on Automatic Speech Recognition and Understanding. IEEE. 2001, pp. 214–217.

[WGY03] W. Q. Wang, W. Gao, and D. W. Ying. “A fast and robust speech/music dis-

crimination approach”. In: Proceedings of the Joint Conference of the Fourth
International Conference on Information, Communications and Signal Processing
and Fourth Paci�c Rim Conference on Multimedia. Vol. 3. 2003, pp. 1325–1329.

[Wik11] Wikipedia. Support vector machine —Wikipedia, The Free Encyclopedia. [Online;

accessed 30-April-2016]. 2011. url: https://en.wikipedia.org/wiki/File:

Svm_max_sep_hyperplane_with_margin.png.

47

https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

	Abstract
	Zusammenfassung
	Introduction
	Background
	Automatic Speech Recognition
	Audio Segmentation
	Hidden Markov Model
	Support Vector Machine
	Maximal Margin Hyperplane
	Soft-margin
	Kernel Trick

	Artificial Neural Network
	Perceptron
	Multilayer Perceptron

	Sound Features
	Mel Frequency Cepstral Coefficients
	Zero-crossing Rate

	Prior Work
	Classification Models
	Segmentation Models

	Method
	System overview
	Feature Extraction
	Classification
	Multilayer Perceptron
	Support Vector Machine

	Smoothing

	Experiments
	Setup
	Tools
	Python
	scikit-learn
	TensorFlow
	openSMILE
	Janus Recognition Toolkit

	Datasets
	MUSAN
	PBC
	STC

	Evaluation
	Multilayer Perceptron Model
	Support Vector Machine Model
	Feature Analysis
	Smoothing Analysis
	Segmentation Analysis

	Conclusion
	Future Work

	Bibliography

