InterACT

International center
for Advanced Communication Technologies

Universitat Karlsruhe (TH)

Carnegie Mellon University
Prof. Dr. rer. nat. Alex Waibel

A Comparative Study
of Gaussian Selection Methods

in Large Vocabulary
Continuous Speech Recognition

Studienarbeit

Author: Dirk Gehrig

Advisors: Carnegie Mellon University, Dr.-Ing. Thomas Schaaf
Universitat Karlsruhe (TH), Dipl.-Inform. Sebastian Stiiker

Hiermit versichere ich, diese Arbeit selbststandig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt zu haben.

Pittsburgh, den 31. Méarz 2006 — < =
. Vb Gel C‘

Contents

1 Fast and Accurate Speech Recognition 1

1.1 Introduction to Speech Recognition 1

1.2 Time-expensive Evaluation of Gaussian Mixtures 2

13 Gausaian Seleotion -~ v o v vn 5 o6 e s m e v e 6 e e e an e e e w 2

2 Gaussian Selection 5

2.1 Classificationof Methodst 5

22 BBl i assmnsmue Ban e oa i v el s e imes 6w e e ke 5

2.3 Vector Quantization (Clustering) 8

24 Projection Search 9

2.5 Hamming-Distance-Approximation 9

3 Experiments 11

31 Measurements . o « o v v o5 v v s v oan o # e s e w8 e e E e e 11

3.2 Baseline System e e e 12

3.3 Speaker Independent Decoding 15

331 Projection Search « o ¢ « i 50 v v us v an v E e da e ey 15

8832 BBL iwvonrmeowmas s ouns oas ws ae s s emnme s ms s 17

3.3.3 Clustering (Vector Quantization) 20

3.4 Speaker Adaptive Decoding 24
3.4.1 Influences of the Speaker Independent Hypothesis on the Sec-

ondPass 25

842 Projection Search . : : « v v v v i@ @i e sl 66 e 26

A3 BBI oo cuvrms imuemmns Sinsn e d%m @5 56w @ @& &0 28

344 Clustering e 29

3.5 CompariSon e e e e e e e e e e 32

4 Conclusions and Future Work 37

A Mathematical Basics 41

A.1 Evaluation of Gaussian Mixtures 41

A.2 Calculation of a cluster Gaussian 41

A.3 A K-means like Algorithm 42

ii CONTENTS

B Data Structures 45
Bl BBEIIYSES o v s v n s s G e @ 550 M S8 e R ERM 285 % %5 45
B2 OB o 5 5 v o o i 0 0 0 50 5 30 # @ G B D6 Y B R RN e 6 MR % D D W 46

C User Interface 49
C1 Piojection Seadeh: - <« v cvmrev v vt e s w0 E 49
C.2 BBl . . . i e e e e e e e e e e e e e e e e e e e 50

O3 Clisteting . - s = 4 s 5 ssiwaanmifs GG Fi @ 83 588 5% 53

Chapter 1

Fast and Accurate Speech
Recognition

In this first chapter I give a short motivation for speech recognition and also a brief
introduction. I explain, that it is desirable for a lot of the state-of-the-art systems
to be large and that the speed of this speech recognizer can be a problem. It can be
necessary, to speed it up. but it is desirable to do this without loss in output quality.
Afterwards 1 describe the basic idea for speeding up a speech recognizer, which was
addressed in this thesis. This is Gaussian selection.

1.1 Introduction to Speech Recognition

At all times applications were build, which tried to make life simpler. One of the re-
cent approaches is to use speech recognition and speech synthesis for the interaction
with computers and embedded systems. Some systems try to simplify the useability
of already invented techniques like cell phones or navigation systems, while others
open up new possibilities like intelligent rooms that react on the situation inside the
room. This can partly be done using speech recognition. Together with machine
translation it opens up even more perspectives, e.g. the simultaneous translation
during a phone call between two people that are not able to speak the languages of
each other.

Speech recognition transforms the audio data of each speaker in a transcription
of what the speaker said. The first step is to extract specific features out of the
audio data. Having the features most of the state-of-the-art systems use hidden
Markov models (HMMs) [Rab90] to get a probability for each possible word given
the feature vectors belonging to a series of time stamps. Most HMM-systems model
the probability density functions of the HMM-states as Gaussian mixtures. This
Gaussian mixtures have to be evaluated, when the probability of a certain HMM-
state is needed. Using a language model the most likely sentences are calculated out
of the probabilities of the possible words.

2 CHAPTER 1. FAST AND ACCURATE SPEECH RECOGNITION

1.2 Time-expensive Evaluation of Gaussian Mix-
tures

For some recognition tasks a relatively small number of HMM-states might be suf-
ficient, but with a increasing number of words the recognizer should be able to
recognize, the number of HMM-states has to be increased to gain the same accu-
racy. Since the pronunciation of a phoneme can vary for different speakers and
contexts, the accuracy can be further improved by using more than one HMM-state
sequence for each word. Therefore with a greater number of states the accuracy of
the system can be improved. This can only be done, since more and more training
data is available nowadays. Another advantage of more training data is the possibil-
ity to build fully continuous speech recognizers, what means, that every HMM-state
has a unique Gaussian mixture model.

Due to this reasons most of the state-of-the-art speech recognizers use some thou-
sand HMM-states. For fully continuous systems the number of Gaussian mixtures
that have to be evaluated for each time frame during the recognition increases in
the same manner as the number of HMM-states. The evaluation of thousands of
this Gaussian mixtures (see appendix A.1) needs a lot of computation time. In some
applications only the accuracy of the speech recognizer is important and the time
it needs for the recognition is unimportant, but there are a lot of systems in which
the time behavior is also of fundamental importance. If the recognizer is part of a
system, that interacts with a human user, it is important that the recognizer is fast,
since it is inconvenient for the user to wait for the system and therefore would not
be of great help.

1.3 Gaussian Selection

It is possible to speed up speech recognizers in different ways. One common way
is to consider only those states that are most likely given the previous states. This
approach restricts the search space for the best transcription and therefore speeds
up the recognition task. When evaluating the Gaussian mixtures of a HMM-state
at certain coordinates, it seems reasonable that only one or a few Gaussians have
significant contributions to the probability of the Gaussian mixture. This are the
Gaussians, that have a significant probability at the position of the feature vector,
i.e. mostly the Gaussians that are close to the feature vector. If the feature vector
lies on the tail of a Gaussian it is not necessary to evaluate this Gaussian, since it
would not have a significant contribution to the overall probability of the Gaussian
mixture.

When a speed up of the speech recognizer should be achieved by only using the
most significant Gaussians for each pair of feature vector and Gaussian mixture, it
becomes an important task of the speech recognizer to find this significant Gaus-
sians. To achieve an overall speed up of the recognizer the search for the significant

1.3. GAUSSIAN SELECTION 3

Gaussians has to be fast, but the selected Gaussians should also give a good approx-
imation of the Gaussian mixture. Therefore different Gaussian selection methods
have been proposed in recent years. Some methods use a segmentation of the fea-
ture space to define different areas, whereas only the Gaussians of one or a few areas
are used for the calculation of a Gaussian mixture during recognition. The areas,
that have to be evaluated, are chosen depending on the feature vector. This meth-
ods are multidimensional feature space partitioning trees and vector quantization.
Other methods do not use any preprocessing, but determine the most significant
Gaussians using distance measures, that are faster in calculation than evaluating
the Gaussian. This methods were proposed as projection search and Hamming-
distance-approximation.

Since each of the different methods has parameters that have to be tuned before
using the Gaussian selection method, it is difficult to choose the best Gaussian
selection method and find the best parameters for a specific task. The proposed
methods can differ in the computation time and the memory, that is needed to
calculate the most significant Gaussians, but they can also differ in the quality
of the chosen Gaussians. In addition to that, they vary in their useability when
speaker adaptation is performed during the speech recognition. This thesis will give
an overview on the behavior of the most promising methods compared to a baseline
system. It considers effects of different parameter settings and differences between
the methods.

Chapter 2

(Gaussian Selection

In this chapter I give an overview of the four different Gaussian seleciton categories.
I describe four representative methods of Gaussian selection one for each of the
four categories. This methods are the bucket box intersection algorithm, vector
quantization, projection search and Hamming-distance-approximation.

2.1 Classification of Methods

Different methods have been proposed to select the subset of Gaussians that should
be used to calculate an approximated probability for a Gaussian mixture. Ort-
manns [Ort98] suggests to separate them into four different categories, which are
k-dimensional search trees, vector quantization, projection search and Hamming-
distance-approximation. The first two are based on a static partitioning of the
feature space. Therefore the feature space is partitioned in appropriate cells, which
can be generated before the evaluation. During evaluation only the Gaussians of
the cells, that are closest to the observation vector, are calculated to get an approx-
imation of the Gaussian mixture. If only the closest cell is used, then it is the cell,
in which the observation vector is located. Using projection search or Hamming-
distance-approximation the selection of the Gaussians, that have to be calculated,
is done by roughly approximating the distances between the observation vector and
the Gaussians during evaluation.

2.2 BBI

The bucket box intersection (BBI) algorithm [FR96, WF97] is an approach to ap-
proximate Gaussian mixtures with diagonal covariance matrices, based on a binary
feature space partitioning tree [Ben75]. For a given feature vector the tree is used
to find the set of the most significant Gaussians for this vector. The basic struc-
ture used in the BBI algorithm is the k-dimensional search tree, which partitions
the k-dimensional feature space in disjoint rectangular subspaces. Each leaf of the

J

6 CHAPTER 2. GAUSSIAN SELECTION

tree represents one of the rectangular subspaces, that are described by hyperplanes
defined in the inner nodes. Each hyperplane is orthogonal to one of the coordinate
axis. The hyperplane belonging to the root node divides the feature space in two
half spaces. Depending on the location of these sub-spaces in relation to the hy-
perplane one is the left and one the right child node. Every child node is further
divided into two child nodes. This is repeated until the tree has a depth of d . Each
Gaussian is stored in lists (bucket) belonging to the sub-spaces in which the value of
the Gaussian is above a certain threshold. After this precalculation it is possible to
find the subspace in which a Gaussian is located by d comparisons. In every node it
has to be decided on which side of the hyperplane the observation vector is located
and it has to be descended to the appropriate child. When a leaf is reached only
the Gaussians in this leafl are used to calculate an approximation of the Gaussian
mixture probability.

The log of a single multivariate Gaussian probability density function with diag-
onal covariances, e.g. ¥ = Io with o0 = (¢3,...,0%)7, can be calculated as:

logN(z, i,) = ——[!og ((27) H Z(‘")” (2.1)

g=

For a given threshold R the region of the Gaussian with higher probabilities than
R-N(p,p,0),i.e. N(x,p,0) > R N(u,p, o), is a hyperellipsoid with axis parallel
to the coordinate axis. A box with boundary hyperplanes parallel to the coordinate
axis can be calculated, so that it completely includes the hyperellipsoid. Fritsch and
Rogina call it the Gaussian box associated with R (see figure 2.1).

x2 4

~ Gaussian Box

x1

Figure 2.1: Box around a Gaussian, that includes the part above a certain threshold

The interval [a;, b;] of a Gaussian box to coordinate j for 0 < R <1 is given by:

[aj,b;] = p; £ |/ —207log(R) (2.2)

2.2. BBI 7

To find the most significant Gaussian boxes for a feature vector, a K-dimensional
space partitioning tree is used. The standard BBI algorithm [FR96], as described by
Fritsch and Rogina, creates one tree for every single codebook. At every nonterminal
node of the tree the region belonging to this node is divided into two half-spaces
by a hyperplane orthogonal to one of the coordinate axis. To find locally optimized
hyperplanes, three steps are processed:

1. Identify the Gaussian boxes intersecting with the current hyperrectangular
region corresponding to the node.

2. For all coordinate axis x; sort the L(ower) and U(pper) boundaries of the
selected Gaussian boxes. Hypothesize a division hyperplane, so that it has an
equal number of L boundaries on the left side and R boundaries on the right
side. This is to create a balanced tree, that has a similar number of Gaussian
boxes in each leaf node. Calculate the number C; of selected Gaussian boxes
that are split by the hyperplane.

3. Select the hyperplane with the minimum number of splits C; as the current
nodes division hyperplane. If there are two or more hyperplanes with the same
number of splits, an additional rule has to be used, e. g. select the hyperplane
belonging to the coordinate with the lowest index.

During speech recognition the binary trees can be used to find the leafs with the
most significant Gaussian boxes concerning a given feature vector. This is done by
traversing the tree top down. In every node the decision has to be made on which
side of the hyperplane the feature vector is located by evaluating the coordinate
orthogonal to the hyperplane. Knowing the side of the hyperplane on which the
feature vector is located the appropriate child node can be selected. When a leaf
node is reached, only the Gaussians belonging to the Gaussian boxes in this leaf
node are evaluated to get an approximation of the log probability of the Gaussian
mixture.

Using separate trees for every codebook needs more calculation time than one
single tree for all codebooks, because every tree has to be evaluated separately.
Therefore Fritsch and Woszczyna have proposed the big-BBI algorithm [WF97],
which calculates a single binary tree for all codebooks. Using one tree for all code-
books the leaf belonging to a feature vector does not need to contain Gaussian boxes
of the codebook, that has to be evaluated. For this kind of codebook and leaf pairs
back-off vectors have to be calculated, i.e. for every codebook with no Gaussian
box in a leaf the Gaussian box that is nearest to the leaf has to be found and added
to the leafs list of Gaussian boxes .

Using a threshold of R for the Gaussian boxes, the maximum error that can be
achieved during evaluation of a single Gaussian is R - N(u. p. o). Evaluating the
Gaussian mixture p(z|w) with diagonal covariance matrices for class w as

8 CHAPTER 2. GAUSSIAN SELECTION

Jv
p(z|w) = Z%:‘N(I:ﬂ-m, i) (2.3)
T
with the vector of mixture coefficients (c.1,...,con) for class w satisfying the

contraints ¢,; > 0 and Zf:l ¢w; = 1, by restricting the evaluation to the Gaussians
with Gaussian boxes that contain the feature vector, the overall error is smaller
than R - ZL Coi NV (fwis Moy 0wi). Fritsch and Rogina have also investigated abso-
lute thresholds, but have examined that they get better results with relative thresh-
olds. The two parameters that have to be tuned, when using the BBI as Gaussian
selection, are the depth of the tree and the value of the relative threshold .

2.3 Vector Quantization (Clustering)

To select the Gaussians with a significant contribution to the probability of a Gaus-
sian mixture vector quantization can be used. Therefore the feature space has
to be partitioned in cells before the decoding, whereas a centroid is calculated
for each cell. During evaluation only the Gaussians of one or a few cells with
centroids closest to the feature vector are evaluated. This method was first pub-
lished by Boccherie [Boc93], but a lot of systems use slightly different methods
[GKY99, SPZ05, HS97, SHH*99, WSTI95, AMO1]. Some of them are described
later.

In almost every system for the calculation of the cells a k-means like algorithm
described in appendix A.3 is used. In many systems a weighted Euclidean distance

K
1
A hn) = 72 D wilthons = Hung)’ (2.4)
j=1
is used as distance metric for the k-means algorithm [Boc93, GKY99, HS97, SHH *99)].
Other distance measures can be used as well, e. g. Euclidean distance or a simplified
form of the symmetric Kullback-Leibler divergence [SPZ05], which has the following
form:

K ol 2 2 2
2 ot (Mg — Pugg)? 0oy + (i — Hanj)
(s pog) = Y (FH—g 2 —t =) (25)

The Gaussians that are located on the border of one of the disjoint cells, could also
have significant contributions to cells which they are not assigned to. Therefore
after the clustering most system use additional rules to define, which Gaussians
belong to what centroid. Mostly a Gaussian can be assigned to more than one
cell. One simple case is to define a threshold © >> 1 and assign every Gaussian to
every centroid, which it is closer to than the threshold concerning a distance metric,
e.g E}k:: (—“L;éi—“df < O. But also more complex rules are used to define the

24. PROJECTION SEARCH 9

final clusters [Boc93, GKY99, HS97]. It can happen that no Gaussian of a certain
Gaussian mixture is assigned to a centroid. This results in the problem, that it is not
possible to approximate the probability of this Gaussian mixture based on that cell.
If only cells are selected for the evaluation, that do not contain any Gaussian of the
Gaussian mixture, the probability can not be approximated. This can be solved by
defining that every cell has to have at least one Gaussian of each Gaussian mixture
or by state flooring, which means that the value for cells without a Gaussian of a
certain Gaussian mixture is given by a fixed estimated value.

During recognition the one or more cells that are closest to the observation vector
have to be determined. This can be done for example by calculating the distance
between all centroids and the observation vector. Then the Gaussians of the closest
cells are evaluated to get an approximated probability for the Gaussian mixture.

2.4 Projection Search

The projection search [NN96] is based on a dynamic partitioning of the feature
space. The Gaussians, that are located in a rectangular subspace of size 2¢ around
the observation vector, are determined during decoding without any precalculation.
Only this Gaussian are evaluated to get an approximated probability of the Gaussian
mixture.

To find the Gaussians which are located in the rectangular subspace the feature
space is bounded by two parallel hyperplanes orthogonal to the first coordinate
axis. This hyperplanes are located with a distance of ¢ to the feature vector on both
sides. The Gaussians between this two hyperplanes are stored in a candidates list
for further use. Then the constructed subspace is bounded by two more hyperplanes
which also have a distance of ¢ to the feature vector and which are orthogonal to
the first ones and a coordinate axis. Only the Gaussians that are between this
two hyperplanes are kept in the candidates list. The bounding of the subspace
is progressed until a given number of coordinate axis is bounded by hyperplanes.
The candidates list then contains all Gaussians that have to be evaluated to get
an approximated value of the Gaussian mixture. The two parameters that specify
the subspace and therefore the list of Gaussians, that have to be evaluated. are
the distance between the hyperplanes and the feature vector and the number of
coordinate axis that are bounded. If no Gaussian of a certain Gaussian mixture is
located in the rectangular subspace state-flooring, i.e. a constant value, or a back-off
Gaussian has to be used.

2.5 Hamming-Distance-Approximation
Another approach of Gaussian selection is the Hamming-distance-approximation

[BU95]. It selects the most significant Gaussians by approximating the distance of
the l,-norm between the feature vector and each Gaussian. The approximation of

10 CHAPTER 2. GAUSSIAN SELECTION

the distances needs a lot less computation time than the evaluation of the Gaussians.
For the approximation of the Gaussian mixture the n Gaussians with the smallest
distances to the feature vector are used. Using the /y-norm, the distance d(r, y)
between the feature vector z and the mean vector y of a Gaussian can be calculated
as:

K
d(z,y) = Y |z —wl (2.6)
k=1
B] T, X
- Z [|-’l'-'k[— |kl —{ gmm(lxd!,lydl) ’ ::zse Ya >0 }] (2.7)
k=1
= lally+lvll, —2x Y min(lzdl, |yal)- (2.8)
Ty 2y >0

The Hamming-distance-approximation tries to calculate this distances efficiently
by substituting the term 2 x Zxdxypn min(|zq|, |ya|) with the value of the average

vector component, i.e. min(|z4|, |ya|) is substituted by min (U%ﬂl Jlg_l\h)
Therefore the Hamming-distance dypa(z,y) is:

dnpa(e,) =llell + iyl = pmin(iall i) < 3 1 (29)
Ty xyq=>0

The advantage of this approximation lies in the simple calculation of the term

> sixyg>0 1+ Although the calculation of the approximation is fast, Ortmanns [Ort98]

has experienced that the overall speed up of the speech recognizer is less than

with projection search for the same WER. Therefore the Gaussian selection with

Hamming-distance-approximation is not further investigated in this thesis.

Chapter 3

Experiments

In this chapter I first describe the measurements, which I used to investigate the
different Gaussian selection methods. Then I give an introduction to the speech
recognizer, that I used as a baseline system for my experiments. Afterwards |
describe my investigation of the Gaussian seleciton methods bucket box intersection,
projection search and clustering and explain the results of the according experiments.
Finally I compare the results of the different Gaussian selection methods.

3.1 Measurements

For the evaluation of the various methods of Gaussian selection different measure-
ment categories are used. The most important one is the word error rate (WER).
The word error rate is a measurement for the quality of the speech recognizers out-
put. It measures the number of wrong words in the output in relationship to the
number of words of the optimal output. The error types wrong words can belong to
are Insertion, Deletion and Substitution, which mean that a whole word has been
inserted, deleted or substituted by another word. The word error rate is calculated
using the sclite program, which is part of NIST’s Speech Recognition Scoring Toolkit
[nis]. Since no significance test were performed, it is assumed, that a system is as
good as another system if the difference in the word error rate is 0.4% or smaller.

To measure the time behavior of a speech recognizer the average percentage of
Gaussians per Frame, that are selected by the Gaussian selection methods, is mea-
sured. This is the average percentage of Gaussians per Frame, that have to be
evaluated by the scoring function to get a probability for the Gaussian mixture,
The scoring function used with the speech recognizer in this work only returns the
probability of the Gaussian with the smallest mahalanobis distance to the feature
vector for each Gaussian mixture. If the partly calculated distance of a Gaussian
already exceeds the minimum distance, the caleulation of this Gaussian is aborted
and the probability is not calculated completely. The evaluated number of Gaus-
sians per frame is also a measure for the Quality of the selected Gaussians, as it
shows how many Gaussians are needed to get a certain performance.

11

12 CHAPTER 3. EXPERIMENTS

Since the overhead for finding the nearest Gaussians is not taken into account,
when just measuring the number of evaluated Gaussians per frame the real-time
factor for the run of the speech recognizer is measured too. For this purpose the
time that is needed by the speech recognizer for the recognition is measured without
the start-up of the speech recognizer. To get the real-time factor this time is divided
by the duration of the segmented audio data.

For the evaluation of the memory usage of the speech recognizer in the main
memory and on the hard disk the size of the according data structures are measured.

3.2 Baseline System

For the discussion of the experiments it is assumed, that the reader is familiar with
speech recognition and therefore only the parts, that are relevant for this work are
explained in more detail. The speech recognizer that was used for the experiments is
based on the JANUS Recognition Toolkit (JRTk) [WFK*96] developed at the Uni-
versity of Karlsruhe (TH) and the Carnegie Mellon University in Pittsburgh. The
toolkit is an object-oriented platform for building state-of-the-art mutimodal rec-
ognizers. The components of a recognizer, which are objects, can be administrated
using a Tel/Tk script based environment.

The baseline system (see figure 3.1) used in the experiments is a fully continuous
speech recognizer for modern standard Arabic speech in the broadcast news domain.
It is based on HMMs and consists of 3112 states that represent 41 basic phonemes.
Each phone consists of three states. The probabilities of the states are modeled by
Gaussian mixtures. For the training of the Gaussian mixtures 85 hours of audio data
were used. The first step in the preprocessing of the audio data is the segmentation
of the audio data in speech and non-speech parts. Afterwards a automatic speaker
clustering is performed, which tries to cluster data of each speaker in a certain
environment based only on the audio data. The audio data is then transformed in 13
Mel-frequency cepstral coefficients (MFCC) [HHO1] for each time-frame with a frame
shift of 10ms. The means and variances of each cluster are normalized afterwards.
Using the MFCCs of the 7 frames before and after the current time-frame 195-
dimensional feature vectors are created. Features that have little or no discriminative
power should be removed, since they only increase the computational load and
number of model parameters to be estimated without improving performance. To
reduce the dimensionality of the feature space to a small number of dimensions while
keeping the most important informations for a good separability Linear Discriminate
Analysis (LDA) [Fuk90] is performed. The dimensions of the feature space are sorted
according to their separability after the LDA. Therefore only the first 42 dimensions
of the transformed feature space are used in the speech recognizer. To model the
covariances of the Gaussians in the HMM-states diagonal covariance matrices are
used. Therefore it is necessary to decorrelate the dimensions of the feature space to
satisfy this constraint. The decorrelation of the dimensions during the LDA works

3.2. BASELINE SYSTEM 13

best, if the training vectors are normal distributed and all Gaussians in a class
have the same covariance. Since this is not the case for speech a single semi-tied
covariance matrix [Gal99] is calculated to further decorrelate the elements of the
feature vectors, but this also decreases the ordering of the dimensions according to
their discriminative power. With this feature vectors the Gaussian mixtures were
trained using a merge and split algorithm. Using the merge and split training about
160 000 Gaussians were obtained.

Speecti
'T” FirstPass | Second Pass

Speech/non—speech
segmentation

1

Clustering

MFCC

LDA ir=m——= = FMLLR

STC — i"‘ “““ - MLLR
f i '

. —_—
> | SA decoding
S decotay ; (SAT miodels)
' ! '

Hypothesis —-~---—~-~ . Final Hypothesis

Figure 3.1: Basic structure of the baseline system

For the decoding, which is described in [SMFWO01], two passes are used. The
first pass is speaker independent and uses the described Gaussian mixtures. The
second pass is speaker adaptive and therefore the Gaussian mixtures where further
trained using feature-space maximum likelihood linear regression (FMLLR) [Gal97]
for each cluster. During the speech recognition FMLLR and MLLR [Gal97, LW95]
are used for speaker adaptation in the second pass based on the hypothesis of the
first pass (see figure 3.1). The language model used for both passes has a perplexity
of about 372. It uses about 19 million trigrams, 12 million bigrams and 115 thousand

14 CHAPTER 3. EXPERIMENTS

unigrams. The dictionary contains 115 000 words.

During the decoding, a list of acoustic models, that belong to the active states for
a certain time frame, is passed to the scoring function (see figure 3.2). The scoring
function then evaluates all Gaussians for each Gaussian mixtures, but returns only
the value of the most important Gaussian, given an observation vector, for each
Gaussian mixture. To speed up the search for the most important Gaussian the
Gaussian selection is used. Therefore this work will focus only on this part of the
speech recognizer.

Acoustic models J

s HEEEEO0 0000

|

Scoring Function

Observation
o —
vector

\

Figure 3.2: Interface between decoder and scoring function

For the experiments a test data set of about 1 hour and 15 minutes was used.
The experiments that included time measurement were processed on Intel Pentium
4 computers with 3.2 GHz and 2 GByte of main memory. On this machines the
baseline system needed 4.4 times real-time for the first pass. Due to the adaptation
in the second pass, a faster setup, e.g. tighter beams, can be used for the second
pass. Therefore the second pass only needs 2.5 times real-time. In the first pass
58% of the Gaussians were evaluated per frame whereas in the second pass it were
only 43%. The word error rate (WER) of the first pass is 35.7% and 29.4% for the
second.

3.3. SPEAKER INDEPENDENT DECODING 15

3.3 Speaker Independent Decoding

In this section I describe the experiments with the three investigated Gaussian se-
lection methods, which I performed with the first pass of the decoder, and show the
results.

3.3.1 Projection Search

For the investigation of the Gaussian selection using projection search (see section
2.4), the first pass of the decoder was executed with hyperplane distances of 1.5,
2.0, 2.5, 3.0 and 3.5 bounding 3, 6, 9 and 12 coordinate axes. It should be sufficient
to bound only a few coordinate axes, because LDA was used on the feature space
beforehand and sorted the dimensions according to their discriminative power, even
though the STC may undo some of the sorting. The bounding is processed indepen-
dently for every Gaussian mixture, when the state has to be evaluated. The data
structure used for the selection of the Gaussians is simply a plain list that contains
the indices of the Gaussians selected in the current Gaussian mixture. Since this
data structure is produced while running the decoder, no disk space and only a few
KB of main memory are needed. If no Gaussians are left after the bounding of a
coordinate axes, a back-off vector is used to approximate the value of the Gaussian
mixture. The Gaussian used as a back-off is specified by selecting the Gaussian that
is nearest to the feature vector according to the [; norm in the currently selecting
dimension out of the list of Gaussians that was selected by bounding the previous
dimension.

As can be seen in figure 3.3(a) the performance of the systems get worse for
smaller thresholds and larger numbers of bounded coordinate axis. That is rea-
sonable, since with a smaller threshold and a larger number of bounded coordinate
axes, less Gaussians are used to calculate the score. On one hand the performance
decreases quiet fast, if the threshold gets beneath a certain threshold or above a
given number of bounded axis. On the other hand the performance of the decoder
is almost independent of the dimensions that are bounded, when the threshold is
large enough. For a threshold of 2.5 or greater the systems in the experiments with
projection search reach the performance of the baseline system nearly independent
of the number of bounded coordinate axes (see figure 3.3(a)). Figure 3.3(b) It shows
that if this boundary threshold is used (here: 2.5) the speed can be improved.

Figure 3.3(e) shows, that the bounding of more dimensions results in Gaussians
with a better quality. Therefore less Gaussians have to be used to achieve the
same word error rate, what results in less computation time for the evaluation
of this Gaussians. This is probably due to the LDA, since many Gaussians are
sorted out in the lower dimensions due to the sorting of the dimension according
to their discriminative power. Therefore using larger threshold results in a better
approximation of the nearest Gaussians. The speed up can be improved further by
using a smaller threshold with a small number of bounded coordinate axis. With

16 CHAPTER 3. EXPERIMENTS

48 I ,
dim3 ——
i
44 dimi2 e
B! tasaling --—-
— 42
2 g
E 40 | =
x
L3
38} L
35'
1 . ; 4 45 8 5
Projection Treshold
(a)
60 .
dim3 ——
i S
m -
50 dm12 o
baseline ———
40
5 e
w 30 E
& E
zu.
10 1k
0 —— 0 - . L s
1 4 45 5 0 10 20 30 40 50 80
GPF (%)
(d)
dm3 —— Gm3 ——
48 I dim8 —=— " cimf —=—
dim @ dimd .
dmi12 o dim12 =
a4 baseline * baseline =
g 42 + g a2 |
Ll L
& h
= 4 E 40 |
3 T .\‘_
R
L] 36 \"-u_ .
0 50 60 2 25 3 <X 4 45 5 55
RTF (%)
(f)

Figure 3.3: Results of first pass with projection search

this result the statement of Ortmanns [Ort98, OFN97], that it is sufficient to bound
only a few coordinate axes, can be verified. But it has to be kept in mind that this is
probably the case. because LDA was performed beforehand. It is important, that the
used threshold is selected that way, that the performance is close to the performance
of the baseline system, since otherwise the system quickly becomes slower as the

3.3. SPEAKER INDEPENDENT DECODING 17

baseline system. This is due to the additional computation time needed for bounding
of the coordinate axis. For big thresholds the real-time factor is even worse if more
coordinate axis are bounded, what also is caused by the overhead for bounding the
coordinate axis since the number of Gaussians increases linearly (see figure 3.3(c)).
The effect of the overhead can also be seen in the dependency between the real-time
factor and the percentage of evaluated Gaussians per Frame. The real-time factor
and the percentage of evaluated Gaussians are not proportional (see figure 3.3(d)).
This is caused by the fact, that the overhead becomes less with a smaller threshold,
since less Gaussians are within the bounds of the bounded dimensions. Therefore
less Gaussians have to be considered in the higher dimensions and less dimensions
have to be bounded before a back-off vector is used, what results in less overhead
but also worse performance.

Figure 3.3(f) shows, that the best trade-off between the real-time factor and the
word error rate can be achieved with a small number of bounded coordinate axes.
The maximum speed up for the decoder with projection search without significant
loss of accuracy is 16% while 19% of the Gaussians were evaluated by the scoring
function.

3.3.2 BBI

To evaluate the performance, time and memory behavior of the big-BBI algorithm,
as described in section 2.2, in the speaker independent first pass of the decoder BBI
trees with the depths 6,8,10 and 12 and relative thresholds 0.2,0.3,...,0.7 were
created over all codebooks of the speech recognizer. This BBI trees were used to
select the most significant Gaussians.

Using a BBI tree for the Gaussian selection in the first pass of the speech recogni-
tion only 3 — 20% of the Gaussians are used by the scoring function. Figure 3.4(a)
shows that with a increasing threshold and a increasing depth of the BBI tree the
percentage of Gaussians per frame decreases. That is what was expected, because
in a deeper tree a single leaf contains less Gaussians and only the Gaussians of one
leaf are used by the scoring function. If the threshold is larger a smaller part of
the Gaussians is used to define in which leafs it is located, so with a increasing
threshold the number of leafs a Gaussian is located in decreases and therefore the
average number of Gaussian per leaf decreases, too.

Although the number of Gaussians in the first pass can be reduced to 3 — 20%.
figure 3.4(b) shows that the real time factor only decreases to 65 — 85% of the
baseline system. The conclusion is that the evaluation of the Gaussians is not the
only part of the speech recognizer that needs a lot of computation time, but as figure
3.4(c) shows, the reduction of the real time factor for a certain depth of the BBI
trees is nearly proportional to the reduction of the evaluated Gaussians per frame
for thresholds that are not extreme concerning the BBI algorithm. If it would be
possible to reduce the Gaussians per frame to very few, the real time factor would
still be about 2.8. With a larger threshold or a greater depth of the BBI tree the

18

CHAPTER 3. EXPERIMENTS

real-time factor decreases in almost the same manner as the number of Gaussians.
Unexpectedly the gradient of the real-time factor for decoders with BBI trees of
depth 12 gets very low for thresholds of 0.4 and higher (see figure 3.4(b)).

RTF (%)

WER (%)

40 +

GPF (%)

08 08 1

BBI Trashold
(a)

45 16 - =

ik ’/ oepgfltz-----
4t 12}

10
£
a5t E 8
- - a 5 S
o 33 ~ .
a F,

3r . - a4t ¥

Pl
25 . - - - : 0 . . . : .

01 02 03 04 05 06 07 0B 08 1 28 3 32 34 36 38 4 42 44 48
B8 Treshold RTF (%)
(b) (c)

43 ———
; g e e
= £] i
41 s o 4t basaling =

3
40 = o . 40
£
39 = : 5 -
o ' / ® w}
ar a7
-

36 36 2 .
01 02 03 04 05 06 07 08 08 1 28 3 32 34 36 38 4 42 44 4B

BBl Treshold

(d)

RTF (%)

()

Figure 3.4: Results of first pass with BBI trees

Since for deeper BBI trees and larger thresholds more codebooks exist that have
no Gaussians, which are located in a certain leaf, the back-off strategy is used more

3.3. SPEAKER INDEPENDENT DECODING

- - 45 . .
depth —— depth 6 —-
350 depth 8 —=— 40 | depth 8 =
depth 10 depth 10 =
0f . depth 12 — = as | depth 12 =
. = o - PR
i 250 i S. w 1 o
200 | g &t
= w 20 =
1 5 ;-]
i 2 15 |
100 10
o 5 T R
0 I - n i u i i s 1 I 1
01 02 03 04 05 06 07 08 095 1 01 02 03 04 05 06 07 08B 08 1
88! Treshold B38| Treshald
(a) (b)

19

Figure 3.5: Memory for BBI

often. The results for BBI trees with depth 12 suggest that the Gaussians chosen
by the back-off strategy do not result in a good probability and therefore the speech
recognizer has to track more paths, what results in a slower decoding. In contrast to
that it seems that in general the deeper trees have a better trade-off between word
error rate and speed up.

During the examination of the percentage of Gaussians per frame, it was suspected
that the word error rate of the first pass is worse for BBI trees with larger thresholds,
i.e. smaller boxes. As can be seen in figure 3.4(d) this is absolutely the case. It can
also be seen that the word error rate increases with the depth of the BBI trees. In
addition to that the gap of the word error rate between the BBI trees of different
depths becomes bigger for larger thresholds. Whereas the maximum degradation
of the word error rate is only about 0.5% for a threshold of 0.2 the degradation
increases to 7% for a threshold of 0.7. Figure 3.4(e) shows, that the speed up
of the system can be higher with the same word error rate for deeper BBI trees.
Therefore a larger depth of the BBI tree should be preferred to a larger threshold,
when making the decoder faster. Since with the depth of the BBI trees the amount
of main memory and disk space that is needed to store the BBI trees in addition
to the main memory and disk space of the baseline system increases very fast (see
figures 3.5(a) and 3.5(b)), deep BBI trees can only be used, if enough main memory
and disk space is available. The needed amount of memory does also increase with
the value of the threshold, but not as significant as with the depth. A system with a
BBI tree of depth 12 needs up to 300 MB of additional main memory and between
15 and 40 MB of additional disk space, whereas a system with a BBI tree of depth
6 only needs about 5 MB of additional main memory and about 1 MB additional
disk space. If the system is restricted on the amount of memory, only flat BBI trees
can be used and therefore the speed up for the same word error rate is smaller. The
maximum speed up without a significant loss of accuracy is 18% for a BBI tree with
depth 10 and a threshold of 0.2.

20 CHAPTER 3. EXPERIMENTS

3.3.3 Clustering (Vector Quantization)
Initial Parameters

When using the clustering implementation of this thesis for Gaussian selection dur-
ing a decoder run of a speech recognizer, four different parameters have to be opti-
mized. This parameters are the number of clusters, the distance measure used during
the clustering, the number of evaluated clusters during decoding and the back-off
strategy. Since divergence measures the similarity of two Gaussians, it seems to be
the most promising distance measure. Therefore divergence was used as distance
measure during clustering in the first experiments. It can be calculated as

K 2 2 2 2
055 (Banj = Buni)® | Gang + (Bois = Punj)
o o) = Y (FH——F 2=+ L —20) (31)
j=1 Onj wij

Besides the distance measure a initial set of cluster centroids is needed for the
k-means like algorithm (see attachment A.3). To find the best initialization for the
cluster centroids a view experiments have been made. The best clustering results
have been achieved, when using random Gaussians out of the Gaussian mixtures as
initial centroids.

Back-off Strategy

Every time the clusters, that have to be evaluated during decoding, do not contain
any Gaussian of a Gaussian mixture, that has to be evaluated, a back-off strategy
has to be used, to specify a value for this Gaussian mixture. Using the initial setting
described above, we tried to find the best back-off strategy. Three different back-
off strategies have been investigated. One simple possibility is to use a fixed value
as back-off, what is easy to realize. A second approach is to use the value of the
N + 1 cluster centroid at the coordinates of the feature vector, when evaluating
the top N clusters. The third approach, that was evaluated, is to use a single
Gaussian of the Gaussian mixture to calculate a back-off value. Therefore a special
Gaussian of the Gaussian mixture is used, which is nearest to the cluster centroid.
This assignment of the nearest Gaussians to the cluster centroids can be calculated
during the preprocessing.

For the evaluation of the back-off strategies 1024 clusters were used since 1024
leafs performed best with the BBL. As a constant back-off 70 was used, which was
found empirically. To see the influence of the back-off strategies on the performance
of the first pass of the decoder, the decoding was processed using the best 16, 32,
64, 128 and 256 clusters. Figure 3.6(a) shows, that the choice of a good back-
off strategy is really important, since the decoder gets worse, when evaluating less
clusters and therefore using the back-off strategy more often. For 64 evaluated
clusters the average back-off value of, when using the N + 1 centroid as back-off,
is the same as the constant back-off. Therefore it can be seen, that using a fixed

3.3. SPEAKER INDEPENDENT DECODING 21

value is worse than using a variable value. In addition to that the average value of
the variable back-offs changes with the number of evaluated Gaussians per frame
(see figure 3.6(b)), which is dependent on the percentage of clusters, that have to
be evaluated during the decoding. Therefore for each ratio another back-off value
would have to be used. Using the value of the N + 1 cluster as a back-off value is
much better than a constant value, but it is still much worse than using the value of
the Gaussian nearest to the cluster centroid as a back-off. With this strategy it is
possible to evaluate only 2.6% of the clusters without any degradation of the word
error rate.

- 100 - . - -
@ gaussian neares! to cluster —— constant valua (70) ——
41 m'ﬁwm‘? = a5 L value of cluster N+ —=— |
value of cluster N+ —= gaussian nearest 1o cluster =
40 + 8 90t
=
) % 85 .
© 38+ " g B0
g ~ *
| ~. I 75| L.
S . el % 5 e
WE Mo T i 2 nt -
e — e
3+ - 65]
34 = ‘ . 80
0 50 100 150 200 250 o 2 4 6 1 10 12 14
TopN GPF (%)

(a) (b)

Figure 3.6: Back-off strategy for clustering

Clustering with Divergence as Distance Metric

Using the nearest Gaussian as the optimal back-off strategy, it is still necessary to
know the appropriate number of clusters and the optimal number of clusters, that
should be evaluated during decoding. For this reason another test was made using
the nearest Gaussian as back-off. This time the nearest 8, 16, 32, 64 or 128 clusters
out of 512, 1024 or 2048 clusters were evaluated during decoding.

To store the clusters the cluster set data structure, described in attachment B.2,
is used. The amount of memory, that is needed for it can be seen in table 3.1. The
amount of main memory and disk space increases with a larger number of clusters,
but it is almost independent of the used distance measure and the acoustic models.
Compared to the memory needed for the overall system, especially the language
model, the amount of memory needed for the clusters is relatively small and should
not be a restriction on the useability of clustering as Gaussians selection.

Figure 3.7(a) shows, that all decoders get worse if the number of clusters, evaluated
during the decoding, gets smaller. Surprisingly the performance is mostly dependent
on the number of evaluated clusters but not on the total number of clusters. When
evaluating the same number of clusters for different total numbers of clusters, the

22

CHAPTER 3. EXPERIMENTS

[Number of Clusters | Main memory | Disk space |

512 2MB 10MB
1024 5MB 20MB
2048 9MB 40MB

Table 3.1: Main memory and disk space needed for the cluster set data structures

percentage of evaluated Gaussians decreases. Therefore it seems reasonable that
the decoder gets worse for a larger number of clusters, when evaluating the same
number of clusters, but this might be compensated by the better granularity and the
good back-off strategy. With a better granularity the Gaussians that are selected
according to the nearest clusters give a better value (see figure 3.7(b)).

1024 clusters
| 512 clusters ——-
2048 clusters
40 ¢
-~ ¥/
2
e 38
g a7+
% f
35
34

TopN
(a)
a0 3 v T
clusterN 1024 ——
39 clusterN 512
baseline
ag
£
x 37
g I
36
kL
34

RTF (%)

49 clustarN 2048 ———
GlusterN 1024 =
clusterM 512 -

m.

2
; ar
a6 | . -
a5
6 1 2 3 & 5 & 71 a8
(b)

2 cluster 2048
clusterN 1024 — = —
clusterN 512 -

15t

g o}

(d)

Figure 3.7: Results of first pass with divergence clustering

Although it is sufficient, to use less Gaussians when using more clusters, the
system does not get faster, when using too much cluster. This is due to the fact,
that for searching the nearest N clusters, all cluster Gaussians, which represent the

3.3. SPEAKER INDEPENDENT DECODING 23

cluster centroids have to be evaluated for each frame. This overhead slows down
the system, when the number of clusters gets close to the number of Gaussians
evaluated per frame. Therefore for the used system it is best to evaluate 32 out of
1024 clusters (see figure 3.7(c)). It can be seen, that with a certain minimum number
of evalnated Gaussians, the system gets quickly worse but the real time factor does
not decrease any more. This is due to the fact, that a system which evaluates only
few clusters evaluates few Gaussians and often uses the back-off strategy. Since this
values are worse for finding the best path, more paths have to be followed during
the decoding. Therefore the system does not get faster although it evaluates less
Gaussians. In figure 3.7(d) can be seen, that the number of evaluated Gaussians is
nearly proportional to the real-time factor for a certain number of clusters as long
as the number of Gaussians does not decreas below a certain level. This might be
due to the fact, that the approximated probabilities for the Gaussian mixtures get
to worse and therefore more paths have to be followed, what results in a higher
computation time. If the number of evaluated Gaussians could be reduced to very
few, a system with 1024 clusters would still need about 2.5 times real-time, whereas
the best system without a significant loss of accuracy evaluates 2.6% of the Gaussians
and gains a speed up of about 25%. This system evaluates 32 out of 1024 clusters.

Clustering with Euclidean Distance as Distance Metric

Clustering with divergence as distance metric showed, that a lot of overhead is
produced, when using more clusters although the quality of the selected Gaussians
increases. Therefore it might be better, to use Euclidean distance as distance mea-
sure during the search for the nearest NV clusters. This would lead to less overhead,
since the caleulation of the Euclidean distance is faster than calculating the diver-
gence. When using Euclidean distance for the search of the nearest N clusters, it
seems reasonable to use Euclidean distance for the clustering too. Due to the sim-
pler distance measure during the clustering the quality of the selected Gaussians
might get worse. Therefore it has to be experienced if the reduction of overhead is
larger than the additional computation time needed due to the worse quality of the
Gaussians. To investigate this relationship tests with 1024 and 2048 clusters were
performed using Euclidean distance. During the decoding 8, 16, 32 and 64 clusters
were evaluated, while the nearest Gaussian was used as back-off.

In contrast to clustering with divergence the WER does not only depend on the
number of evaluated clusters when using Euclidean distance. The WER depends on
the ratio between evaluated clusters and the number of the overall clusters. For the
same ratio the same performance of the system can be achieved (see figure 3.8(a)).
When using more clusters the quality of the clusters does not increase and therefore
more clusters have to be evaluated to get the same performance. This might be due
to the bad quality of the clusters caused by the simpler distance measure. When
evaluating the same ratio of clusters the number of evaluated Gaussians is the same
and they results in the same performance (see figure 3.8(b)). That means, that the

24 CHAPTER 3. EXPERIMENTS

quality of the resulting Gaussians is about the same and the time needed for the
evaluation of the Gaussians is also about the same. Figure 3.8(c) shows that the
result of this is, that the system. which has a smaller number of clusters, is faster
without loss in word error rate, since less computation time is needed to find the
nearest clusters. When using a system with more clusters, the evaluated back-offs
are closer to the observation vector than for a system with less clusters. This results
in a larger speed up for the system before it slows down again due to the worse path
search. When evaluating 32 out of 1024 clusters a speed up of 32% can be achieved
with 2.6% evaluated Gaussians.

42

1024 clusters ——
a1 b 2048 clusters —=— |

WER (%)
&

35.
35
u ;
0 10 20 30 40 S50 80 70 80
TopN
(a)
@ clusterN 1024 —— cl T clusterN 1024
clusterN 2048 —=— clusterN 2048 =
30 4 19 | baseline =
38 ! 38 + '
2 2
g 7 “\ x 37 '.]
£ H }\‘
b
3% \ %
= et -
35
34 34 :
o 1 2 3 4 5 8 7T 8 2 25 3 35 4 45 5 55 8
GPF (%) RTF (%)

(b) (¢)

Figure 3.8: Results of first pass with Euclidean distance clustering

3.4 Speaker Adaptive Decoding

In this section I first investigate the influence of the speaker independent hypothesis
on the second passs. Then 1 describe the experiments with the three investigated
Gaussian selection methods, which I performed with the second pass of the decoder,
and show the results.

3.4. SPEAKER ADAPTIVE DECODING 25

3.4.1 Influences of the Speaker Independent Hypothesis on
the Second Pass

The hypothesis of the first pass, which are used for the speaker adaptation in the
second pass, might have an influence on the performance of the second pass. To
experience the influences, the second pass was processed without Gaussian selection
but using the hypothesis of the first pass with BBI for the speaker adaptation.

The Gaussians per frame used during the second pass are nearly the same for
the baseline system and all systems with BBI hypothesis. For a smaller number of
Gaussians in the first pass as a result of a larger threshold, the number of Gaussians
in the second pass becomes only slightly larger (see figure 3.9(a)). This suggests
that the speaker adaptive decoder has to compensate the worse results of the first
pass by evaluating more paths.

45 . T —
——— - depthf ——
0 depth 8 —=— |
R
as A RN
30
£ 251 p—
B i
& 20
15
10+
5
0 ; "
01 02 03 04 05 08 07 08 09 1
881 Trashold
(a)
35 v depth 6
ma it a v
L ° =
- dai 1 i
3 bassiine ——— a2 baseline -
_ _ 3t
g £
E A8 e e & N pa— e |
o S = sk LS S S
2 28 }
z? -
15 . : —— 26 - -
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 08 1
88! Trashold BBI Treshold

(b) (c)

Figure 3.9: Results of second pass of baseline with hypothesis of first pass with BBI

The real-time factors for the second pass are nearly the same for all tests (see
figure 3.9(b)). Probably the lines of the tests with different depth are not in the
right order because of different computers on which the tests were processes. The

26 CHAPTER 3. EXPERIMENTS

decoder runs of the BBI tests in total are slightly faster than the baseline system,
although they do not use BBI trees in this second run.

Although the degradation of the word error rate in the first pass is significant
the word error rate after both passes decreases only 0.7 at most (see figure 3.9(c)).
But that means that the hypothesis that are produced by the speaker independent
decoder and used for the speaker adaptation in the second pass influence the behavior
of the speaker independent pass. Therefore the behavior of the different Gaussian
selection methods on the speaker adaptive pass could be better compared, if the
same hypothesis are used for all speaker adaptations in the tests of the second pass.
For tests with thresholds of 0.2 and 0.3 there is nearly no degradation, but the
maximal speed up is already 8%. The average degradation of the word error rate for
thresholds of 0.4 and higher is only 0.5. Therefore the system still can be made a
bit. faster by using higher thresholds with only little loss in accuracy. The results for
tests with a threshold of 0.4 are not only influenced by the Gaussian selection. They
are worse than expected because of a problem during speaker adaptation. For this
systems some of the Viterbi paths during speaker adaptation could not be traced
properly because of slightly to tight beams and therefore the speaker adaptation is
a little bit worse, what results in a worse word error rate. The different speaker
adaptations and there influence on the second pass can also be avoided by using the
same hypothesis for all decoder runs of the speaker adaptive pass. Therefore for the
following test of the speaker adaptive pass the speaker independent hypothesis of
the baseline systems first pass will be used.

3.4.2 Projection Search

For the evaluation of the projection search in the speaker adaptive pass the same
implementation and parameters were used as in the first pass (hyperplane distances
1.5, 2.0, 2.5, 3.0, 3.5 bounding 3, 6, 9 and 12 coordinate axes). Since the projection
search is working on the feature space without any precalculations, it can simply
be applied on the adapted feature space without adaptation. Therefore projection
search is easy to use for the second pass. For the adaptation of the feature space the
hypothesis of the baseline systems first pass were used to be able to compare the
results with other methods in the second pass. To speed up the speaker adaptation
projection search was also used during the alignment for the speaker adaptation.

The systems with projection search have the same characteristics in the second
pass as in the first. Again with smaller hyperplane distances and more bounded
dimensions the performance of the system gets worse (see figure 3.10(a)). Like in
the first pass, there is a minimum threshold of about 2.5 and a maximum number
of bounded coordinate axes onto which the performance stays constant. Above this
thresholds the performance decreases very quickly. Using the minimum threshold of
2.5 no speed up of the system can be achieved (see figure 3.10(b)).

The system might have a slightly better performance, if no projection search would
have been used during the speaker adaptation and therefore a speed up could be

3.4. SPEAKER ADAPTIVE DECODING 27

: e
m
B dm9 =
dim 12 —=
Ml basaline - 1
- R}
= n
o nl. LY
g Nt N8
30+
29 ¢

1 15 2 25 3 a5 4 45 5
Projection Treshold

(a)

35
3 i
-
g * £
£ E '
x 2} x
3
15+ v
L
1 : '
1 15 2 25 3 a5 4 45 5 45 50
Projection Treshold
(b)
o] TR . =
dmg = i
35 dm9 = 38 dmg =
dim 12 —=— dim12 =
M, baseline = 34 & baseling =
- Bt 4 . 33t
E b g -
o 32\ x 32 B
X N
= I EN 1 s 3t e
30 - = F 1 30 + \‘*ﬂ——a‘“&
. T e
ol 8 2|
28 + 4 28 5 - -
1] 5 10 15 20 25 30 35 40 45 50 1 15 2 25 3 35
GPF (%) RTF (%)
(d) (e)

Figure 3.10: Results of second pass with projection search

achieved. This has to be investigated in more detail in future experiments. Since
the projection search is based on the fact, that the dimensions of the feature space
are sorted according to their importance, the slower systems could also be a result
of the disturbed sorting of the dimensions after speaker adaptation. This could
cause, that the overhead of the projection search is higher, since more dimensions

28 CHAPTER 3. EXPERIMENTS

have to be bounded before the number of the most significant Gaussians reduces
significantly. The disturbed sorting of the dimensions also explains the high over-
head for all parameters and therefore the proportionality between the percentage of
evalunated Gaussians and the real-time factor (see figure 3.10(c)), which is unlike the
first pass. For the quality of the Gaussians, it does not matter how many dimension
are bounded. (see figure 3.10(d)). This is probably due to the disturbed sorting
of the dimensions caused by the speaker adaptation (FMLLR, MLLR, SAT-trained
models). Since less Gaussians are outside the bouding hyperplanes in the lower di-
mensions, the overhead for bounding does not reduce, when using a small threshold.
When using a smaller threshold and a appropriate small number of bounded coor-
dinate axes, the speed of the system can be improved. Figure 3.10(e) shows, that
the maximum speed up with a little but not significant loss of performance is 16%
while 14% of the Gaussians were evaluated.

3.4.3 BBI

Since the acoustic models of the second pass are modified during the speaker adapta-
tion, BBI trees with this acoustic models should only be used during the alignment
for the speaker adaptation. Since during the speaker adaptation the scoring func-
tion is called for every Gaussian mixture separately instead of for a set of Gaunssian
mixtures as during the decoding, the overhead of evaluating the BBI trees would
slow down the system. Therefore it makes no sense to use the BBI trees during
the speaker adaptation. To use the BBI trees for the decoding of the second pass,
speaker-adapted BBI trees should be used. The first method to achieve speaker
adapted BBI trees would be, to adapt precalculated BBI trees to every speaker
after the speaker adaptation. Since no algorithm is known, that performs this adap-
tation, it is not possible. The second method would be to build new BBI trees after
each speaker adaptation during the decoding. The second speaker adaptive pass
distinguishes between 36 speakers, for which an adaptation is performed. Building
a small BBI tree with depth 6 and a threshold of 0.7 already needs more than two
minutes. Therefore it would take over 80 minutes to build BBI trees for all speakers.
This is about 50% of the overall decoding time of the baseline system. Therefore a
speed up of more than 50% for the calculation of the acoustic scores would be neces-
sary to get a speed up for the overall system. That does not seem to be possible and
therefore it would slow down the system instead of speeding it up. Nevertheless, it
should be possible to get a speed up when building BBI trees on the adapted models
if a large amount of audio data has to be processed for every speaker.

It is possible to use BBI trees build on the acoustic models of the second pass,
but without adaptation. Therefore the second pass of the decoder was evaluated
using BBI trees without adaptation. Due to the missing adaptation the BBI trees
have to be somehow robust against the transformations processed during the speaker
adaptation. This is achieved by using flatter BBI trees with smaller thresholds, since
more Gaussians are in each leaf then and the transformations during the speaker

3.4. SPEAKER ADAPTIVE DECODING 29

adaptation have not such a big influence on the structure of the BBI trees. For tests
BBI trees with depths 10, 8 and 6 and thresholds 0.1,...,0.4 were used.

. s
a5+ depth
basaiine

3+

-~ 3\t

£

5 3z

> Nt
3“.
m.
28

0 005 01 015 02 025 03 035 04 045 05
B8| Treshoid

Figure 3.11: Results of second pass with BBI

Figure 3.11 shows, that the performance of the baseline system can be achieved
with a BBI tree of depth 8 and a threshold of 0.1 or with a BBI tree of depth 6 and
a threshold of 0.2. This verifies the assumption that flatter BBI trees with smaller
thresholds have to be used in the second pass compared to the first pass. Using
even smaller thresholds would not further speed up the system. When using a BBI
tree with depth 8 and a threshold of 0.1 the decoder needs 5 MB of additional disk
space and 22 MB of additional main memory during decoding, whereas the decoder
only needs 1 MB additional disk space and 6 MB of additional main memory when
using the BBI tree with depth 6 and a threshold of 0.2. When using one of these
systems, about 13% of the Gaussians are evaluated, what is about the same amount
as in the first pass. The speed up of these systems is 20%.

3.4.4 Clustering
Clustering with Divergence as Distance Metric

The clusters, which are precalculated on the acoustic models of the second pass,
could be used during the alignment for the speaker adaptation. Due to the im-
plementation of the speaker adaptation, the scoring function is processed for every
Gaussian mixture separately and therefore the nearest N clusters have to be found
for every Gaussian mixture. Since this results in an overhead instead of an speed
up, the clusters should not be used during the speaker adaptation.

When using clustering for Gaussian selection during the decoding of the second
pass, the clusters have to be updated for every speaker. This means, that the Cen-
troids, the assignment of the Gaussians to the clusters and the assignment of the
back-off vectors should be updated. Since the reassignment of the Gaussians and the
back-off vectors is slow, only the cluster centroids can be updated without additional
overhead. They are recalculated based on the assignment of the Gaussians to the

30 CHAPTER 3. EXPERIMENTS

centroids, which was calculated on the unadapted acoustic models, and the Gaus-
sians of the adapted acoustic models. To see, if this results in a better performance
for the system experiments with 1024 clusters build on the acoustic models of the
second pass have been performed. They were used with and without adaptation for
every speaker. For the tests 32 clusters were evaluated. The word error rate without
adaptation is 29.7%, whereas adapting the centroids results in a word error rate of
29.2%. This shows, that the word error rate can be improved, when updating the
centroids, without a lot of additional computation time.

3% 512 clusters *® 512 clusters
a5 | 1024 clusters —~=— | a5 1024 clusters —=—
2048 clusters = clusters
ol Mt
P < - B
2 £
5 2t § 32
= 3N 3
S \
30 \::-—.—..-E_.__ 30 ax,
—— _:—__-:-_—_-_.__‘ -
29 + - | 29 | ~
P - — — 28 : - >
1} 5 10 15 20 25 30 35 40 45 50 4 5 6 T 8 g 10
TopN GPF (%)
(a) (b)
o " 512 clusters —— :) ’ 512 clusters ——
ak | 1024 dusters —— | 1024 clusters —-
2048 clusters - 25 2048 clusters »
34 S
2 3
-~ B & o
£ g i
E 32+ E 15 F
= n 3
i 1
R 05
2
28 0 i
1 12 14 1.6 1.8 2 4 5 6 T a8] 10
RTF (%) GPF (%)

Figure 3.12: Results of second pass with divergence clusering

Using the centroid adaptation to adapt the clusters to every speaker, experiments
were performed using 512, 1024 and 2048 clusters. During the experiments 4, 8, 16
and 32 clusters have been evaluated. Figure 3.12(a) suggests that the word error
rate of the system mainly depends on the number of evaluated cluster, but not on
the overall number of clusters in the cluster set. This could be caused by the fact,
that reducing the number of Gaussians and increasing the quality of the Gaussians
compensates each other, when using different numbers of clusters. Looking at figure
3.12(b) it can be seen, that using more clusters results in Gaussians with a better
quality and therefore less Gaussians can be used to get the same performance, what

3.4. SPEAKER ADAPTIVE DECODING 31

results in less computation time for the evaluation of the Gaussians. Since it needs
more computation time to find the nearest clusters, when using more clusters the
speed up of getting better Gaussians does not result in a speed up for the overall
system (see figure 3.12(c)). At some point, the systems get a worse performance
without further speed up, what probably is due to the fact, that a worse system
needs to consider more paths and therefore gets slower, although evaluating less
Gaussians. This can also be seen in figure 3.12(d) . This might be due to the fact,
that more paths are considered during the decoding. The system with the best speed
up without loss in word error rate achieves a speed up of 36%, when evaluating 16
out of 1024 clusters.

Clustering with Euclidean Distance as Distance Metric

The overhead for searching the nearest N clusters can be reduced. when using Eu-
clidean distance instead of Mahalanobis distance.

% 1024 clusters
5 2048 clusters —=—
M &
_ 33
£
ﬁ krl
ST
30
28
28 s L i \) }
0 10 20 30 40 50 60 70 B8O
TopN
(a)
38 ”
clusterN 1024 —— » clusterN 1024 ——
55| clusterN 2048 —=— sl clusierN 2048 —=— |
34 34
. 33+ R
=
E 32t e 32
3 1 = 31
= \ =
30 t "‘L - 30 \\
N e
3 : k 2+
28 - . 28 s . 3
4 5 8 7 B 8 10 1 1.2 1.4 18 18 2
GPF (%) RTF (%)
(b) (c)

Figure 3.13: Results of second pass with Euclidean distance clustering

To investigate the reduction of the overhead for searching the nearest clusters with
Euclidean distance and the resulting quality of the selected Gaussians, experiments

32 CHAPTER 3. EXPERIMENTS

with 1024 and 2048 clusters have been performed. For the clustering Euclidean
distance was used too. During the experiments 8, 16, 32 and 64 clusters have been
evaluated. For the adaptation of the clusters to the different speakers the centroids
are updated after each speaker adaptation.

During the experiments it could be seen, that the performance again only depends
on the number of evaluated clusters (see figure 3.13(a)). This is different to the first
pass, where the performance depends on the proportion of the evaluated clusters.
This might be due to the fact, that the update of the centroids results works better,
when using more clusters. Since the same number of clusters can be evaluated
to achieve the same word error rate for different numbers of overall clusters, less
Gaussians have to be evaluated when using more clusters (see figure 3.13(b)). This
means, that the Gaussians have a better quality, when using more clusters. Since
less Gaussians have to be evaluated, the computation time needed for the evaluation
of this Gaussians is also less. Figure 3.13(c) shows that this leads to a better speed
up of the system, when using more clusters, although the overhead for finding the
nearest clusters is higher then. The speed up that can be achieved is 40%. when
evaluating 32 out of 2048 clusters with 5.9% evaluated Gaussians.

3.5 Comparison

When comparing the different Gaussians selection methods and trying to achieve a
high speed up without increase in word error rate two things are most important.
The first is the quality of the Gaussians, which are selected by the methods and the
second is the computation time, that is needed to find these Gaussians. In figures
3.14(a) and 3.14(b) can be seen that in both passes using clusters for the Gaussian
selection results in the best Gaussians, since least Gaussians can be used without
loss in word error rate. In out setup it makes no difference, which distance measure
is used for the clustering. During the first pass the BBI results in better Gaussians
than the projection search, what was expected due to the more complex selection
of the Gaussians. As can be seen BBI and projection search select Gaussians with
the same Quality in the second pass, what might be due to the missing speaker
adaptation of the BBI trees. With all methods it is possible to use at most one
third of the Gaussians that are used by the baseline system.

The speed up that can be achieved in evaluating less Gaussians has to be seen in
relation to the overhead that is produced to select these Gaussians. To select less
Gaussians, that give a good approximation for the value of the Gaussian mixtures
more time has to be spend on the search for these Gaussians. As can be seen in
figures 3.14(c) and 3.14(d) clustering is the slowest system, when evaluating the
same number of Gaussians, what means that clustering has the highest overhead for
finding the nearest Gaussians. The overhead depends on the distance measure as
can be seen in the figures for both passes, since for the same number of Gaussians
they have a quite large difference in the real-time factor. This difference gets smaller

3.5. COMPARISON 33

in the second pass. In the first pass, the system with the smallest overhead to find
the same number of Gaussians is the projection search, whereas the system with
the second most overhead is the BBIL. Since better results can be achieved in the
second pass, when using projection search with more bounded dimensions and using
shallower BBI trees, the projection search has a slightly higher overhead as BBI.

40
BBltdufm 10) —— » B8l (depth 8) ——
Projection Search (dim 3} —»— 15 | Projection (dim) =
EC] Clustaring (divergence, 1024 -— Clustering (divergence, 1024 -
Clustering (euclid, 1024 clusters) —» Clustering (suclid, 2048 clusters) o
- M+ baseline =
38 —~
=By o ®
& § \ £
e 3TH N 4 @ 32+
E i \ = 3
Li" s - a E
s . T e—— 30 F C. L =
= e .
29t . 1
3a : - : 28 T S S
0 10 20 30 40 50 60 0 5 10 16 20 25 30 35 40 45
GPF (%) GPF (%)
(a) (b)
[- 4 — - . - v
. B8l (depth 10) —— BB (depth 6) ——
55 | i Projection Search {dim 3) —=— | 35 Projection Search (dim 6) —=—-
. Clustering (r.ivu?mm. 1024 clusters) —= : Clustering (divergence, 1024 dusters .
Clustaring (euclid, 1024 ciustars) — o Clustering (euclid, 2048 dusters) —=—

5 baseline = 3t baseline =
45+ o~ . _ 25¢ b .
£ 4 ~ £ Z
E o o =] E ‘ o :

3-5 '7 __-/". 1 1-5 i J .
L v | i !
3 P 1
25+ 4 05t
2 0 —_— .
0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 4D 45
GPF (%) GPF (%)
(c) (d)
@ am{de?ma o *® aaniag:a =
Projection Search (dim 3) —=— jection Bi -
Clustering (divergence, 1024 clusters) = | s Clustering {‘_PM 1024 | S
Clustering (euclid, 1024 clusters) — =- Clustering (euciid, 2048 clusters) =
baseline 34 basalne =
—_ a3
§ B .\\ ;
e 37t 4 o 32 x
w \ \
= 4 . N E
N Nn N 4
36 o 4 .
- ol - s b
3 - L 30 n, % "'_'_f
5 o :I.. "'"“-—-‘-.
29 b
34 . 28
2 25 3 35 4 45 5 0 05 1 15 2 25 3
RTF (%) RTF (%)
(e) (f)

Figure 3.14: Best systems for both passes (left: first pass, right: second pass)

34 CHAPTER 3. EXPERIMENTS

Since the Gaussians selected by the projection search or the BBI have the same
Quality in the second pass, this results in a better speed up when using the BBI
instead of the projection search (see figure 3.14(f)). Due to the fact, that the quality
of the Gaussians, selected by the clustering, is much higher, a lot less Gaussians
can be used to achieve the same word error rate. This means, that although the
overhead is higher for the Gaussian selection with clustering, the speed up that
can be achieved is higher for clustering than for BBI or projection search in the
second pass. Since clustering with the different distance measures results in a similar
quality of Gaussians and the overhead is a lot less when searching the nearest clusters
with Euclidean distance, the highest speed up can be gained, when evaluating the
clusters with Euclidean distance. The same behavior between the different Gaussian
selection methods can be seen in the first pass (see figure 3.14(e)). Table 3.2 shows
the speed up, that can be achieved for the different Gaussian selection methods,
without loss in word error rate. When trying to build a system, that is faster than
the baseline system and that can be worse than the baseline, the faster Gaussian
selection methods might be better. When speeding up the system with a loss in
word error rate, the overhead for the different methods stays about the same. but
the number of selected Gaussians can be reduced more, when having more Gaussians
before the reduction. This is the case for the faster methods and therefore the
reduction in computation time needed for the evaluation of the selected Gaussians
can be reduced more. what results in a better speed up than for the slower methods.

| First pass [

Proj. search | BBI | Clusters (diverg.) | Clusters (Eucl.)
WER 35.8% 35.8% 35.7% 35.5%
Speed up 16% 18% 25% 32%
GPF 19% 9.1% 2.6% 2.7%
Main memory <<1MB 80MB 20MB 20MB
Disk space OMB 13MB 5MB 5MB

Second pass

Proj. search | BBI | Clusters (diverg.) | Clusters (Eucl.)
WER 29.7% 29.8% 29.7% 29.4%
Speed up 16% 20% 36% 40%
GPF 14% 13% 6.0% 5.9%
Main memory <<1MB 6MB 20MB 40MB
Disk space 0MB 2MB 5MB 9MB
Adaptable to spk. - NO YES YES

Table 3.2: Systems with the best speed up for the different Gaussian selection
method

The differences of the methods between their behavior in the first and the second

3.5. COMPARISON 35

pass are partly caused by their ability of speaker adaptation. Since the clustering
and the BBI are trained on the SAT-acoustic models, they should be updated for
every speaker. The update of the centroids only seems to be sufficient for the update
of the clusters and therefore the clusters are adaptable to the speaker, whereas it
is not possible to adapt BBI trees. This results in a worse behavior for the BBI in
the second pass compared to the projection search, which just works on the acoustic
models without precalculation and therefore needs no speaker adaptation.

[BBI [Cluster]
Number of leafs | Main memory || Number of clusters | Main memory
64 5 MB
256 19 MB 512 10 MB
1024 72 MB 1024 20 MB
4096 280 MB 2048 40 MB

Table 3.3: Main memory needed for BBI and clustering

[| BBI [Clusters (divergence) | Clusters (Euclid) |

Speed up st pass | 14% 25% 32%
WER 1st pass 35.9% 35.7% 35.5%
Speed up 2nd pass | 20% 36% 36%
WER 2nd pass 29.8% 29.7% 29.4%
Main memory 21MB 20MB 20MB
Disk space 4 MB 5MB 5MB
Leafs/Clusters 256 1024 1024

Table 3.4: Speed up for the different Gaussian selection methods using the same
amount of memory

The different methods and their different adaptability need different amounts of
memory. Since the projection search works directly on the acoustic models, it needs
only a few KB of main memory and no disk space, while the precalculated data
structures of the other methods need at least some MB of disk space and main
memory. The memory needed for clustering is about the same for the different
distance measures and both passes. It mainly depends on the number of clusters
(see table 3.3). The memory of a BBI tree also depends mainly on the number of
leafs. When building a BBI tree with the same number of leafs than clusters, the
BBI tree needs a lot more memory (see table 3.3). This is caused by the fact, that
the Gaussians can be located in more than one leaf while the clusters are disjoint.
When examining the memory, that is needed by the best systems for every Gaussian
selection methods, no real conclusion can be drawn on the memory behavior and

36 CHAPTER 3. EXPERIMENTS

the resulting speed up of the system (see figure 3.2). Speed ups close to the best
speed up can also be achieved, when using more or less leafs or clusters, what would
result in very different memory amounts. Therefore it is always a trade-off between
speed up and needed memory. As can be seen in table 3.4, higher speed ups can be
achieved for the clustering when using the same amount of memory for the clustering
and the BBIL. That means, that the BBI needs more memory than the clustering.
In addition to that the memory needed by the BBI increases a lot faster than the
memory needed for the clusters, what again is due to the fact, that Gaussians can
be located in multiple leafs. Besides that, the amount of memory that has to be
used is more flexible, when using clusters, since any number of clusters can be used,
while the BBI trees are balanced and therefore the number of leafs always is a power
of 2.

Chapter 4

Conclusions and Future Work

During the evaluation of the different Gaussian selection methods, the quality of
the selected Gaussians and the time needed for selecting the Gaussians were the
main factors for the speed up of each system. The trade-off between this two factors
varies for the different methods, what results in different speed ups. The speed up
that can be achieved with a certain method is also dependent on the amount of
memory, that is available Therefore it is also a trade-off between the speed up and
the amount of used memory.

It is possible to build a system that needs only a few KB of additional memory for
the Gaussian selection. This can be done in using projection search for the Gaussian
selection. With projection search it is possible to speed up both passes of the speech
recognizer without loss in word error rate. It does not even need to be adapted to
the speakers, since it works directly on the acoustic models. A better speed up with
projection search can be achieved, when sorting the dimensions according to their
discriminative power, which is done beforehand by performing LDA. Less speed up
can be achieved in the second pass, since the ordering of the dimensions gets worse
due to the speaker adaptation and the speaker adaptive trained acoustic models in
the second pass.

Using a system with a BBI tree for the Gaussian selection a higher speed up can be
achieved than with the projection search. Since the BBI tree has to be precalculated
some disk space and also some main memory is needed for this Gaussian selection.
This BBI tree would have to be adapted to each speaker. Although this is not
possible, using a not adapted BBI tree also a higher speed up can be achieved as
with projection search in the second pass.

When using clustering with divergence as Gaussian selection an even higher speed
up as with the BBI can be achieved while less memory is needed. During the
evaluation of the clusters it is best to use the Gaussian of each Gaussian mixture
that is nearest to a cluster centroid to calculate a back-off value. To use the clusters
for the speaker adaptive pass it is sufficient to update the cluster centroids for
each speaker. Searching for the nearest clusters during the decoding needs a lot
of computation time, when using divergence as a distance measure, therefore it is

37

38 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

better to use Euclidean distance for the clustering and the search of the nearest
clusters.

Clustering with Euclidean distance gains the best trade-off between speed up
and word error rate for large systems. With this method a total speed up for both
passes of 34% can be achieved without loss in word error rate. This includes speaker
adaptation in the second pass. It is possible to reduce the overhead for searching
the nearest clusters further, what will result in a larger speed up. Besides the time,
that is needed for the evaluation of the Gaussian mixtures, a lot of computation
time is also needed to evaluate the complex language model, what bounds the speed
up that can be achieved using Gaussian selection.

One possibility to reduce the overhead for finding the nearest clusters is to perform
a second clustering with less clusters on top of the first clusters. During the decod-
ing first the nearest clusters of the second layer are selected and according to this
preselection the clusters of the first layer are selected. This would reduce the over-
head, since less distances between each observation vector and the cluster centroids
would have to be calculated, but due to the more complex selection of the nearest
clusters of the first layer, more parameters have to be tuned to get a good speed
up. It could also be performed with more than two layers building tree-structured
clusters.

Different other possibilities should be tested on their ability to get more speed up.
Instead of using Euclidean distance a weighted Euclidean distance could be used
for the clustering or a split and merge algorithm could be used for the clustering
instead of the k-means like algorithm. Both might result in better clusters without
additional overhead during the decoding. It might also be possible to reduce the
number of clusters and therefore the overhead for the selection in using intersecting
clusters instead of disjoint clusters. Therefore more complex assignments of the
Gaussians to the centroids should be tested. Intersecting clusters would probably
need more memory. Also further test on the back-off strategy could be performed. It
could be tested how high the loss in word error rate is, when using a single Gaussian
of a Gaussian mixture as back-off instead of evaluating all Gaussians as back-off.
Maybe a higher speed up can be achieved, when using more than one Gaussian as
back-off.

During this thesis the first and second pass have been examined separately. It
might be possible to get more speed up without loss in word error rate, when tuning
both passes together. It does not seem necessary to have very good hypothesis
after the first pass. Good hypothesis might be sufficient to perform a good speaker
adaptation during the second pass. Therefore it should be tested if a better speed up
can be achieved, when using a fast first pass and an accurate second pass. Instead of
considering both passes together, it might also be useful to combine two Gaussian
selection methods, to get a better speed up. For example a preselection with a
small number of clusters or a shallow BBI tree and projection search based on this
preselection could be performed. After tuning the parameters for the Gaussian
selection it might be useful to revisit the other tuning parameters of the system.

39

It might be possible for example to widen the beams without significantly slowing
down the system. This could even result in a better word error rate.

Besides speeding up the evaluation of the Gaussians during the decoding, it would
also be possible to speed up the evaluation of the Gaussians during the alignment of
the hypothesis for the speaker adaptation. Probably this has more negative effect
on the word error rate than positive effect on the speed, but to be sure it should
be investigated further. Another possibility to speed up the system even more is
probably to speed up the evaluation of the language model, which needs a lot of the
computation time during the decoding.

Appendix A

Mathematical Basics

A.1 Evaluation of Gaussian Mixtures

For a given observation vector z the probability for a state w containing a multi-
variate Gaussian mixture with diagonal covariance matrices is defined as:

N
p(z|w) = Z CuiN(Z, phois o) (A.1)
i=1
The variable ¢,; is the mixture weight for the ith Gaussian of state w. The weights
of a state w fulfill the equations Zi“’l ¢oi = 1 and ¢,; > 0 whereas N, is the number
of Gaussians of state w. A single Gaussian N (z, y,,, 0,) can be calculated as:

1
N(z, pos, 8u) = —————0xp
(2m)" |2,

—3z—p) "B Nz i) (A.2)

Therefore the log probability of a single Gaussian with a diagonal covariance
matrix of dimension K can be written as

, 1 K K (2 — poi)?
logN (z, o, 0) = =5 [log((27)" JIESEDD (—JHL")] (A.3)
i=1 wj

=1

A.2 Calculation of a cluster Gaussian

Given the observation vectors o;, the mean vectors for K diagonal Gaussians be-
longing to a cluster can be calculated as

G : e = E(o,;)f‘_‘_}i,’r'il)‘,v == Z or (A.4)

I‘:(k—l‘]a\r

whereas their covariances can be calculated as

41

E ((o;
1

—)

kN-1

2) kN -1
i=(k=1)N

APPENDIX A.

— 8(02 kN—-1

i=(k—1)N — E(#k)2

= % 2 d-u

i=(k—1)N

MATHEMATICAL BASICS

(A.3)

assuming that each Gaussian approximates the distribution of N observation vec-

tors o;.
calenlated as follows:

Gy s

KN-1

1 KN-1
= FO)S =gy 2 o
1 K kN-1
~ KN Z Z i
k=1 i=(k-1)N
1 K 1 kN=-1 1 K
= 22N D =g M
k=1 i=(k—1)N k=1
KN-1 —— .
”m)z) = E(Of)f‘£ T Jf:'(ﬂ*f-m)2
o? —

K K

= I% = D, 4 *Z#§+Z#i} =t

1
:ETZ

[K

k=
[K

1

| 1
:EZJ\
(T,

i=0
K

k=1

kN1 K

Y o-Ni2)+3u| -
i=(k—1)N k=1

kN-1

2

or—pk | + D mi| — pm

i=(k—1)N

K

= 1% S R+> u- K#m]

L k:

1

k=1

A.3 A K-means like Algorithm

To partition a set of Gaussians into k clusters a k-means like algorithm can be used.

The procedure is as follows:

The mean vector and the covariances of the cluster Gaussian then can be

(A.7)

A.3. A K-MEANS LIKE ALGORITHM 43

1. Select k initial centroids of the type belonging to the distance metric that is
used (e.g. mean vectors or Gaussians).

2. Repeat steps 3 and 4 until convergence criterion is satisfied (e.g. partitions
fixed, centroids fixed, change of average distance measure lower than a given
threshold or given number of iterations reached)

3. Determine to which cluster (centroid) each Gaussian belongs. Therefore calcu-
late the distances between each Gaussian and each centroid and assign Gaus-
sian to centroid with smallest value for the distance measure (e.g. weighted
Euclidean distance or divergence)

4. For each cluster, calculate a new centroid from the subset of Gaussians which
belongs to the cluster. (e.g. new mean vector or approximation of the Gaus-
sians by a single Gaussian (see A.2) depending on the distance metric)

After the algorithm converges, the Gaussians are partitioned in k clusters and for
every cluster a centroid exists.

Appendix B

Data Structures

B.1 BBI Trees

BB|-Tree cha| 258] nore
—r[11] []
int cdive BBINodssletN]
int coN —_— da cadnde «—— dimension
int degthiN Mod posifion «+«— hypemplone
BBILeds * BBIL edfs[dN]
- UCHAR aowi
Mearay Churk ,
[DOCTTET T Arov ot Gousson imces o
T evaluate for a codebock
O O 1]

Figure B.1: Data structure of a BBI tree

Since the BBI tree data structure can be implemented in different ways, the
implementation used in this work (see figure B.1) will now be described in more
detail. As a unique identifier every BBI tree has a name. Furthermore it has a flag,
that shows if the BBI tree is activated. To save memory space the nodes and leafs
of the tree are stored in arrays, where the structure of the tree is given implicitly.
The locations of the nodes and leafs in the arrays are defined by their positions
in the tree. Figure B.2 shows the structure of the arrays for a tree of depth 2.
The nodes in the nodes array contain the coordinate axis that is divided by the
hyperplane belonging to that node and the position where the hyperplane divides

45

46 APPENDIX B. DATA STRUCTURES

this coordinate axis. A second list contains the leafs of the tree, whereas every leaf
has a list with entries for every Gaussian mixture. The entries are the number of
Gaussians of the Gaussian mixture in the subspace of the leaf and the indices of
this Gaussians. All of this indices are stored in larger memory blocks to reduce
cache misses. For all Gaussian mixtures with only one Gaussian in a leaf an array
containing the indices of the Gaussians is used to avoid the occurrence of duplicate
arrays with only one Gaussian index in the memory block.

Nodes Array BBI Tree Leafs Array

Node 1

— / Leaf 0
Node 1 Leaf 1
Node 2 Node 3
Node 2 \ / Leaf2
Node 3 Leaf 3
Leaf 0 Leaf 1 Leaf2 Leaf 3

Figure B.2: Example for the storage of the Nodes and Leafs within a BBI trees

B.2 Clustering

When using clustering to speed up the speech recognizer a data structure B.3 is
created for each set of clusters. This cluster set data structure can be identified by
a unique name. First it contains some variables for handling the data structure.
This are the state of activity, the type of the distance measure, the given number
of clusters, the number of clusters to be evaluated during decoding, the number of
Gaussian mixtures, that belong to this set of clusters, the dimension of the feature
space and a list with the numbers of Gaussians assigned to each cluster. Besides that
it contains the precalculated value log((27)") for a faster evaluation of the cluster
Gaussians. If the distance measure is a weighted Euclidean distance, it also contains
the average covariance matrix over all Gaussians, that belong to the set of clusters.
This covariances can be used as the weight for the weighted Euclidean distance.
The centroids of the clusters are stored in two separate sub data structures. All
mean vectors for the clusters are stored in a single matrix and if divergence is used
as the distance measure, the covariance matrices for the clusters are stored in an
additional list. This matrices contain their precalculated determinants for a faster
calculation of the cluster Gaussian values. The assignment of the Gaussians to the
clusters is specified using a list for each cluster. Each of the lists contains an entry
for each Gaussian mixture. This entries specify the indices of the Gaussians within
the Gaussian mixture, which belong to this cluster. During the decoding the list of

B.2. CLUSTERING 47

Gaussians that have to be evaluated, if the cluster belong to the nearest clusters,
can be found easily using the index of the Gaussian mixture with this list.

Austase | 285] name number of Goussions FCoMdrix dhr| 255) nare
—"| [[] | | aftached to a cluster ——
int adive Int useN
intaudic infdustarN] diste G Int drr
int dustarN I J 1 | : I flod ot Neat{d] InverseDicgond Elerents
It ———-——-[
m‘:: FCowdrix AvercgeCovalonceMdrix —d [I I J
g +— single global covanance mafrix
floa o ~— clusterN means of cenfroids
FMdiix MemVedas | FCo/Marix[dustaN] Covaloness of Quste Gassias
_—- 1—.
|

Qusters{dustaN]* Custer B uckets{a]

—= | tha N

[| [| | #——— aray of Goussion indices in
a codebook atached to a
Cluster

Figure B.3: Data structure of a cluster set

Appendix C

User Interface

C.1 Projection Search

When using the projection search implementation of this thesis, every Codebook
has to contain a threshold for the distance of the bounding hyperplanes to the
observation vector and the number of dimensions, that have to be bound during the
projection search. Since in most cases many codebooks are used, it is easier to use a
description file, that specifies the parameters for all codebooks, instead of specifying
the parameters for every codebook separately at the start up. The description file
consists of three columns, whereas the first contains the name of a codebook, the
second contains the number of bounding dimensions for this codebook and the third

contains the threshold (see C.1).

Name of codebook Dimensions to be bound Distance of
A-b 3
A-e
A-m
B-b
B-e
B-m
C-b

W Wwwww

BN MNNMN N NN

hyperplanes

(=il ellelelNsNeNe

Table C.1: Example for a projection search description file

The creation of a description file with the same parameters for all codebooks can

be done for example with the following TCL-script.

number of bounded dimensions
set depth ’’3”’

49

50 APPENDIX C. USER INTERFACE

threshold for the hyperplanes
set threshold ’’2.0”’

set descPath ’’../desc’’
set descFile $descPath/desc.tcl

source $descFile

_________ e e e B i i e e s R D . A S S . . o e e e e
init modules

PO I S —— - —= ——

featureSetInit $SID
codebookSetInit $SID

creation of the description file

set fp [open ’’$descPath/projectionDesc’’ w]

adding of entry for every codebook to the description file
foreach cb [codebookSet$SID] { puts $fp ’’$cb $depth $threshold’’ }
close $fp

To use the projection search, the description file has to be loaded after the ini-
tialization of the codebooks during the start up of the decoder. This has to be done
using the command:

codebookSet$SID readProjectionDesc <filename>

In addition to that, the projection search has to be activated.

codebookSet$SID set -projOn <active {1,0}>

This command also deactivates all other Gaussian selection methods. If the projec-

tion search shall not be used during the speaker adaptation, it has to be deactivated
during this time using the same command.

C.2 BBI

When using BBI trees as Gaussian selection some precalculation is necessary. At
first it has to be specified, which codebook belongs to which BBI tree. Therefore a
description file is used. This file consists of two columns. The first column contains
the name of a codebook, whereas the second contains the name of the BBI tree it
belongs to (see C.2).

C.2. BBI 51

Name of codebook Name of BBI

A-b OneForAll
A-e OneForAll
A-m OneForAll
B-b OneForAll
B-e OneForAll
B-m OneForAll

C-b OneForAll

Table C.2: Example for a BBI description file

When using one BBI tree for all codebooks, this file can be build using a script
similar to the one used to create the projection search description file.

name of the BBI tree
set name ’’OneForAll’’

set descPath ’7’../desc’’
set descFile $descPath/desc.tcl

source $descFile

featureSetInit $SID
codebookSetInit $SID

creation of the description file

set fp [open ’’$descPath/bbiDesc’’ w]

adding of entry for every codebook to the description file
foreach cb [codebookSet$SID] { puts $fp ’’$cb OneForAll’’ }
close $fp

Using this description file the BBI trees have to be build. This has to be done
during the preprocessing using for example the following script.

Settings for bbi
e e e e e e e e e e i e e e e e e e o o o B o o o e e i e —i—

52 APPENDIX C. USER INTERFACE

depth of the BBI trees

set depth ’’10’’

threshold for the bounding boxes
set gamma ’’0.27°

set descPath ’’../desc’’
set descFile $descPath/desc.tcl

source $descFile

i e T e e e e e e e e e e e e e T L e T e
Init Modules

—— -—— = e i i i e S S D s, S e i e S e i it e i

featureSetInit $SID
codebookSetInit $SID

initialize all BBIs as specified in the description file bbiDesc
bbiSetInit $SID -desc ’’bbiDesc’’

————————— —_——— —_— e e e e e e i e

build all specified BBI trees with certain depth and threshold
codebookSet$SID makeBBI -depth $depth -gamma $gamma -verbose 1

save BBI trees

codebookSet$SID saveBBI ’’$descPath/bbiTree$SID-$depth-$gamma.gz’’

exit

To use this precalculated BBI trees during the decoding, the BBI description file
and the BBI file have to be loaded during the start up after the initialization of the
codebooks. This can be done using:
bbiSetInit $SID -desc <bbiDesc> -param <bbiFile>
In addition to that the use of the BBIs during the decoding has to be activated:

codebookSet$SID set -bbiOn <active {1,0}>

This also deactivates the other Gaussian selection methods. If the BBI tree shall not

C.3. CLUSTERING 53

be used during the speaker adaptation, each of the BBI trees has to be deactivated
during this time with the following command.

codebookSet$SID.bbi(<bbilndex>) configure -active <active {1,0}>

C.3 Clustering

The precalculation, when using clustering as Gaussian selection, is similar to the
one of the BBI trees. Again a description file has to be created, which specifies the
assignment of each codebook to a set of clusters. The file contains two columns with
the names of the codebooks and the names of the according cluster sets. This file
can be created using the same script as for the BBI description file for example.

For the creation of the clusters a script similar to the one for making the BBI
trees could be used.

output more informations

set verbose 1

number of iterations of the k-means like algorithm

set iterN 50

number of clusters in each cluster set

set clusterN 1024

type of distance measure for the clustering

set euclid 0 {0 = DIVERGENCE, 1 = EUCLID, 2 = WEIGHTED EUCLID}
type of back-offs

set clsBackOffs O {0 = NONE, 1 = ONE GAUSSIAN}

set descPath ’’../desc?’
set descFile $descPath/desc.tcl

source $descFile

— ot i e i et e i it g i
init modules

_— - P o e

featureSetInit $SID
codebookSetInit $SID

initialize cluster set as specified
in the description file clusterSetDesc
clusterSetInit $SID -desc ’’clusterSetDesc’’

54 APPENDIX C. USER INTERFACE

S S S —— S P ——
make cluster sets

— e e e R

make certain number of clusters for each specified set of clusters

using a certain distance measure

codebookSet$SID makeClusterSet -clusterN $clusterN -iterN $iterN
—euklid $euclid -verbose $verbose

make back-offs, if requested and save sets of clusters to file
if {$clsBackOffs == 0} {
codebookSet$SID saveClusterSet
'’ clusterSet$SID-${clusterN}-${iterN}-e${euclid}.gz"’
} else {
codebookSet$SID makeClusterSetBackOffs
codebookSet$SID saveClusterSet
» 7 clusterSet$SID-${clusterN}-${iterN}-bo-e${euclid}.gz’’

When using Euclidean distance it is also possible to make more difficult assign-
ments. than assigning each Gaussian to the nearest centroid. Therefore two different
types of weighted Euclidean distance can be used as distance measure. The two
weights are the inverse of the clusters average covariance (assignment = 1) and the
inverse of the square root of the product of the clusters average covariance and the
centroid covariance (assignment = 2). To create intersecting clusters, the Gaussians
are assigned to each centroids, which is closer than a certain threshold. This has to
be done before assigning the back-offs with the following command:

codebookSet$SID makeClusterSetFinalAssignment
-assignment <assignment> —threshold <threshold>

After creating the clusters, it is possible to use them during the decoding. There-
fore the description file and the file with the clusters have to be loaded using:

clusterSetInit $SID -desc <clusterDesc> -param <clusterFile>

After loading the clusters, the number of nearest clusters that should be used to
calculate the score during the decoding has to be specified for every set of clusters.

set clsN [codebookSet$SID configure -clsN]
for {set clsX 0} {$clsX < $clsN} {imcr clsX} {
codebookSet$SID. clusterSet ($clsX) configure -topN <topN>

}

C.3. CLUSTERING 55

Afterwards the use of the clusters has to be switched on:

codebookSet$SID set -clusterOn <active {1,0}>

When activating the clustering, the other Gaussians selection methods are deac-
tivated. If the clusters shall not be used during the estimation of the speaker adap-

tation, they have to be deactivated during this time using the command:

codebookSet$SID.clusterSet (<clusterSetIndex>) configure
-active <active {0,1}>

To update the centroids after the speaker adaptation is applied, the following com-
mand has to be used:

codebookSet$SID updateClusterSetCentroids

APPENDIX C.

USER INTERFACE

Bibliography

[AMO1]

[BenT75]

[Boc93|

(BUYS)

[FR96]

[Fuk90]

[Gal97]

[Gal9g]

[GKY99]

R. Auckenthaler and J. S. Mason. Gaussian Selection Applied to Text-
Independent Speaker Verification. Odyssey Speaker Recognition Work-
shop, June 2001.

J. L. Bentley. Multidimensional Binary Search Trees Used for Associa-
tive Searching. In Proc. Commun. Ass. Comput. Mach., volume 18(9),
pages 509-517, Sept. 1975.

E. Bocchieri. Vector Quantization for the Effizient Computation of Con-
tinuous Density Likelihoods. In Proc. ICASSP, volume II, pages 692
695, Minneapolis, 1993.

P. Beyerlein and M. Ullrich. Hamming Distance Approximation for
a Fast Log-Likelihood Computation for Mixture Densities. In Proc.
Eurospeech-1995, pages 1083-1086, 1995.

J. Fritsch and I. Rogina. The Bucket Box Intersection (BBI) Algorithm
for Fast Approximative Evaluation of Diagonal Mixture Gaussians. In
Proc. ICASSP '96, pages 837-840, Atlanta, GA, 1996.

Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition
(2nd ed.). Academic Press Professional, Inc., San Diego, CA, USA.
1990.

M. Gales. Maximum likelihood linear transformations for hmm-based
speech recognition. Tech. Report CUED /FINFENG /TR291, Cambridge
University, 1997.

M. Gales. Semi-Tied Covariance Matrices for Hidden Markov Models. In
Proc. IEEE Transactions Speech and Audio Processing, volume 7, pages
272-281, 1999.

M. Gales, K. Knill, and S. Young. State-Based Gaussian Selection In
Large Vocabulary Continuous Speech Recognition Using HMMs. In
Proc. IEEE Trans. Speech and Audio Processing, volume 7(2), pages
152-161, 1999.

87

[HHO1]

[HS97]

[LW95]

[mis]

INN96]

[OFN97|

[Ort98]

[Rab90]

[SHH*99]

[SMFWO01]

[SPZ05)

BIBLIOGRAPHY

Xuedong Huang and Hsiao-Wuen Hon. Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2001. Foreword By-Raj Reddy.

§. M. Herman and R. A. Sukkar. Variable Threshold Vector Quantiza-
tion for Reduced Continuous Density Likelihood Computation in Speech
Recognition. Automatic Speech Recognition and Understanding Work-
shop, December 14-17 1997.

C. J. Leggetter and P. C. Woodland. Maximum Likelihood Linear Re-
gression for Speaker Adaptation of Continuous Density Hidden Markov
Models. In Proc. Computer Speech and Language 9. pages 171-185, 1995.

NIST Spoken Language Technology Evaluation and Utility.
http://www.nist.gov/speech/tools/index.htm.

S. Nene and S. Nayar. Closest Point Search in High Dimensions. In
Proc. CVPR 96, pages 859-865, 1996.

S. Ortmanns, T. Firzlaff, and H. Ney. Fast Likelihood Computation
Methods for Continuous Mixture Densities in Large Vocabulary Speech
Recognition. In Proc. Eurospeech ‘97, pages 139-142, Rhodes, Greece,
1997.

S. Ortmanns. Effiziente Suchverfahren zur Erkennung kontinuirlich
gesprochener Sprache. PhD thesis, Rheinisch-Westfalischen Technischen
Hochschule Aachen, Nov. 1998.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition. Readings in speech recognition, pages
267-296, 1990.

N. Strém, L. Hetherington, T. J. Hazen, E. Sandness, and J. R. Glass.
Acoustic Modeling Improvements in a Segment-Based Speech Recog-
nizer. In Proc. IEEE Automatic Speech Recognition and Understanding
Workshop, pages 139-142, Keystone, USA, 1999.

H. Soltau, F. Metze, C. Fugen, and A. Waibel. A One Pass Decoder
Based on Polymorphic Linguistic Context Assignment. In Proc. Auto-
matic Speech and Recognition Workshop (ASRU), Trento, Italy, 2001.

G. Saon, D. Povey, and G. Zweig. Anatomy of an extremely fast LVCSR
decoder. In Proc. Interspeech 2005 9th European Conference on Speech
Communication and Technology September 4-8 2005, pages 549552, Lis-
bon, Portugal, 2005.

BIBLIOGRAPHY 29

[WF97] M. Woszczyna and J. Fritsch. Codebuchiibergreifende Bucket-
Box-Intersection zur schnellen Berechnung von Emissionswahrschein-
lichkeiten im Karlsruher VM-Erkenner. Verbmobil, July 1997.

[WFK*96] A. Waibel, M. Finke, T. Kemp, D. Gates, M. Gavalda;, A. McNair,
A. Lavie, L. Levin, L. Mayfield, M. Maier, I. Rogina, K. Shima, T. Slo-
boda, M. Woszczyna, P. Zhan, and T. Zeppenfeld. JANUS-II — Trans-
lation of Spontaneous Conversational Speech. In Proc. ICASSP 96,
pages 409-412, Atlanta, GA, 1996.

[WSTI95] T. Watanabe, K. Shinoda, K. Takagi, and K. Iso. High Speed Speech
Recognition Using Tree-Structured Probability Density Function. In
Proc. ICASSP’95, volume 1, page 556, Detroit, USA, 1995.

