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14.1 Introduction
Humans converse with each other to communicate and to develop ideas interac-
tively in the presence of imprecise and under-specified information. In an increas-
ingly multicultural world, such communication of ideas necessitates communi-
cation across language boundaries. With more than 7,000 languages spoken on
our planet, however, such boundaries cannot be overcome by language learning or
human translation effort alone and require technical solutions that can help me-
diate between humans and machines. To be effective, such mediation cannot be
accomplished by text translation alone, as human communication expresses itself
in several modalities. Speech, discourse, dialogue, handwritten or texted text, road
signs, gestures, eye gaze, and facial expressions all participate in human commu-
nication and complement text as an expression of thoughts and ideas, so that our
messages must be transmitted multimodally across language barriers as well.

Among those modalities, speech may perhaps be the most important (next to
text), because we express ourselves in multiple languages and that requires us to
translate language in its spoken as well as textual form. Technologies that aim to
take on such cross-lingual interpretation duties of speech are commonly known as
speech-to-speech translators. In the following, we will begin with a discussion of
speech-translators and their underlying technology. We will then show how their
design and realization must be closely matched to their intended use case and how
they must be field-able and adaptive to respond to the needs of their deployment.
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Glossary

Automatic speech recognition: the signal spoken in language is recorded by micro-
phone, processed, and converted to text (speech to text).

Code switching: mixing words from different languages, declination rules and com-
pounding.

Consecutive interpretation typically interprets a few sentences, one at a time, before
giving the dialogue partner a chance to respond.

Cross-lingual subtitling: a mixture of consecutive and simultaneous interpretation
where interpretation is performed on media content and delivered textually as
subtitles.

Earplugs and pixel-buds: a set of ear-plugs provides input and output for a speaker
attempting to dialogue with others.

Electromyography: electrodiagnostic medicine technique for recording the electrical
activity produced by muscles.

JANUS system was the first speech translation system presented to the public in the USA
and Europe in 1991.

Linguistic scalability/portability. Implement the technologies developed not only in
one or two languages, but extend it to cover communication among all languages
and cultures on our planet.

Neural machine translation: greater abstraction and greater ease of integration is
obtainable through neural translation approaches, where internal (“hidden”)
abstractions are generated as a side-effect of training many layers of neural structures.

Out-of-vocabulary words (OOVs): when words are missing in the pronunciation
dictionary of a recognizer, leading to one or more substitution errors. Named entities
and specialty terms are particularly prone to this type of problem.

Simultaneous interpretation attempts to recognize and translate spoken language in
parallel to the input speech without making the speaker pause.

Speech synthesis: text in the target language is output in spoken language (text to
speech).

Speech translation goggles translate output from a simultaneous (lecture) translation
system delivered textually via heads-up display goggles.

Statistical machine translation: greater speed of learning and better performance
and generalization to broader topics, but still requires collections of large parallel
corpora.

Targeted audio: synthetic speech output in a speech translation system delivered
selectively by directional loudspeakers.

Text-to-speech synthesis (TTS): TTS makes translated sentences audible in the target
language and thus permits full speech-to-speech dialogues between two participants.
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We will then also consider additional modalities and flexibilities between them in
view of developing such seamless and language-transparent communication tools.

In its most direct form, a speech-to-speech translator could be constructed
by combining a speech recognition engine (speech-to-text (STT)) with a machine
translation (MT) engine, so as to translate a spoken sentence from language A to
language B. If a response from a speaker in language B is to be translated into
language A, we will also need recognition and translation engines in the reverse
direction. Decomposing the problem in this fashion, however, vastly oversimplifies
the problem of cross-lingual communication.

If we recall that the goal of cross-lingual communication and dialogue is to
effectively communicate ideas, several orthogonal dimensions emerge that we must
carefully consider to achieve a thoughtful and effective design.

1. Spoken Language. The first set of such issues pertains to the problems asso-
ciated with translation of spoken language.

Errors. Speech recognizers make errors and translation engines must
be robust against such errors or attempt to correct for them.

Spoken language. Speech is disfluent and hardly corresponds to syn-
tactically well-formed text. Machine translation must therefore be
adapted and trained for spoken language instead of text.

Punctuation, casing, and disfluencies. Human speech misses punc-
tuation markers and casing, which otherwise provide important
clues for translation. Instead, speech contains an array of poten-
tially confusing disfluencies (hesitations (aeh, hum, uhm, er, etc.),
false-starts, and fragments).

Prosody. Speech (unlike text) encodes additional information by way
of pitch, intensity and rhythm, which transmit meta-level signals,
such as emotion, gender of the speaker, emphasis, discourse infor-
mation, social cues, degree of formality, etc.

2. Interaction Style. The second dimension pertains to the type and style of
translation that depends on the situation and use case.

Consecutive interpretation typically interprets a few sentences, one at
a time, before giving the dialogue partner a chance to respond, again
with a short utterance of one or a small number of sentences. Pro-
cessing can be more accurate and communication more effective in a
face-to-face dialogue situation, as both participants are always aware
of the mediation provided by translation and are thus generally more
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cooperative. Also, interactive error handling can be employed. Con-
secutive interpretation, however, introduces a delay that slows down
communication. Typical use cases are given by pocket translators, or
bi-directional dialogue translators.

Consecutive interpretation in combination with dialogue processing
aims to emulate the ability of human interpreters and to carry out
monolingual dialogues in addition to interpreting between the lan-
guages.1 In this way, certain transactions can be handled in a more
compressed manner monolingually and some are communicated
via interpretation [Oviatt and Cohen 1992]. A system design involves
maintaining two linked dialogues with an interpreter, one in each
language. The interpreter is a dialogue participant, who translates
some of what is said, but might also answer questions directly (i.e.,
without translation), since they may already have been told the an-
swer. In this fashion, repeated requests or clarifications can be han-
dled by monolingual dialogue, and do not require the full round-trip
to the other language.

Simultaneous interpretation attempts to recognize and translate spo-
ken language in parallel to the input speech without making the
speaker pause. This mode of interpretation can be faster, and gener-
ates less interference to the speaker. It is more challenging, however,
as speakers tend to be less aware of the interpretation efforts, and
cannot participate in resolving errors. It must also trade-off con-
text (and thus accuracy) against the latency between the spoken and
translated words. Typical use cases are the interpretation of lectures
or speeches.

Cross-lingual subtitling is a mixture of the above where interpretation
is performed on media content and delivered textually as subtitles.
The input speech is typically less disfluent (prepared speech) than
lectures or speeches; latency may be less of a concern and in some
instances error processing may be possible.

3. The third dimension is concerned with the form of delivery. As we aim
for effective communication, we cannot limit ourselves to recognizing and
translating spoken sentences. If the goal is to get one’s point across with
minimal interference and minimal delay, we must also be concerned with a

1. Such as, for example, human interpreters on AT&T Language Line (see [Oviatt and Cohen 1992])
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most effective human interface design and multimodal strategies. Thus, we
must also consider the following.

Multimodal input and output. To optimize efficiency of communica-
tion, it is often more effective to switch or combine multiple modal-
ities, such as speaking, texting, typing, images, handwriting, gestur-
ing, pointing. Output can also be produced alternatively by synthetic
speech or as text depending on situation and delivered on smart-
phones, tablets, in heads-up display goggles or by targeted audio
speakers.

Error handling and multimodal error repair. Speech recognition and
machine translation will always produce errors and so it is essen-
tial for effective communication to detect and correct errors in the
most effective manner. Errors can, for example, be flagged visually
on a screen or articulated verbally and corrected by dialogue or mul-
timodal repair.

Field-adaptable and extendable systems. Languages and vocabularies
change, and interpreting dialogue systems must evolve alongside
such changing languages and vocabularies and adapt to any given
dialogue scenario. The situations are too numerous to predefine
vocabularies and language use once and for all a priori. Effective
systems must provide mechanisms that allow (non-expert) users to
perform such adaptations in the field and during use.

In this chapter, we begin with an introduction to the technology of in-
terpreting systems. We then review use-cases and deployed systems in use
today. Finally, we discuss the science and art of multimodal interface design
that make such systems effective in the field.

14.2 Technology
The components technologies of speech-to-speech translators and their perfor-
mance are subject of much research in computer speech and machine translation
communities. While different use cases (as discussed in the previous section) re-
quire different configurations (see Section 14.4), let us first consider a typical two-
way speech-to-speech interpretation system (see Figure 14.1). For a human being,
speaking in one language to understand another human being speaking in another
language (depending on use-case, up to), three partial tasks have to be solved (pos-
sibly in two or more language directions).
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TTS
Lb

Userb
(Lb)

ASR
La

Machine
translation

Lb → La

ASR
Lb

TTS
La

Usera
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Figure 14.1 Translation of spoken language (speech to speech translation)—overview.

1. Automatic speech recognition. Here, the signal spoken in language (La) is
recorded by microphone, processed, and converted to text (speech to text);

2. Machine translation Here, text in language La is translated into text in the
other language (Lb) (text to text).

3. Speech synthesis (Lb). Here, text in the target language Lb is output in spoken
language (text to speech). For a dialogue between persons speaking two
languages, this process also has to be possible in the other direction (from
Lb to a) and, hence, requires analogous subsystems in the other language. A
final integration of these subsystems with a comfortable user interface then
has to be operable easily in real communication situations.

Each of these partial tasks represents an area of research, which over the years
has been harder to solve than might be expected by the casual observer due to
the complexity and ambiguity of human language. For this reason, they have been
studied by scientists for several decades and are still challenging in spite of the
considerable progress achieved. The most important lessons learned are that (1)
because of inherent ambiguity and errors, we can never make hard decisions, but
only soft probabilistic ones for every source of knowledge in human language,
and(2) because of their complexity, we cannot encode these statements and their
interactions manually, but must learn them from data.

14.2.1 Automatic Speech Recognition (ASR)
For the unaware observer, the problem of speech recognition may not appear very
difficult at first, as we human beings manage it well and easily. However, several
ambiguities occur in spoken language already: The English acoustic sequence of
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Front end
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Figure 14.2 A typical speech decoder (speech to text).

sounds “yu-thu-nā-zhu” may mean both “Euthanasia” and “youth in Asia.” Sen-
tences like “This machine can recognize speech” are pronounced in the same way
as “This machine can wreck a nice beach.” Speech recognition requires an interpre-
tation as to which of several similar alternatives is the more meaningful or more
probable one in a given context. In modern speech recognition systems, this is
achieved by a combination of acoustic models that assign a probability to every
sound, a pronouncing dictionary (that assigns a pronunciation to every word), and a
language model that evaluates the probability of every possible word sequence “w1,
w2, . . . ” of the sentence. Figure 14.2 shows such a typical decoder. Evaluation of
these models during recognition and settings of the best parameters of these mod-
els, however, cannot be determined manually, but require automatic search and
optimization algorithms.

Parameters of acoustic and linguistic models are determined with the help
of machine learning algorithms using huge databases of speech samples, whose
transcriptions are known.

Algorithms work with statistical optimization methods or neural networks and
learn the best match between signals and symbols (context-dependent phonemes
and words) based on known exemplary data. Today’s systems use neural networks
in each of these models with several millions of neural links optimized by the
learning algorithm.

14.2.2 Machine Translation (MT)
First attempts to translate texts by machines (MT = machine translation) were made
as early as during the second World War, but early systems attempted to encode
all requisite knowledge by rules and failed due to the ambiguity of language and
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Figure 14.3 Statistical machine translation (text to text).

the complexity of required associated context knowledge. Nearly every word (skate,
row, mouth) has several meanings and, hence, translations can only be interpreted
correctly in context. MT folklore recounts that the sentence from the bible “The
spirit is willing but the flesh is weak” was supposedly translated into Russian by
an early machine translator as “The vodka is good but the flesh is rotten.”2 Also,
language structure is frequently ambiguous. For instance, what does the pronoun
“it” refer to in “If the baby doesn’t like the milk, boil it”? Most likely the author
meant boiling the milk (not the baby!) and hence the pronoun should be translated
into German as “sie” and not “es.”

The attempt to manually encode all required syntactic, semantic, and lexical
knowledge with the help of rules would generally not scale (beyond well-defined
contained domains). With the arrival of faster and more powerful computing plat-
forms and larger data-resources on the internet, rule-based approaches eventu-
ally gave way to automatic learning systems. Modern MT system now use sys-
tem architectures that optimally trained statistical knowledge sources (see Fig-
ure 14.3), or arrangements of recurrent neural network encoder/decoder structures
[Kalchbrenner and Blunsom 2013, Sutskever et al. 2014, Bahdanau et al. 2015].

2. The example is due to an early article on MT from the New Yorker but it is uncertain if this
confusion ever actually occurred in an actual machine translation system.
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Figure 14.4 Recurrent neural nets, unfolded in time.

Statistical Machine Translation offers greater speed of learning and better perfor-
mance and generalization to broader topics, but still requires collections of large
parallel corpora. However, they still have to be trained one language-pair at a time
and cannot easily abstract across languages or include more varied information
sources (e.g., prosody, meta-information, etc.) without ever more complicated com-
binations of individual models.

Neural Machine Translation. Greater abstraction and greater ease of integration is
obtainable through neural translation approaches, where internal (“hidden”) ab-
stractions are generated as a side-effect of training many layers of neural structures.
Generally, they are today implemented as recurrent networks that encode sen-
tences by presenting words (or some compact representation of them) in sequence,
and then decoding them in sequence in the other language. A recurrent neural net-
work (RNN) and it sequential unfolding is shown in Figure 14.4. As before outputs
O are generated from inputs X, but also influenced by the state of the net. In Fig-
ure 14.4 we see such a recurrent net unfolded in time. Here a neural net produces
a sequence of outputs. The output at timestep t (ot) is based on the input xt but
also from the state of the net at the previous timestep st−1. With words represented
as vectors as input xt , a recurrent neural network can remember sequential infor-
mation in this recurrent state. Once an entire sentence is encoded in this manner,
the remaining context vector can then be used to decode a sentence in another lan-
guage, as shown in Figure 14.5. Recurrent encoder-decoder models as shown in
Figure 14.5 were attempted for neural dialogue modeling and machine translation
as early as the late 1980s [Miikkulainen and Dyer 1989, Jain et al. 1989] and early
1990s [Wang and Waibel 1991], and more recently [Cho et al. 2014a, Sutskever et
al. 2014].

Early RNN-based encoder-decoder models had limited success for MT, however,
because the recurrences in an RNN tend to remember only recent information
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Figure 14.5 Recurrent encoder-decoder for neural MT.

(words) and forget the earlier context. This is a problem, particularly, when trans-
lation requires long-distance reordering between words. Several modifications of
the models were proposed to prevent such forgetting in RNNs. The addition of an
“attention” mechanism, finally, was shown to be effective to overcome this lim-
itation. It permits different words from the input word sequence to be weighted
appropriately (“attention”) for each word in the output sequence (see Figure 14.5b)
[Bahdanau et al. 2015]. The attention mechanism was found to yield considerable
improvements in MT performance, particularly for language pairs that involve long-
distance reorderings (e.g., German). Most recently, it was found that this attention
mechanism is indeed sufficient for high performance even without a recurrent state
model [Vaswani et al. 2017].

Using attention to represent long-distance relationships and context in lan-
guage, neural machine translation (NMT) networks now achieve such dramatic
improvements over statistical methods that they have all but replaced statistical
machine translation (SMT) as the method of choice in MT. Moreover, in addition to
superior performance, the practical advantage of NMT is that it is possible to train
networks over multiple languages at the same time, so that a single network archi-
tecture can serve multiple languages and language pairs at the same time, by way
of learning some kind of internal semantic representation for all! [Ha et al. 2016,
Johnson et al. 2017]. The practical impact (in addition to the better performance)
cannot be overstated. At 7,000+ languages in the world, simplifying extensions to
new languages and language pairs is key to scaling machine translation, globally.
Moreover, as neural abstractions are learned just from data, the input/output to
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such networks also does not need to be words alone. They can be acoustic fea-
tures, meta-level information, or even images. Indeed, cross-modal translation
from video to text and vice versa is now a subject of intense research. Automatic
descriptions of visual scenes or video generation from text are likely applications.

14.2.3 Speech Synthesis (Text to Speech (TTS))
If a speech-translator is to output speech in another language, the third compo-
nent is created by text-to-speech synthesis (TTS). TTS makes translated sentences
audible in the target language and thus permits full speech-to-speech dialogues
between two participants. In comparison to automatic speech recognition (ASR)
and MT, TTS synthesis is generally considered to be a simpler problem, as only one
signal has to be produced from a textual sentence to be understandable and it is
not necessary to handle the great breadth of ambiguities of the other components.
Still, open and important issues exist; however, that continues to be a subject of
research. These include improving the language portability of TTS subcomponents
through machine learning, to reduce the cost and effort to build TTS systems for
more languages. Voice conversion (to adapt the output voice to an input speaker) is
also a topic of interest. And critically, better prosodic control of output is needed,
so that more suitable emotional emphasis, tone of voice, dialogue context, social
setting, level of formality, gender, social roles of speaker and addressee, and other
such factors that affect a conversation can be better situated and synthesis thus
delivered.

14.2.4 Machine Learning, Statistics, and Neural Networks
All three components of a speech translation system are now powered by systems
that are built by exploiting machine learning, both to deal with ambiguity as well as
to learn automatically from data as opposed to a developer’s writing rules following
introspection. Crucial to their success: the dramatic growth in available data re-
sources (mostly over and through the internet) and available computing resources.
These resources have led to a rethinking and replacement of the dominant learn-
ing paradigm from statistical modeling back to neural network models, i.e., the
models that had already been explored in the 1980s. Neural models that are almost
identical to those developed during the late 1980s [Waibel et al. 1989, Waibel 1989,
Bourlard and Wellekens 1989], now show their advantage fully as they are trained
over several orders of magnitude larger databases and they now deliver up to 30%
relative performance gains in speech recognition and MT performance. At the time
of this writing, neural “deep learning” models are rapidly replacing statistical mod-
els as the dominant approach for speech recognition, MT, and speech synthesis
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[Zenkel et al. 2017, Zweig et al. 2016, Miao et al. 2015, Sennrich et al. 2016, Cho et
al. 2016, Neubig 2016]. Systems that include multimodal signals, generalize across
many languages, and systems that could train directly end-to-end, from speech to
speech, may be possible and become reality soon.

14.3 Evolution of System Prototypes and Deployments
The development of automatic spoken language translation systems started in
the early 1990s when ASR, MT, and TTS systems first reached a minimum degree
of maturity required to attempt a first integration [Waibel et al. 1991, Morimoto
et al. 1993, Wahlster 1993]. In the course of the following two decades, major
limitations in technology were overcome in a number of research and development
phases. Today, speech translators have entered commercial and public usage and
can be used by everyone. In the following, we review the different technological
milestones, phases of maturity, and the use cases and key deployments the enabled
(see Table 14.1 for an overview of system qualifications).

14.3.1 First Demonstrations
The JANUS system was the first speech translation system presented to the public
in the U.S. and Europe in 1991 (see Figure 14.6). JANUS was developed for German,
Japanese, and English by Universität Karlsruhe in Germany and Carnegie Mellon
University in Pittsburgh, PA, USA. It was a result of cooperation with the ATR
Interpreting Telephony Laboratories in Japan, which developed similar systems for
the Japanese language in parallel. The systems together were presented in the first
translating video conferences [Waibel et al. 1991, Handelsblatt 1991, Morimoto et
al. 1993].

These systems represented first steps, managed an initially small vocabulary (<
1000 words), required a relatively restricted syntax, and covered a limited domain
(e.g., registration for a conference). They were too large and slow to really be of
assistance in field situations, e.g., to a traveler. Similar demonstration systems were
presented by other research groups—AT&T [Roe 1992] and NEC [Hatazaki et al.
1992].

14.3.2 Research Systems and Prototypes
For these systems to be used in practice, other important phases of development
followed to successively master difficult problems:

Spontaneous Speech, Domain-limited Research Systems. To implement practical sys-
tems, the assumption of syntactic correctness has to be eased or eliminated. People
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Figure 14.6 First speech translation prototypes in video conferences (1991).

rarely speak syntactically correct and complete sentences. They rather speak frag-
mentary segments with stammering, repetitions, filler words, and hesitations (er,
hum, aeh, etc.). These fragments first have to be identified correctly and then fil-
tered out or corrected by processing before translation takes place. First, sponta-
neous speech translation systems were developed from 1993–2000 [Morimoto et
al. 1993, Takezawaet al. 1998]. These systems were still slow and required exten-
sive hardware. Their domain continued to be too limited to extract the fragments
relevant to translation by modeling the semantics. JANUS-III, C-STAR Systems,
VERBMOBIL, and other projects made considerable progress, but still remained
unusable in practice [Lavie et al. 1997]. Domain limitation and vocabulary restric-
tions had to be overcome first and systems had to be accelerated and readied for
mobile use. In due course, manually programmed approaches (possible in limited
domains) were replaced by automatically learned, statistic subsystems that scaled
better to larger domains, and improved robustness and accuracy [Brown et al. 1993,
Och and Ney 2004, Wang and Waibel 1997, Koehn et al. 2007]. Smartphones and
cloud computing offered platforms that could perform these tasks in real-time and
were accessible by a broad audience of users.

Two types of applications, serving different use cases began to emerge.
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. The first is given by mobile devices that provide consecutive interpretation
in human-human interactive dialogues. Here, speakers converse through an
interpretation system that translates sentences consecutively. A speaker says
one or more sentences in one language, followed by the system’s translation.
Then the other party responds in another language followed by translation
back to the first speaker’s language. Consecutive translation slows the flow
of a conversation (because speakers have to wait for a translation to com-
plete), but they make interpretation controllable and observable, and (in
case of errors) speakers can intervene to make themselves understood. For
most applications (tourism, medical uses, humanitarian aid, etc.) a vocabu-
lary of about 40,000 words is sufficient to cover most conversational needs.
But systems have to run on small mobile devices, which requires either fast
cloud-based operation via telephone networks or compact-efficient imple-
mentations on the device.

. The second is given by simultaneous interpretation for stationary use: in
many deployments of speech translation, a dialogue between two conver-
sation partners is actually not needed but rather a fast interpretation of a
stream of speech (or monologue) is desired. For example, TV broadcasts, in-
ternet videos, lectures, speeches, and addresses all require no response. In
most of these deployments mobility is less of a concern, as the actual pro-
cessing can be performed in the cloud on powerful servers. Simultaneous
interpretation, however, is complicated by a broader range of vocabularies
and special terms, and by the absence of obvious sentence markers. The sys-
tem itself has to determine the beginnings and end of translatable units or
sentences, and—in the case of simultaneous interpretation—must deliver
translation output with little delay, before a speaker is finished speaking.
Segmentation into units or translatable fragments have to be performed au-
tomatically and punctuation (full stops, commas, question marks) inserted
automatically based on partial context (The Economist 2006). Statistical and
neural models perform these predictions, and display interfaces must man-
age updates when further context requires revision.

14.3.3 Translation of Deployments and Services
Early research systems (1990–2005) solved technical problems and paved the way
for the sales and real use of speech translation systems in society.



592 Chapter 14 Multimodal Dialogue Processing for Machine Translation

14.3.3.1 Mobile Consecutive Interpretation Systems
Interpretation systems were first tested in the field during humanitarian and lo-
gistic exercises of the U.S. government. Although network-based solutions were
proposed, fieldable speech-translators usually required off-line operation, as net-
work access could not be assured (or might be prohibitively expensive) in most
humanitarian, logistic, and—indeed—tourist/travel deployments. The resulting
systems resorted to laptops, and later PDAs and smartphones with all their speech
translation software running on device. Computation was kept within manageable
bounds, initially, by limiting the domain of speech-to-speech translation systems
to transactional tasks of limited scope (e.g., hotel reservations, scheduling, health-
care interviews) or, alternatively, by the use of simple phrase books that would be
accessed by voice. Either solution required only smaller vocabularies and could
anticipate a more limited language use and thus restrict computation and mem-
ory requirements. [Eck et al. 2010, Stüker et al. 2006, Voxtec none, Ectaco 1989].
Early models of such systems offered commercially by VOXTEC and MOBILE TECH-
NOLOGIES are shown on the left of Figure 14.5. Due to the limitations in vocabulary
and hardware, and -in the case of phrase-books- due to the inflexibility of expres-
sion, such early systems could achieve adoption only in special situations, were
restricted phraseology and limited tasks are acceptable. For the wider use of speech
translators by the wider public during travel and communication, further advances
were necessary.

With the emergence of smartphones, both the general availability of a suitable
platform as well as the necessary computational performance reached the critical
capacities that made speech recognition and translation of open unlimited (>
40,000 words) vocabularies embedded on a device in near real time possible.

In 2009, Mobile Technologies (a startup of Carnegie Mellon researchers)
launched, Jibbigo, the first domain-unlimited speech-to-speech translation sys-
tem fully embedded on a phone in 2009 [Eck et al. 2010]. The system found quick
adoption and distribution through the simple sales mechanisms of the Apple
iTunes app stores and with the growing use of smartphones worldwide, Jibbigo
quickly expanded to 15 languages and reached worldwide distribution. Other
similar products followed suit, such as systems by Google and Microsoft. While
Jibbigo offered a downloadable off-line solution (for a fee—a network-based solu-
tion was also available for free), many other entries were and still are exclusively
network based. Although network-based solutions can access more powerful com-
putational resources and connect with related internet resources, off-line systems
require no roaming fees nor existing infrastructure and are thus preferable in many



14.3 Evolution of System Prototypes and Deployments 593

(a) (b) (c)

Figure 14.7 First commercial systems: (A) Phraselator, (B) iPaq PDA-based speech translator
(2005), (C) Jibbigo, the world’s first speech-to-speech translator on a phone (2009).
(Phraselator™ by VOXTEC LLC and Speech Translator™ by Mobile Technologies LLC)

humanitarian and travel situations. Jibbigo has thus been used in a number of hu-
manitarian missions and government deployments, where an existing network
infrastructure cannot be relied upon (Figure 14.8 A-D, show healthcare initiatives
in Thailand, Cambodia, and Honduras for translation between English-speaking
physicians and patients speaking other languages).

Typical system configurations may run on iPhones, Android smartphones, or on
tablet computers. Tablets were found to be particularly well-suited for face-to-face
interaction between partners sitting opposite to each other in medical missions.
After five years of development in field situations, the systems were evaluated to
perform well in humanitarian missions (MEDCAP—Medical Civil Action Program,
Thailand, in 2013 [Hourin et al. 2013]). It was found that 95% of the interactions
during the registration of patients, the conversation could be managed with the
sole aid of the automatic tablet interpreter (Jibbigo).

Google and Microsoft followed suit (2013) with translation capability of their
own that could be downloaded for off-line use, while broadening the number of
languages on offer, making smartphone translators a common tool for today’s
travelers.
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Figure 14.8 Medical operations in Thailand, Cambodia, and Honduras: (A) translingual dialogues
between American physicians and patients in Thailand; (B) medical care with help
of the JIBBIGO-speech to speech translator in Thailand; (C) medical operations in
Cambodia; and (D) humanitarian operations with Jibbigo in Honduras.

14.3.3.2 Consecutive Interpreting Telephony
Mobile speech translators on smartphones or tablets offer effective and flexible
consecutive translation in face-to-face field situations. Of course, consecutive trans-
lation can also be used for remote communication over telecommunication net-
works. Indeed, the earliest prototypes and research projects had envisioned trans-
lated video chat services as their use case. For example, the ATR-Interpreting Tele-
phony Laboratories in Osaka, Japan, were already established in 1986 to investigate
this possibility, and subsequent public demos together with partners in the U.S.
(CMU) and Germany (Siemens, Karlsruhe) demonstrated such video chat sessions
as early as 1991. Commercialization of consecutive translation services (human and
automatic) followed in the decade since. In the U.S., AT&T established a human
interpreting service (AT&T Language Line)3 to fill consecutive interpreting needs
over telephone lines, followed by software-driven services. Consecutive translation

3. http://www.languageline.com.
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(human or mechanical) as a fee-based service has only been moderately success-
ful, however, and so it was frequently packaged as a feature for video chat service
providers, where translation provides broader network reach and contributes to
consistent service expansion (a language on/off-ramp of sorts) for operators of
communication services. In this manner, an early commercial video chat room en-
hanced by speech translation was introduced in 2010 by Hewlett-Packard’s in its
MyRoom Video Chat product and other communication services followed suit.

The broadest and largest telephone and video communication provider today is
Skype (by Microsoft), a free voice-over-IP telephony service. In its continuing drive
to expand its network, Skype now offers language interpretation through “Skype
Translator” (see Figure 14.9), an automatic speech-to-speech interpretation service
for human dialogues. Due to its massive and growing user base, Skype Translator
represents one of the largest deployments of speech translation. The system accepts
speech from speakers in two languages, interprets their messages, and outputs re-
sults as speech or text in the other language. A “TrueText” facility cleans up the dis-
fluencies of spontaneous speech and turns them into more readable text. Synthetic
output after translation is also overlaid on top of the original speech (at reduced
volume) much like voice-overs in TV reporting. The approach helps reduce delays
in the consecutive translation of dialogues (Skype calls this approach “ducking”).
Skype (as well as other) research teams also experimented with robotic mediators,
but Skype found this approach—or at least its implementation—somewhat awk-
ward. Given the text messaging features of Skype, cross-lingual communication is
also improved multimodally by allowing the participants to resort to complemen-
tary communication modalities, including speech, text, and video. Given the large
number of users, a Skype translator4 can then learn and improve from continued
use [Lewis 2015].

14.3.3.3 Simultaneous Interpretation
In a multi-lingual environment, dialogue between conversation partners speaking
different languages is not the only challenge. When thinking of TV news, films, pre-
sentations, lectures, speeches, road signs, transparencies for lectures, and short
messages, we see many other challenges, where translingual technologies are re-
quired.

An important area of application is the interpretation of lectures. In spite of
excellent scientific equipment and funding, German universities, for example, are
often disadvantaged in international competition for talents, simply because many

4. https://www.skype.com/en/features/skype-translator.
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Figure 14.9 The Skype translator: consecutive interpretation on a telephone network.

foreign students or scientific employees and academics do not want to learn an-
other new language (especially such a difficult language as German). How are Ger-
man universities or German companies to react? Is a German university supposed
to have all courses and lectures presented in English? The author of this article
does not consider this desirable or practicable. A hybrid solution with the help of
modern language technologies that supports linguistic and cultural diversity and
tolerance (and does not suppress one or the other direction) appears to be far more
promising, as it fosters and improves internationalization and international under-
standing.

At Karlsruhe Institute of Technology (KIT), such a system is being used for stu-
dents in the main auditorium [Cho et al. 2013]. Speech translation continues to
be the subject of research, as not all problems are solved. But thanks to continu-
ing benchmarking and competitive evaluations (the IWSLT campaign, EU funded
programs like EU-BRIDGE, etc.) consistent improvements and advances can be
observed. While output is far from perfect (and falls short of expert human inter-
preters) for a listener at a University or conference, who does not speak the language
of the lecturer, an imperfect computer-based interpreter is better than nothing.
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Figure 14.10 Speech translation of lectures.

The first such system was proposed by researchers at CMU, KIT and Technolo-
gies in 2005 (see Figure 14.10)[Fügen et al. 2007]. It manages such a simultaneous
interpretation use-case uni-directionally as a monologue to be translated into a tar-
get language. Such a system does not have to be run on a mobile device, but may be
operated on servers in a cloud-based manner and accessed via the internet. Con-
trary to a translating system for dialogues, a lecture translator requires just a speech
recognition component and a translation machine, if only subtitles are desired.
Speech synthesis can take place afterward, but it is optional. In addition, a seg-
mentation component is required to decide explicitly or implicitly when the end of
a sentence or at least of a translatable fragment is reached in the stream of words.
Segmentation can also be performed incrementally with multiple segmentation
hypotheses to be explored in parallel, during execution. Vocabularies containing
many technical terms and jargon, foreign words, and expressions, formulas and
acronyms present an additional range of problems for lectures.

A lecture translator may be operated in two modes: as a simultaneous interpre-
tation system during a lecture and also afterward over recorded archival lectures
in a post-processing mode for retrieval and review. Simultaneous interpretation is
required when a listener wishes to follow along while present in a lecture, and both
the input language (transcript) and/or translations can be presented. Simultane-
ous use requires real-time recognition and translation (i.e., the system has to keep
up with the speech). Latency (i.e., the time lag between the spoken word and the
translated word) also has to be minimized. Otherwise, the listener will lose track
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of the lecture and of what is happening in the lecture hall. For some languages (es-
pecially German, as it turns out), these requirements are a challenge, when verbs
or important parts of the verb appear at the end of a sentence (or sometimes even
later), thus introducing substantial uncertainty when decisions have to be made
before a sentence is completed. The verb “vor-schlagen” means “to propose,” and
“schlagen” (without the prefix “vor”) means “to hit.” But in a sentence such as “Ich
schlage Ihnen nach eingehender Prüfung Ihres Antrags, der uns gestern . . . eine
neue Vorgehensweise . . . vor“ (translation: I propose to you after considerable re-
view of your proposal a new approach . . . .), German syntax strips the leading prefix
of “vor-schlagen” off and moves it to the end of the sentence, after potentially many
words and minutes of speech later. Appropriate interpretation of German in a low
latency mode thus keeps us guessing how the story might end and forces an early
translation decision before all the information is in.

In many application scenarios of academic teaching and multimedia broadcast-
ing, offline processing of speech and translation are acceptable and sometimes
desirable. Offline operation does not necessarily require real-time capability, al-
though an excessively long processing time may become a relevant cost factor.
Furthermore, the system can make a better transcription and translation when
taking into account a longer context. A lecture translator, for instance, may be run
online in the lecture hall and the output may be reprocessed in offline mode later
for storing an improved version for listeners in the archive.

Such a lecture translation system was taken into operation at KIT in 2012 as an
internet service in several of its main lecture halls (Figure 14.11) [Cho et al. 2013,
Greve-Dierfeld 2012]. Students, who wish to have translation support, connect their
phones, tablets or PCs to a course-website via a normal internet web browser and
are provided with a simultaneous transcription of the text in German (useful in
case of hearing problems) and a translation into English. Output languages include
French, Arabic, Spanish, and further languages are under development.

Even though the system is already deployed and in actual use, many linguistic
and machine learning problems remain. They continue to be subject of ongoing
research. In addition to the problems of word order and verbs discussed above, the
following difficulties are encountered (particularly in the German language).

. Compound words. German words like “Fehlerstromschutzschalterprüfung”
(examination of the protective electric currency malfunction switch) switch
first have to be decomposed before they can be translated into English. Algo-
rithms for compound word decomposition have to be developed. Due to the
ambiguities of language, however, this, too, is not necessarily easy. While de-
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Figure 14.11 The lecture translator in use in the main auditorium of KIT.

composition into Fehler-Strom-Schutz-Schalter-Prüfung in our example may
be straight forward, decomposition of “dramatisch” (dramatic) into “Drama-
Tisch” (drama table) or of “Asiatisch” into “Asia-Tisch” (asia table) are inap-
propriate in the context or even change the intended meaning [Koehn and
Knight 2003].

. “Agreement”. Suffixes in the German language have to be consistent and
agree with the nouns: “in der wichtigen, interessanten, didaktisch gut vor-
bereiteten, heute und gestern wiederholt stattfindenden Vorlesung” [in the
important, interesting, well prepared today, . . . lecture]. The suffixes of
each adjective depends on the gender and case of the final noun.

. Technical terms, jargon and unknown words. This is a major problem, in
particular when processing lectures at a university, because every lecture
has its own technical terms and linguistic features. What are “Cepstral-
Koeffizienten” (cepstral coefficients), “Walzrollenlager” (roller bearings),
and “Würfelkalküle” (cube calculi), and how do we translate them? In or-
der to avoid major dictionary maintenance efforts usable systems must seek
out the necessary information from other complementary resources across
multiple modalities by themselves. As one effective solution to this problem,
automatic algorithms can be devised that search the video and presentation
materials of a lecturer for clues to the most likely interpretation of a speaker’s
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speech during a lecture (see Waibel, US patents 2013–2018). Technical terms
are automatically extracted from the slides and related terms identified on
the internet. Unknown words are then added to the recognition vocabulary
and translations derived from internet sources, such as Wikipedia [Niehues
and Waibel 2011]. In addition to finding unknown words, performance is
improved by cross-referencing spoken language with words and concepts
from the corresponding slides.

A second alternative to the problem of unknown words (beyond technical terms
these typically also include names, foreign words and abbreviations) is to include
human assistance, either by professional editors or the crowd-sourced sponta-
neous edits from student users. This is done online during a lecture or after the
fact in the archive, and the ground truth obtained in this manner, provides fur-
ther opportunities for machine learning to improve overall system performance
over time. Of course, all these methods build on successful interaction with a hu-
man user and thus depend greatly on a well-designed multimodal user interface,
designed to establishing context and obtain corrections naturally, seamlessly and
unobtrusively.

. Code switching. Often, lectures and speeches contain quotations and
phrases from other languages. Especially computer science lectures are
peppered with English terms that are typically not translated into German.
Germans talk about the “iPhone,” “iPad,” “cloud-basiertem Webcastzugriff”
(cloud-based webcast access), or “Files,” that are “downgeloaded” thus mix-
ing English words with German declination rules and compounding!

. Pronouns. What do pronouns refer to? Here, problems occur rather fre-
quently. The spoken word version of “Wir freuen uns, Sie heute hier begrüßen
zu dürfen” may be translated as “We are happy to welcome her here” or “We
are happy to welcome you here” (in writing, Germans use a capital and a
small “s” to distinguish both versions).

. Readability. When people speak, they do not speak punctuation marks or the
ends or starts of paragraphs contained in readable text. Hence, full stops,
commas, question marks, paragraphs, and sometimes even titles have to be
generated and inserted automatically [Cho et al. 2014].

. Spontaneous speech. Different speakers speak more or less syntactically.
Hesitations, stuttering, repetitions, and discontinuations of speech aggra-
vate readability and make translation difficult. A spoken sentence of a lecture
transcribed by a perfect speech recognition system would contain all such
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disfluencies and have no punctuation marks. We must therefore process the
raw output from speech recognition first linguistically in order to make it
readable in the source language. It can then be translated into readable text
in the target language [Cho et al. 2014b].

. Microphones and noise. The Karlsruhe lecture translator presently is config-
ured to accept input from a dynamic noise-canceling microphone that the
lecturer wears. This is acceptable during lecturing, as lecturers carry micro-
phones in auditoriums anyway, but for seminars and meetings this may be
a distraction. Unfortunately, signals from distant microphones or table top
microphones are distorted by reverberation, noise, and the potentially over-
lapping speech from several speakers, which leads to considerable losses in
recognition performance.

. Linguistic scalability/portability. How can we implement the technologies
developed not only in one or two languages, but extend it to cover commu-
nication among all languages and cultures on our planet? To achieve this,
development costs of a translation system would have to be reduced con-
siderably. Language-independent technologies, adaptation, inference, ab-
straction, better use of monolingual resources, and crowd sourcing (to better
harvest the multilingual knowledge of mankind) are promising approaches.

The architecture of the Lecture Translator for practical use was introduced in
2005 as a research prototype between CMU, KIT, and Mobile Technologies, and
went into service in 2012 at KIT. Infrastructure techniques and support were de-
veloped and merged with other sites under the EU-BRIDGE integrated project of
the European Union (see Figure 14.12). Now, several lectures and multiple sites
are supported in a cloud-based manner at the same time. In recent developments,
Microsoft also launched a similar lecture interpreting service. Its features and ca-
pabilities are similar to the one described above. It provides integration with Pow-
erPoint from the Microsoft Office suite to permit subtitling during presentations.
Using the merged PowerPoint slides it also merges information from the slides’
content in similar ways as described above (Waibel 2013–2018).

By means of this server architecture, translation services can be used in several
auditoriums and other application scenarios (not only during lectures at univer-
sity).

Apart from use at universities (where usually no translation support is provided),
automatic systems can also be applied to support experts, for example human in-
terpreters at parliaments. In 2012, 2013, and 2014, the lecture translation system
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Figure 14.12 EU-BRIDGE: The automatic interpreter as a cloud-based service.

Figure 14.13 Automatically translated speech at the European Parliament.

was presented at the European Parliament, at several Rectors’ Conferences (see Fig-
ure 14.13), and was featured in training courses for interpreters (see Figure 14.14).
The goal of such discussion is to develop possible symbiotic human-machine ar-
rangements that support human interpreters in their efforts to deliver high quality
interpretation efficiently. A first test in interpreting booths of the European Par-
liament was carried out successfully in late 2014 under the EC Integrated Project
“EU-BRIDGE” in Strasbourg. [Koehn et al. 2015]
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Figure 14.14 First test of an automatic interpreter during voting at the European Parliament.

Because the European Parliament operates one of the world’s broadest govern-
ment interpretation efforts working continuously with more languages (23 × 23
language directions!) than any other organization and employs some of the most
experienced and sophisticated human interpreters, interpretation services are al-
ready at their best in terms of quality and sophistication. Automated language
processing and interpretation tools in these settings thus serve a different role from
the settings discussed before: rather than performing fully automatic interpreta-
tion, they aim to support, enable and amplify human effort so as to achieve greater
quality, speed, and scale in the face of overwhelming demand.

To date, three use cases were identified that instantiate such complementarity:
(1) a generator of on-demand terminology lists and their translation, for example,
if a session on “fishery” is scheduled, the system automatically serves up special
terms pertaining to their domain and delivers it to the assigned interpreter along
with appropriate dictionary lookups; (2) named entity and number tracking (to re-
call numbers and names more easily); and (3) the “Interpreter’s Cruise Control,”
intended to handle repetitive (boring) segments of a session (such as, for example,
voting sessions), or where human interpreters are not available. A sophisticated,
multimodal interface is essential to deliver such human-machine symbiosis, seam-
lessly. The services access available resources (schedules, agendas, reports, dictio-
naries, and lexica) and deliver the desired support to EU interpreters on tablets
or laptops. The services exist so far are in a prototype stage, but user studies and
evaluations have shown the success of these tools, more than 60% of the interpreters
were satisfied or very satisfied with the final tool [Stüker et al. 2015].
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14.4 Multimodal Translingual Communication
In a multilingual and multicultural environment, language barriers are not only
encountered in spoken dialogues, lectures, or text documents. They occur in many
other communication situations, circumstances, and media: for example, impor-
tant information can be found on road signs or in short text messages (SMS), TV
news, lecture transparencies, gestures, and many more. To make the vision of a
multilingual, language barrier-free world come true, our efforts have to go beyond
the construction of better translation systems. The goal should rather be to build
user interfaces that make language barriers transparent or move their existence
into the background. Successful translingual communication is achieved, when
people can interact with each other without being aware of the barriers between
them! In the following, we discuss multimodal system designs, where this was
attempted and achieved with varying degrees of effectiveness. The processing of
multiple modalities is particularly important and beneficial in two situations: (1)
recovering from miscommunications that may result from occasional human mis-
understandings or from machine recognition or translation errors; and (2) when
responding naturally to multimodal communicative clues in varying multicultural
scenarios.

14.4.1 Multimodal Error Handling
Miscommunication in speech dialogue translation can result from errors during
the speech recognition or the MT processes, and the causes are often not readily
identifiable by the user. Worse, the translation of a misrecognized word rarely bears
any resemblance to the translation of the correctly recognized word, so that the
resulting output appears just confusing. Recognizing that an error has occurred,
offering tools to recover from such errors, and algorithms to even learn from
such correction, are subjects for considerable research on learning algorithms and
effective multimodal interface design.

Several types of errors can occur in the process of cross-lingual interpretation.

. Out-of-Vocabulary Words (OOVs). Most commonly the problem arises when
words are missing in the pronunciation dictionary of a recognizer, leading
to one or more substitution errors. Named entities and specialty terms are
particularly prone to this type of problem.

. Speech confusions. Words that are phonetically close (“forest” and “far East”)
or homophones (“two” and “too”) can lead to substitution errors due to their
acoustic similarity, even though they may differ semantically.
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. Translation Errors. Words can have multiple translations. While translation
and language models attempt to select the most appropriate translation,
occasional inappropriate choices remain and need to be corrected.

14.4.1.1 Error Detection
Before attempting a correction, a problem has to be identified. A speaker may
determine that a recognition error has occurred and intervene, if s/he pays careful
attention to the transcript but this may not be possible in all situations. Translation
errors may even be harder to detect for a speaker who does not know the target
language. Two typical solutions are (1) Confidence measures to judge the reliability
of the recognition and translation outputs and (2) back translation into a source
language so that an input speaker may verify that a translation appears to be
correct. A variety of confidence measures exist for ASR and MT engines; most
typically compute an a posteriori probability of the word to be correct. Although
the measures help identify errors in translation, there is unfortunately no guarantee
that they will accurately flag problems or that flagged problems are actually errors.
During consecutive translation, such methods are also far more likely to succeed,
since both speakers have a joint interest in being understood, and have the time
and interest to collaboratively resolve potential miscommunications.

14.4.1.2 Error Repair
How are miscommunications resolved, once they have been identified? Two meth-
ods have been proposed in the case of actual misrecognitions or mistranslations:
(1) clarification dialogues; and (2) cross-modal repair. In the former, the system
will initiate a disambiguation dialogue (triggered by a confidence measure) to get
a user to resolve a potential error through a voice dialogue. In the latter, the user
(or the system) may divert to another modality to clarify.

Clarification dialogue. In the former approach, once a putative error has been
identified, the system attempts to initiate a clarification dialogue with the user.
If the system misrecognizes “my name is Edwards,” as “my name is at words,” a
clarification component might ask for clarification on the misrecognized word, if
the error is correctly identified. In such a case, the human user is engaged to dis-
ambiguate the confusion through a clarification dialogue “is ATWORD a name?.”
Errors in recognition can be caused by OOVs, homophones, or substitutions with
similar sounding words, but the detection of errors is a non-trivial classification
task in itself. If an error is not recognized as an error, it is missed and cannot be
repaired; if a correct word is flagged as an error, it may generate an unnecessary
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clarification dialogue and may be a nuisance to the user. Early versions of such clar-
ification dialogues have already been explored in early studies [Block et al. 2000].
More rigorous evaluations using clarification dialogues were conducted under the
DARPA program BOLT using simulated field data that investigated the efficacy of
language-based error repair dialogues. Even though good performance in detect-
ing and repairing errors was achieved through voice dialogues alone [Kumar et al.
2015], such dialogues take time and are generally much slower than and thus infe-
rior to a multi- or cross-modal repair strategy. If an error is visible on the screen, and
alternate input modalities are available, errors can be reliably detected by humans
and corrected through typing, gesturing, handwriting or spelling, for example.
Thus, unless the use-case is strictly a hands-eye-busy voice situation, multimodal
repair appears to be more effective [Suhm et al. 1999, Kumar et al. 2015].

Cross-Modal Repair. In cross-modal repair, the error is corrected by diverting to
an alternate, hopefully orthogonal modality, such as typing, handwriting, spelling,
paraphrasing, etc. The advantage of this approach is that it can proceed in parallel
to speaking. Generally, it is thus considerably faster to correct an error by pointing,
clicking, and editing, rather than through a disambiguating dialogue [Suhm et al.
1996, 1999, Waibel et al. 1991, 1998a, 1998b, Oviatt and VanGent 1996]. The sim-
plest form of such repair is to simply observe the error and correcting it through
typing. Alternatively, however, it is possible to point to the error and spell, hand-
write, paraphrase, or respeak a correction. Such correction is fast, potentially more
natural, and exploits the orthogonal sources of errors in each modality to obtain
a jointly optimal result [Suhm et al. 1999, Waibel et al. 1998a, Oviatt and VanGent
1996].

Learning Words. OOVs are particularly troublesome for speech translators,
since no matter how the user may correct the input, recognition and translation
will fail every time, if the missed word is not included in the processing dictio-
naries. A typical way to handle OOVs in MT is to simply pass the unknown word
through to the other side.5 If the two languages in question use the same script (say,
English and Spanish), this may lead to acceptable results: an unknown name, for
example, may appear in the same script as the name in the other language. How-
ever, this is not acceptable if the scripts (e.g., Chinese and English) differ. On the
recognition side, OOVs are particularly problematic, since their absence from the

5. It is worth noting that this approach is no longer so simple in current implementations of NMT,
due to the absence of phrase tables.
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recognition lexicon will force another match and thus lead to substitutions errors.6

In a speech translator then, such substituted words will be translated in curious,
irrelevant ways that have no resemblance (neither phonetically nor semantically)
from the original intended message [Kaiser 2005]. In research speech translation
systems, the problem of OOVs is mostly handled by adding the missing words to
the various dictionaries and language components manually. This involves a to-
tal of eight modifications: the pronunciation dictionary in language L1 has to be
provided (“Paul”—[P AO L]), the language model has to be modified to include the
“Paul” in a word sequence (e.g., “my name is Paul”), “Paul” has to be translated
to “Pablo,” and we may need a pronunciation dictionary to properly pronounce
“Pablo” in Spanish. If the system we are building is a bidirectional dialogue system,
the appropriate modifications have to be made in the reserve direction as well.

The modifications involve knowledge of phonetics and statistical language mod-
els that are easily done in research labs, but they cannot be performed by non-expert
users in the field. OOVs (for example, the occurrence of names) found in the field
are also not predictable a priori and modifications really must be done by the user.
Interactive multimodal interface solutions have thus been proposed [Waibel and
Lane 2015, Kaiser 2006] that shield the required technical detail and allow a non-
expert to make vocabulary additions in the field, interactively and intuitively. The
interface accepts orthography of a word/name to be added, it then generates the ap-
propriate model entries automatically in the background and modifies all system
components dynamically. It provides intuitive, interactive sound checks to make
sure the pronunciation is correctly represented. When the same name is then ut-
tered again (in either language), it is recognized and translated appropriately. This
functionality was extensively tested during humanitarian deployments and in a
commercial deployment on a smartphone App (Jibbigo).

14.4.2 Multimodal, Flexi-modal Communication
In cross-lingual communication, multimodal interfaces are not only useful to re-
cover from errors generated by speech recognition or machine translation, they
also open up a broad array of cross-lingual communication channels. We recall
that our goal is not just speech or text translation, but to provide humanity with a
human-human communication experience in which linguistic and cultural barri-
ers become transparent. As such, we must be concerned with the full breadth of

6. Here, recent character based neural approaches may offer potential solutions in the future by
generating character strings directly without the use of dictionaries [Zenkel et al. 2017, Miao et
al. 2015, Zweig et al. 2016].
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Figure 14.15 Road sign translator (2001) and Google Translate (Wordlense) 2015.

human expression and assist in their mediation, in whatever modality, context, or
situation humans may find themselves. Human language is given by speech, but
also images, text, handwriting, even gestures, and facial expressions. Input and out-
put of language may be suitable using one modality in one situation but awkward in
another. A successful cross-lingual communication system design must carefully
match input and output modalities with devices in each situation.

Over the last 10–20 years considerable progress has been made in achieving
this goal.

. Road sign translators. As early as 2001 [Yang et al. 2001, Waibel 2002], first
systems were developed and commercialized to read and translate road signs
with the help of a mobile device and camera. Translations were inserted
into the image of the scene and the system was tested first on a (then ap-
plicable) PDA platform. Translations of text found in road sign images were
then displayed as subtitles under the signage. Meanwhile, similar applica-
tions have been developed and issued as iTunesTM and AndroidTM apps for
smartphones. A more recent development offered by Wordlense, a startup
company (now incorporated in Google Translate), combined a simple recog-
nition engine for Western script and translation dictionaries with graphical
rendering that inserts the translated word back into the original image. Both
applications (shown in the left and right of Figure 14.15) demonstrate how
an integrated multimodal design is equally essential to achieving our goal of
language transparency as the language technology itself.
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Figure 14.16 Translation of lecture slides.

Handwriting recognizers recognize handwritten text and provide text in
translation. The problem of text translation in real images has been solved
partly solved by the road sign translator or OCR scanners as discussed above
[Zhang et al. 2002], but using handwriting still offers additional real-time
low latency opportunities. The difficulties of recognizing handwriting also
require more sophisticated recognition akin to speech recognition. Early
neural network-based and HMM-based systems have been proposed since
[Jaeger et al. 2000, 2001, Manke et al. 1995, Starner et al. 1994], and recent
solutions have matured in performance and usability,7 so as to permit in-
tegration into sophisticated commercial grade multimodal communication
interfaces.

. Translation of lecture presentation material. If foreign students have dif-
ficulties understanding lectures in a foreign language, then the lecturer’s
presentation slides or handouts might generate communication issues, too.
For this reason, translation can also be applied to material across these dif-
ferent media, as well. Figure 14.16 shows a prototype translation system for
PowerPointTM slides (explored at KIT) that translates the text on a slide,
when hovering with the mouse over the appropriate text. The translated text
is then displayed in a speech bubble.

. Distant speech input. A continuing issue problem with speech translation
devices is the placement of the microphone. When wearable or hand-held

7. http://www.myscript.com.
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microphones are acceptable (e.g., lectures or mobile smartphones), this is
of little concern, since the speaker’s speech is well discernable and signal
quality generally good. However, in meetings, noisy public places, and many
other situations, signal separation, reverberation, and noise become signif-
icant factors in delivering successful translation services. One method to
mitigate these factors are microphone arrays that are placed in a strategic
location (e.g., on a table in a meeting room), worn (necklaces), or moved on
a robot. Fujitsu and NICT are testing directional microphone technology un-
der a national project aimed to deliver communication for the 2020 Olympics
in Japan. Other mobile microphone arrays were proposed as attachments on
smartphones or individual devices and (of course) for non-translation pur-
poses conversational speech dialogue pods for the home such as Alexa and
Google Home.

. Silent speech input. Speech is audible and thus perceived as noise for those
for whom it was not intended. Is noise-free speech conceivable? Alternate
non-vocal speech recognition systems have indeed been proposed, where ar-
ticulated mouth movements are captured by electromyography, even though
the language is not spoken out loud. Such “silent speech” can be recognized
(although recognition is not as good as for spoken language), translated,
and made audible by synthesis [Maier-Hein et al. 2005]. Subsequently, ar-
ticulation of silent speech can be translated into audible speech in another
language. The underlying technology is not yet mature, but the proposed
prototypes (see Figure 14.17) show that input devices could be devised that
can accept silent spoken language as an alternative modality where speaking
aloud would create disturbances (or privacy concerns). Using silent speech
input technology might thus be conceivable so that anyone can produce loud
speech in any language, by (silent) articulatory motion in another.

. Targeted Audio. Synthetic speech output in a speech translation system
can also be delivered selectively by directional loudspeakers. Such speak-
ers were proposed experimentally (CHIL-project, [Waibel and Stiefelhagen
2009]), and commercially distributed (Sennheiser AudioBeam Ultrasonic Di-
rectional Loudspeaker).8 By directing such speakers to different points in a
room different listeners can then listen to simulatenous translation in dif-
ferent languages without a headset. It is as if each listener has a personal
interpreter whispering the interpreted result into his or her ear. Early steer-

8. Sennheiser Electronic GmbH & Co. KG, product currently discontinued.
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Figure 14.17 Silent speech as input to translator.

Figure 14.18 Translated speech delivered through targeted audio speakers: Personal, audible
interpretation without headsets.

able prototypes have been developed and proposed [Waibel and Stiefelhagen
2009] for meeting rooms where the appropriate output interpretation can be
positioned toward specific individuals (or guided by face recognition) (see
Figure 14.18).

. Speech translation goggles. As alternative to personalized acoustic delivery
of translation output, such output can also be delivered in visual form. In
2005, such a cross-modal speech translated was first proposed at a press
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Figure 14.19 First demonstration of heads-up display “translation goggles” at Carnegie Mellon
(2005).

conference at CMU/KA where translated output from a simultaneous (lec-
ture) translation system was delivered textually via heads-up display goggles
(Figure 14.19). In this configuration, the user faces a conversation partner or
a lecturer and the translation of spoken words is displayed as text as subti-
tles in the glasses. While this still seemed like science fiction in 2005, such
configurations are now becoming reality as mobile computing platforms
(smartphones, smart watches) can be connected with wearable augmented
and virtual reality eye-glasses (Google “Glass”, Snapchat’s “Spectacles”, Face-
book’s Oculus) that are also becoming pervasive and commonplace. Google
already proposed a speech translator just like it as a feature for Google Glass
(Figure 14.20), Google Glass Demo9 and others are sure to follow.

. Earplugs and Pixel-Buds. Another form factor that has recently attracted
attention are earphone style devices (perhaps inspired by the Babel Fish from
the science fiction series Hitchhiker’s Guide to the Galaxy). Here, a set of
earplugs provides input and output for a speaker attempting to dialogue with
others. The underlying technology is similar to the systems described above,
but speech is delivered through earbuds instead of to a phone’s microphone.
A young start-up, “Waverly Labs,” announced to bring a product (the “Pilot”)
to market, and Google recently launched a similar product called “Google
Pixel Buds”. Google’s system combines Google Translate with speech I/O
from and to the earbuds.

9. https://www.youtube.com/watch?v=MqZuscmCYi4.
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Figure 14.20 MITE: translation via Google glass (2014).

Given all the advances with systems that can provide a translation function in a va-
riety of situations, speaking styles and across multiple modalities, true integrated
multilingual and multimodal environments become possible. With input accepted
from personal, directional microphones, by electromyography speech or hand-
writing, and output translations delivered via directional targeted audio speakers,
heads-up display goggles, personal displays on smartphones and tablet, language
transparent conversations, and meetings become possible. So far, such fully inte-
grated systems have been demonstrated only as prototypes or concept demonstra-
tions (see Figure 14.21), but with continued progress they will likely transform the
way we communicate in the global village of the future.

14.5 Conclusion
Multimodal interfaces represent a critical dimension to building effective systems
that support cross-lingual communication. Depending on the situation (lectures,
meetings, one-on-one conversations, mobile dialogues, telephone conversations,
blackboard notes, handwriting, texting, and many more), language is communi-
cated in different modalities and at different speeds. Input must be accepted in
different forms and output translation delivered in different modes and presen-
tation styles, depending on use-case and personal preference. Perceptual input
processing and translation technology has to be carefully adapted optimized to de-
liver the best language translation accuracy, at the appropriate speed, and latency,
as required by the application. All processing steps also have to sensitive to the con-
versational context. With multimodal (“fleximodal”) interfaces, dialogues across
language barriers can be supported effectively. Multimodal interfaces can better
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French
English German

Spanish

Figure 14.21 Individually adapted simultaneous translation in meetings.

compensate for errors, improve the speed of communication, adapt and scale, and
respond to user communication needs and environments. Suitable interface design
is as important to the success of cross-lingual communication tools in practice, as
the performance of the underlying technology components.

Focus Questions
14.1. What are the three partial tasks that need to be solved for speech-to-speech
translation?

ASR

MT

Speech Synthesis

14.2. What are the three main components of a modern speech recognition sys-
tem?

Acoustic Model

Dictionary

Language Model

14.3. What NN architecture is typically used in neural machine translation?

Recurrent NN
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14.4. What are current research questions in speech translation?

Compound words

Agreement

Technical terms, jargon and unknown words

Code switching

Pronouns

Readability

Spontaneous Speech

Microphones and noise

Linguistic scalability/portability

14.5. Which types of errors can occur during cross-lingual interpretation?

Out-of-Vocabulary Words

Speech confusion

Translation errors
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K. Cho, B. van Merrienboer, Ç, Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk. 2014.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, pp. 1724–1734. Doha, Qatar. DOI: 10.3115/v1/D14-
1179. 600

M. Eck, I. Lane, Y. Zhang, and A. Waibel. 2010 Jibbigo: Speech-to-Speech translation on
mobile devices. In 2010 IEEE Spoken Language Technology Workshop, 165–166. DOI:
10.1109/SLT.2010.5700843. 592

The Economist. June 12, 2006. How to build a Bablefish. In The Economist.

Ectaco. 1989. Ectaco eBook Readers and Translators. http://www.ectaco.com. 592
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