FeasPar - A Feature Structure Parser
Learning to Parse Spontaneous Speech

Zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften der Fakultat fiir Informatik

der Universitat Karlsruhe (Technische Hochschule)

vorgelegte

Dissertation
Final version (corrected) as of September 15, 1996

von
Finn Dag Bug

aus Stockholm, Schweden

Tag der miindlichen Priifung: 11. Juli 1996

Erster Gutachter: Professor Dr. Alexander Waibel
Zweiter Gutachter: Professor Dr. Walter F. Tichy

Abstract

Traditionally, automatic natural language parsing and translation have been
performed with various symbolic approaches. Many of these have the advan-
tage of a highly specific output formalism, allowing fine-grained parse analyses
and, therefore, very precise translations. Within the last decade, statistical and
connectionist techniques have been proposed to learn the parsing task in order
to avoid the tedious manual modeling of grammar and malformation. How to
learn a detailed output representation and how to learn to parse robustly even
ill-formed input, has until now remained an open question.

This thesis provides an answer to this question by presenting a connectionist
parser that needs a small corpus and a minimum of hand modeling, that learns,
and that is robust towards spontaneous speech and speech recognizer effects. The
parser delivers feature structure parses, and has a performance comparable to a
good hand modeled unification based parser.

The connectionist parser FeasPar consists of several neural networks and
a Consistency Checking Search. The number of, architecture of, and other
parameters of the neural networks are automatically derived from the training
data. The search finds the combination of the neural net outputs that produces
the most probable consistent analysis.

To demonstrate learnability and robustness, FeasPar is trained with tran-
scribed sentences from the English Spontaneous Scheduling Task and evaluated
for network, overall parse, and translation performance, with transcribed and
speech data. The latter contains speech recognition errors. FeasPar requires
only minor human effort and performs better or comparable to a good symbolic
parser developed with a 2 year, human expert effort. A key result is obtained
by using speech data to evaluate the JANUS speech-to-speech translation sys-
tem with different parsers. With FeasPar, acceptable translation performance
is 60.5 %, versus 60.8 % with a GLR* parser. FeasPar requires two weeks of
human labor to prepare the lexicon and 600 sentences of training data, whereas
the GLR* parser required significant human expert grammar modeling,.

Presented in this thesis are the Chunk’n’Label Principle, showing how to
divide the entire parsing tasks into several small tasks performed by neural net-
works, as well as the FeasPar architecture, and various methods for network
performance improvement. Further, a knowledge analysis and two methods for
improving the overall parsing performance are presented. Several evaluations
and comparisons with a GLR* parser, producing exactly the same output for-
malism, illustrate FeasPar’s advantages.

Zusammenfassung

Traditionell sind automatisches Zerteilen und Ubersetzen von natiirlicher
Sprache mittels verschiedener symbolischer Ansitze durchgefiihrt worden. Viele
davon haben den Vorteil von einem hoch-spezifischen Ausgabeformalismus, der
sehr genaue Zerteilanalysen ermoglicht, und deshalb sehr prizise Ubersetzungen
erstellt. Im Laufe des letzten Jahrzehnts, sind statistische und konnektionist-
ische Techniken vorgeschlagen worden, um die Aufgabe des Zerteilers zu lernen,
um das mithsame manuelle Modellieren von Grammatiken und deren Abweich-
ungen zu vermeiden. Wie man detaillierte Ausgabeformalismen und das Lernen
von robusten Zerteilen kombinieren soll, ist bis jetzt eine offene Frage gewesen.

Diese Arbeit liefert eine Antwort zu dieser Frage und stellt einen konnektion-
istischen Zerteiler vor, der ein kleines Korpus und ein Minimum von Hand-
modelierung braucht, der lernt, und der robust gegen spontangesprochene
Sprache und Spracherkennungsfehler ist. Dieser Zerteiler liefert Merkmals-
strukturen, und hat eine Performanz dhnlich wie ein guter handmodellierter
unifikationsbasierter Zerteiler.

Der konnektionistische Zerteiler FeasPar besteht aus mehreren neuronalen
Netzen, deren Anzahl, Architektur und weitere Parameter automatisch aus
den Trainingsdaten hergeleitet werden, und eine Konsistenziiberpriifungssuche,
die unter den Ausgaben der neuronalen Netze nach der wahrscheinlichsten,
konsistenten Analyse sucht.

Um Lernfahigkeit und Robustheit zu demonstrieren, wird FeasPar mit
transkribierten englischen Sétzen aus der Doméne spontaner Terminabsprache
trainiert. Der Zerteiler wird auf den Ebenen des Netzwerkes, Gesamtzer-
teilers, und Ubersetzungsperformanz evaluiert. Dabei werden transkribierten
und gesprochenen Daten benutzt. Die Letzteren enthalten Spracherkennungs-
fehler. FeasPar verlangt nur eine geringfiigigen menschlischen Einsatz und
hat eine Leistung, die besser oder vergleichbar mit guten symbolischen Zerteil-
ern ist, die mit langjahrigem menschlischen Expertenwissen entwickelt wurden.
Ein Schliisselergebnis ist erreicht, wenn Sprachdaten benutzt werden, um das
Sprachiibersetzungssystem JANUS mit verschiedenen Zerteilern zu evaluieren.
Mit FeasPar war die Performanz fiir akzeptable Ubersetzungen 60.5 % gegen
60.8 % mit einem GLR*-Zerteiler. FeasPar verlangt zwei Wochen menschlich-
er Arbeit, um das Lexikon und 600 Sétze als Trainingsdaten aufzubereiten,
wahrend der GLR*-Zerteiler zwei Jahre Grammatikmodellierung von mensch-
lichen Experten verlangte.

Diese Arbeit stellt das “Chunk’n’Label”-Prinzip vor, das zeigt, wie die
ganze Zerteileraufgabe in viele kleine Aufgaben, die von neuronalen Netzen aus-
gefithrt werden, zerlegt wird, aulerdem die FeasPar-Architektur und mehrere
Methoden fiir die Leistungssteigerung der Netze. Ferner werden eine Wissens-
analyse und zwei Methoden fir Steigerung der Gesamtleistung des Zerteilers
vorgestellt. Mehrere Vergleiche mit GLR*-Zerteilern, die genau den gleichen
Ausgabeformalismus produzieren, zeigen deutlich die Vorteile von FeasPar.

Contents

1 Introduction
1.1 Natural Language Translation and Parsing.
1.2 Spontaneous Speech L.
1.3 The FeasPar Parser.
1.4 Performance Measurements
1.5 Key Contributions oo
1.6 Outline e

2 Related Work
2.1 Symbolic and Unification Based Principles
2.1.1 Handling Extragrammatical Effects
2.2 Statistical Principles o000
2.2.1 Grammar Inference 0L
2.2.2 Stochastic Grammars L.
2.2.3 Hidden Understanding Model (HUM)
224 Alignment L
2.2.5 Statistical Translation
2.2.6 Example Based Translation
2.2.7 Lexical Methods
2.3 Connectionist Principles,
2.3.1 Representation Issues
2.3.2 Learning Symbolic Structures
2.3.3 Direct Translation
2.3.4 Non-learning Connectionist Parsers.
2.3.5 Learning Connectionist Parsers
2.4 Conclusion e

3 Experimental Environment and Measures
3.1 Experimental Environment
3.2 CR Database and JANUS-T
3.3 The ESST Database and JANUS-IT
3.4 Performance Comparison: GLR* Parser

QU O OU N DN = =t

10
11
11
12
12
12
13
14
14
15
15
16
16
16
17
20

3.4.1 PM 1: Parse Quality
3.42 PM 2: Translation Quality

4 Baseline Principle and Architecture

4.1 Feature Structures
4.2 The Chunk’n’Label Principle
4.2.1 Theoretical Limitations
4.3 Baseline Parser Overview
43.1 Lexicon
4.3.2 Neural Architecture and Training
4.4 The Chunker
4.4.1 Ordinal and Cardinal Numbers
4.5 Linguistic Feature Labeler
4.5.1 Syntactic Labels
4.5.2 Semantic Labels
4.5.3 Representation Methods
454 Results L.
4.6 The Chunk Path Task
4.7 Neural Network Improvements
4.7.1 Initial improvements
4.7.2 Hybrid Encodingo L.
473 Second Parse
4.7.4 Statistical Microfeatures

4.7.5 Linear - Nonlinear Connectivity (LNC)

4.7.6 Selected Connection Structure (SCS)
4.7.7 Extended Context
4.8 FeasPar Baseline Performance
4.9 Summary

5 Cooperative Networks

5.1 Knowledge Sources Analysis
5.1.1 Identifying Knowledge Sources
5.2 Architecture L
5.2.1 Flat Feature Structures
5.2.2 Nested Feature Structures
5.2.3 Multiple Feature Values
5.2.4 Initialization Values
5.3 Experiments.
54 Summary

CONTENTS

........ 71

CONTENTS

6 Consistency Checking Search
6.1 Knowledge Sources Analysis
6.1.1 Global Constraints
6.2 Architecture o
6.2.1 Search Task
6.2.2 Search Complexity Precautions
6.3 Search Principles o o
6.3.1 Search Implementation.
6.4 Improvements
6.5 Evaluation.
6.6 Final Evaluation L.
6.6.1 Results
6.6.2 Comparison Comments

7 Evaluation
7.1 Comparison with Other Approaches
7.1.1 Comparison with Hand Modeled Grammars
7.1.2 Comparison with Connectionist Parsers
7.2 Suitability for Various Tasks
7.3 Ease of Use for Non-Experts
7.4 Other Advantages

8 Conclusion
8.1 Contributions of the Thesis
8.2 Shortcomings Lo
83 Future Work

A ESST Features
Bibliography

Lebenslauf (in German)

iii

74
74
74
75
75
75
76
77
78
83
84
84
85

87
87
87
88
90
90
91

92
92
93
94

96

98

110

CONTENTS

Chapter 1

Introduction

1.1 Natural Language Translation and Parsing

Automatic natural language translation includes the task of parsing a source
language chunk' and the task of generating the corresponding target language
chunk. Either of two translation principles are applied: the Transfer Principle or
the Interlingua Principle. The Transfer Principle states that the source language
analysis A is (unfortunately) not equal to the information G that the target lan-
guage generator needs. Mappings specific to language pairs must transfer A to
G, which means that (formally) the function A — G must be defined for each
pair of languages. The Interlingua Principle assumes that it is possible to de-
fine a language independent meaning representation, the so-called interlingua.
Small domains with a limited set of concepts, often enable the definition of an
interlingua, whereas the Transfer Principle is rather applied to large domains.
The Interlingua Principle requires only n parsers and n generators for a do-
main with n languages, whereas the Transfer Principle needs (n — 1)? transfer
components additionally.

This work will focus on the parsing task needed for natural language trans-
lation applying the Interlingua Principle. Traditionally, parsing has been done
with various symbolic approaches, including unification-based parsers. They
have the advantage of highly specific analyses and therefore very precise trans-
lations. The output from any unification-based parser is a feature structure
variation, e.g. LFG, GPSG, HPSG. A feature structure is a hierarchical set of
features and values. The drawback of all symbolic approaches is the need for
hand modeled grammars, which have to be adapted to specific languages and
domains. Especially for spoken language (as opposed to text), the major dis-

advantage and difficulty for the symbolic approaches lies in building the parser:

Hn this context, a chunk can be one of the following: text, paragraph, dialog, utterance,
sentence, clause, phrase or word.

2 CHAPTER 1. INTRODUCTION

it takes as input spontaneous speech, including ungrammaticality, stops, and
restarts, corrupted with speech recognition errors. The parser should output a
consistent analysis in a formalism usable for processing by other components.

Approaches based on statistics or neural networks have been proposed. Their
advantage is learnability and robustness. However, they all have one or more of
the following disadvantages or open questions:

1. Large amounts of training data (e.g. millions of sentences) are needed.

2. The parser output formalism contains too few linguistic features to be used
for further language processing, and is not guaranteed to be consistent.

3. It is an open question if the parser performs satisfactory with real world
data, because it has only been evaluated with highly regular data.

4. It is not clear how well the parser as a whole performs, since no clear and
quantitative statement is made about overall performance.

This thesis aims at combining the strengths of symbolic and connectionist
processing, while leaving out the drawbacks by designing, implementing, and
evaluating a connectionist parser using feature structures as output formalism.

1.2 Spontaneous Speech

Spontaneous speech, as opposed to read speech, contains interrupts and restarts.
Furthermore, phrases with low information content occur, e.g. “let me see”,
“well”, “i dunno”, “(monday is) kind of (bad)”. An example dialog from the
Spontaneous Scheduling Domain is shown in Figure 1.1. The Spontaneous
Scheduling Domain is a negotiation situation, in which two subjects have to
decide on time and place for a meeting. The subjects’ calendars have conflicts,
so that a few suggestions have to go back and forth before finding a time slot
suitable for both.

A speech recognizer, transforming an acoustic signal into text, inevitably
produces errors. The error rate is higher when the recognizer must account
for sloppyness in grammar and pronunciation of spontaneous speech. Figure
1.2 shows the same dialog processed by the state-of-the-art? JANUS speech
recognizer. As we see, the latter dialog contains more malformed expressions.

1.3 The FeasPar Parser

In this work, the connectionist parser FeasPar® is presented. It parses speech,
either transcribed or as delivered from a speech recognizer as shown in the pre-
vious section. The parsing architecture is also robust towards irregularities such
as ungrammaticality, stops, restarts, and other spontaneous speech effects, as

278 % word accuracy
3FeasPar = Feature structure Parser

1.3. THE FEASPAR PARSER 3

Person 1:

okay

so you wanted to set up an appointment

you had mentioned the ninth

but I'll be out of town from that Tuesday the ninth until Thursday the eleventh
so I was thinking Monday we could meet after two

if you’re available

and if not it’ll have to be next week then

Person 2:

well

then probably looks like we’ll have to meet in the next week
Monday the fifteenth I'm free in the morning

Tuesday the sixteenth I'm free in the afternoon

and Wednesday the seventeenth I'm free all day

so if you can find two hours in there we should be good

Person 1:

okay I'll tell you what

Tuesday the sixteenth looks great

any time after twelve o’clock would be fine with me
so if you have a preference let me know

probably between two and four would be great

Person 2:
alright I can do that
why don’t we meet from two to four say in your office

Person 1:

okay that’s fine

I’ll see you then

and that’s Tuesday the sixteenth from two to four
thanks

Figure 1.1: Spontaneous speech dialog in transcribed form.

well as speech recognition errors, without requiring explicit modeling of these
phenomena. FeasPar provides parses with high and detailed information con-
tent, by utilizing feature structures as output formalism. FeasPar only needs
a small corpus of sentences and their meanings represented as feature struc-
tures, as well as a minimum of hand modeling (lexicon modeling and aligning
the training corpus) to learn the parsing task. Supported by a feature structure

4 CHAPTER 1. INTRODUCTION

Person 1:

okay

see you want to set up an appointment

you had lunch on the ninth

that i’'ll be out of town from that tuesday the ninth until thursday the eleventh
so i was thinking monday we can meet after two

if you're available

and if not i’d have to be next week then

Person 2:

although on

well it looks like we’ll have to meetLl the next week
monday the fifteenth i'm free in the morning

tuesday the sixteenth i’'m free in the afternoon

and wednesday the seventeenth i’'m free all day

so if you can find two hours in there we should be good

Person 1:

okay have to be out on

tuesday the sixteenth looks great

or any time after twelve o’clock would be fine with me
so if you’ve U preference let me know

probably between two and four would be great

Person 2:
alright i can do it
when we meet from two to four judy in your office

Person 1:

okay that’s fine

i’ll see you then

the next tuesday the sixteenth from two to four
thanks

Figure 1.2: Spontaneous speech dialog in speech form, i.e. processed by the
state-of-the-art JAUNS speech recognizer. Speech recognition errors are high-
lighted.

specification, FeasPar has a performance comparable to good hand modeled
symbolic grammars.

1.4. PERFORMANCE MEASUREMENTS 3

1.4 Performance Measurements

Various methods for learning the FeasPar task are evaluated throughout this
work, by using real world spontaneous speech sentences. Quantitative measure-
ments are performed on several levels, including network level, overall parser
level and translation system level. The latter is conducted by running FeasPar
as a part of the JANUS speech-to-speech translation system. In order to avoid
biased results, four separate data sets are used for training, testing, evaluation
and final evaluation.

1.5 Key Contributions

e Learning Complex Analyses: As mentioned above, the existing learn-
ing parsers are incapable of learning complex analysis formalisms, which
is one important strength of symbolic parsers. FeasPar closes this discrep-
ancy by demonstrating how a complex formalism such as feature structures
corresponds (Chunk’n’Label Principle) to smaller learnable tasks. FeasPar
also shows how these tasks can be learned by neural networks by using
various connectionist techniques.

e Consistency Checking Search: Running a system including several
neural networks means that the total error rate multiplies up. The more
fine-grained the analysis has to be, the more networks will potentially make
wrong decisions. Previous connectionist parsers produce a core parse with-
out many details, so this problem is not fatal to them. Due to FeasPar’s
output formalism complexity, this problem has to be taken seriously. The
solution is the Consistency Check Search that not only reduces the error
rate, but also assures that the parse is consistent.

¢ Robustness: FeasPar is the first learnable parser being robust towards
both spontaneous speech and speech recognizer errors that performs as
well as good symbolic grammars written over longer time. The robustness
must neither be explicitly modeled nor learned.

1.6 Outline

In Chapter 2, other relevant work within symbolic, statistical and connection-
ist natural language processing is discussed. The next chapter describes the
quantitative measures applied throughout this work and the environment, the
JANUS translation system, in which they are performed. The notion of feature
structures, the Chunk’n’Label Principle, and the FeasPar baseline architecture
are explained in Chapter 4, which is concluded with overall baseline evalua-
tion results. The following chapter discusses which further knowledge sources

6 CHAPTER 1. INTRODUCTION

can be exploited to increase overall performance, and suggests the Cooperative
Network Model, which has a well explainable connectionist and statistical the-
oretical base. Chapter 6 presents the Consistency Checking Search, which is
an efficient search returning the most probable consistent feature structure. A
total evaluation of FeasPar is conducted in Chapter 7, followed by a concluding
chapter.

Chapter 2

Related Work

This thesis can be seen in the context of three research areas within natural lan-
guage processing (NLP): symbolic and unification based NLP, statistical NLP,
and connectionist NLP. Due to the amount of research in these fields, it is only
possible to mention work that is directly related to this thesis.

Unfortunately, performance evaluation tasks and measures are hardly stan-
dardized within NLP. Various principles and systems are evaluated on various
tasks, and only a few results are really comparable. In order to avoid confusion,
only performance results that are comparable to results from this thesis will be
quoted.

Up until the last decade, NLP research dealt almost exclusively with text as
input modality. As speech recognition technology became successful, the focus
of interest NLP research expanded into towards speech as input modality as
well.

2.1 Symbolic and Unification Based Principles

Symbolic and unification based NLP sprung out of the combination of formal
linguistic theories and artificial intelligence (AI) methods for symbolic process-
ing. The symbolic and unification based systems have the advantage of being
explicit and explainable in their modeling, just like in other rule based Al sys-
tems. Linguistic phenomena, available from numerous linguistic studies and
descriptions, can be viewed as expert knowledge and modeled as a grammar in
order to provide an NLP system. In the following, the most influential grammar
theories, parsing principles, and parsers are described.

Recursive Transition Networks (RTNs) [All88a] are equivalent to Context
Free Grammars (CFGs). An RTN consists of nodes and arcs. An arc cor-
responds to a terminal or non-terminal in a CFG and may refer to another
network, which is executed when the arc is followed. The arc ’pop’ terminates

8 CHAPTER 2. RELATED WORK

a network. Since the entire state of a parse only involves three pieces of infor-
mation (current position, current node, and return points), backtracking and
search is easy. The Phoenix parser, described later, uses RTNs.

A frequently applied parsing principle is chart parsing, which utilizes a chart,
an agenda, and a CFG. The chart consists of nodes and arcs, representing
word boundaries and constituents, respectively. By using the CFG rules, arcs
spanning over one or few nodes are connected to span over several nodes. When
an arc spans all nodes, the parse is completed. During the parsing process,
various arcs joining hypotheses must be evaluated. They are stored on a stack,
called an agenda.

Another popular parsing technique is case frame instantiation [WFT89,
PBA93, BBMGT94, Min95]. The original caseframe theory [Fil68] builds on
the idea of deep cases, like agent, patient, location, beneficiary or instrument.
A caseframe consists of a head concept and a set of cases associated in a well-
defined manner with the head concept. The main strength of caseframe parsing
is the integration of syntactic parsing and semantic analysis.

The above principles were developed in the ’60 and the '70. In the 80
unification based grammar theories were defined and implemented in order to
enhance the means of capturing and representing linguistic information. An
important consequence was that parses contained more information that could
be utilized by other NLP components.

Lexical Functional Grammar (LFG) [Bre82] is a context-free phrase struc-
ture grammar annotated with features. It uses unification, and produces a con-
stituent structure (c-structure) and a functional structure (f-structure). The
c-structure is a phrase structure tree that represents the surface structure and
linear order. The f-structure represents the underlying grammatical relations,
and is a set of features, with feature values. The feature value is either atomic,
a new f-structure, or a set of values. The set of atomic values corresponding to
one feature, is always finite: e.g. the feature Gender takes one of the atomic
values {Feminine, Masculine, Neuter}. The major weaknesses of LFG is the
fixed constituent order, and the difficulty in implementation.

General Phrase Structure Grammar (GPSG) [GKPS85b] contains 4 parts: A
theory of feature structures, Phrase-structure (PS) rules, Metarules, and gram-
matical principles. A feature structure has the same structure as an f-structure.
The PS rules are split into ID rules and LP rules. The ID rules are normal
context-free rules, but do not express the order of constituents. The LP-rules
express only linear precedence that are always true for the language, e.g. in
German and English: Det < N, meaning that a determiner comes before its
noun. This is very useful in languages without fixed word order, e.g. German
[Usz86a, Usz86b, Usz87]. Metarules and grammatical principles define general
language independent principles.

Head-Driven Phrase Structure Grammar (HPSG) [PS87a] is an enhancement
of GPSG. The most important extensions include typed feature structures, con-

2.1. SYMBOLIC AND UNIFICATION BASED PRINCIPLES 9

junctions and disjunctions of atomic and complex feature values,! implications,
list and set descriptions, and finally the Head-Feature Principle (HFP). The
latter expresses that when a larger constituent is built from smaller ones; a
particular head feature becomes the head of the new constituent, and thereby
passes head information through a constituent parse tree. HPSG grammars
are continuously enhanced to encounter for various linguistic phenomena, e.g.
[Par92, Net92, NNP92]. HPSG grammars are also used for spoken language
processing [MST*92].

The Phoenix parser [War91, IW93, WI195, LFGT95b, BBDT95, MGWW95,
MGST95] applies RTNs. It is used for speech understanding (ATIS ?) and trans-
lation (JANUS). Translation with Phoenix works by generating target language
sentences from a parse consisting of simple slots without attributes. The ad-
vantages of the simple parse formalism, RTN, are good performance for speech
understanding and translation and that the grammar hand modeling effort is
smaller than for unification based grammars (9 months versus 2 years for GLR*).
There are two main disadvantages: first, the translations are to a high degree
pattern based standardized language and contain a low degree of variation and
refinement [WMG™T96], and second, the limited expressiveness in the parse for-
malism forces the grammar developer to write highly domain dependent rules.
The parser has also been ported to other languages with mixed success, as lan-
guages with rich morpho-syntax can only be modeled with difficulty [Rec93]
since the parse formalism does not offer attributes.

A good implementation of an LFG-like parser and generator is The Gener-
alized LR Parser and Generator [TC87, TMML88, Tr88], in which the parsing
and generation grammars are augmented context-free grammars that are com-
piled into an augmented LR table to be used by a run-time parser based on
Tomita’s generalized LR parsing algorithm [Tom85, Tom87]. The advantage is
the speed in compilation of grammars and in run-time. The disadvantage is
the fixed constituent order as mentioned. Sikkel and Lankhorst [SL92] further
improve the LR parser with an algorithm allowing parallel processing, pars-
ing of cyclic CFGs (not possible with Tomita’s algorithm) and having a better
space efficiency than Tomita’s algorithm. GLR grammars have been written
for various applications and domains, including technical manuals translation
[MNC91], read speech translation [WNM*T91, WIMT91, OAM*92, WIM*92]
and (spontaneous) speech translation [WAWB™94]. Therefore, the GLR system
and its successors have continuously profited from a large amount of experience
and expert knowledge. Phoenix and GLR* achieve similar acceptable speech
translation performance, both for transcribed input (approximately 80 %) and
speech recognizer input (approximately 45 %)? [Lav96b].

3

LAs a comparison, FeasPar only allows disjunctions of atomic feature values.

2ATIS (Air Traffic Information System) takes speech queries from the flight information
domain and outputs SQL queries to a data base.

3Numbers also include translation of trivial sentences, e.g. “yes”, “no”, “thank you”, “well”,
“sounds good”, “terrific”, “okay” etc.

10 CHAPTER 2. RELATED WORK

All symbolic and unification based systems have the advantage of explicit
models, just like other rule based AI systems. Linguistic phenomena avail-
able from numerous linguistic studies and descriptions can be viewed as expert
knowledge and modeled as a grammar in order to provide a NLP system. This
is very valuable when analyzing natural language that is completely well-formed
with respect to its linguistic description, like text. All or almost all kinds of
complex constructs in a text can be parsed, as long as it is grammatical. Hence,
symbolic and unification based parsers are very successful in text parsing and
understanding. The disadvantage of these approaches, however, lies in the effort
spent on the development, which is very time consuming and must be performed
by qualified computer linguists being experts in a particular grammar formalism.

2.1.1 Handling Extragrammatical Effects

For cognitive reasons, the underlying grammar for spoken language (speech)
differs from the one for written language (text). While writing a text, the
writer has more time to think, and can correct his language before issuing it,
than a speaker has. A written sentence is normally grammatical, and it often
has a more complex structure. A spoken sentence is not always grammatical,
sometimes it contains corrections like restarts, but it often contains a simpler
structure. These phenomena are gradual though, depending on how much time
the writer has to plan his sentence before issuing it. He may have plenty of time
(less errors) or be in a hurry (more errors). A speaker may have every word
well planned in advance, giving a speech (read speech), or decide in the very
moment of speaking what to say (spontaneous speech).

Symbolic and unification based systems often contain a linguistic standard
grammar or subgrammar for written language, which leads to problems with
extragrammatical (malformed) input. Text has a lower degree of malformation
than speech. Certain errors are also caused by the machine interface: For text,
keyboard typing errors occur, and for speech, recognition errors occur. The
latter normally causes more errors.

There are principally two ways to compensate for natural language errors:
extend or change the rules (explicit modeling), and relax rules (robustness).
In order to extend the grammar, the best option would be to have a complete
spoken language grammar produced by descriptive linguistics, just like written
language grammars almost cover wellformed written language. A few efforts
within descriptive linguistics move along these lines [LR90, Lan90]. In many
real-world systems, domain specific rules catching spoken phenomena are found
on an empirical, sometimes unsystematical basis. Also common is to add robust-
ness to the system towards specific extragrammatical errors or malformation in
general:

¢ Specific Extragrammatical Errors: Carbonell and Hayes [CH83] de-
scribe several extragrammatical phenomena in text and strategies for han-

2.2. STATISTICAL PRINCIPLES 11

dling them. The caseframe parsers CASPAR and DYPAR-II demonstrate
the integrations of many of these strategies. The paper [Wen93] shows the
Extended GLR parser, suggesting the handling of six phenomena in text.

e Malformation in General: Phoenix parses only those natural lan-
guage chunks that make sense, and leaves the rest unanalyzed. TINA
[Sen92, TSP*95] uses RTNs augmented with syntactic and semantic fea-
tures and trainable arc probabilities. It is applied to speech understanding
(ATIS). GLR* [LT93] utilizes a skip mechanism to skip words that prevent
a legal parse. The parse with the lowest number of skips is considered the
best. An island parser [CMGS91] examines speech by starting with the
words having the highest acoustic score, and incrementally include words
to both sides during parse, and thereby creating islands of interpretable
natural language pieces. The DELPHI system [SB92, BIS92] applies a
fallback strategy, which is enabled if its normal chart-based unification
grammar parser fails, by first producing a sequence of fragmentary sub-
parses. They are passed to a Syntactic Combiner, and if that one fails, to
a Frame Combiner. The Syntactic Combiner uses extended grammar rules
trying to re-construct a plausible parse. The Frame Combiner utilizes a
set of frequently occurring slot-filling schemes and provides a semantic
interpretation.

2.2 Statistical Principles

Statistical methods in NLP rely mainly on information that can be extracted
from a corpus of collected natural language. Linguistic expert knowledge is used
only to a minor degree, forming the assumptions for a statistical model.

2.2.1 Grammar Inference

The first set of methods tries to infer the grammars needed from a corpora, so
that linguistic expert knowledge becomes superfluous. Naumann and Schrepp
[NS92] present an incremental learning algorithm used to produce a sequence
of CFGs that approximates the target grammar of the corpus. In each step, a
small set of sentences is selected and analyzed by a special parser that produces
partial structural descriptions for sentences not covered by the actual grammar.
The sentence that minimizes the inductive leap for the learner, is selected. For
this sentence, several hypotheses for completing its partial structural description
are formulated and evaluated. The ’best’ hypothesis is then used to infer a new
grammar. This process is iterated until the corpus is entirely covered by the
grammar. McCandless and Glass [MG93] start with one grammar rule per
training sentence. In each step, similar* words are replaced by a non-terminal.

4measure: relative entropy

12 CHAPTER 2. RELATED WORK

All occurrences of these words are replaced by the non-terminal. Redundant
rules are removed. The process must be terminated by a stop criteria, but the
authors do not suggest any. Jelinek et al. [JLM*94] reformulate the grammar
learning problem to learning labeling actions (right, unary, left and up) for each
node in a parse tree. A labeling task based on statistical decision trees learns
the labels.

2.2.2 Stochastic Grammars

The next set of methods assumes a grammar written by linguist experts, but
aims at ranking the parse tree ambiguities by probability. Jelinek et al. [JIM92]
present, an overview of algorithms for handling probabilistic context free gram-
mars (PCFG). A PCFG is a CFG where probabilities are added for every rule.
The Inside algorithm and the CYK algorithm calculate the total probability of
a given sentence. The Viterbi search finds the most probable search tree. The
Inside-Outside algorithm estimates the probabilities of the rules. Corazza et
al. [CMGS91] extend these algorithms to work for an island parser, where gaps
must be considered. Other work [NT87, LGQ*95, Lav96b] extend beyond only
adding a probability per rule, by adding a probability per entry in the internal
LR parsing table. Stolcke [Sto93] shows how to add probabilities to the CFG
Earley parser.

2.2.3 Hidden Understanding Model (HUM)

The HUM model [MBSI94, MBB™95] consists of tree structured meaning expres-
sions that are viewed as a hierarchy of Hidden Markov [Rab90] state sequences
ending with the state ’exit’ at every hierarchical level. The normal Hidden
Markov Model (HMM) assumption of only considering a history of length one is
made, so that the arc probabilities of the model can be trained as for an HMM.
HUM is applied to the ATIS task. Although not mentioned by the authors, the
HUM model seems to have strong similarities to RTN and Phoenix (also parsing
the ATIS task), where the HUM ’exit’ state corresponds to the RTN ’pop’ arc.

2.2.4 Alignment

A few approaches try to learn from bilingual corpora what natural language
pieces (words, phrases, sentences, paragraphs) in one language L1 correspond
(align) to text pieces in another language L2. Alignment is applied in statistical
translation [BCPT90] and for producing bilingual lexica. Kay and Rdscheisen
[KR93] present an iterative algorithm for aligning words and sentences of a
bilingual corpus. The input to the algorithm is only the corpus and a trivially
derived table. First, a hypothesis is assumed on which sentences in text T1 align
to which sentences in text T2. Initially, only the first and last sentences in T1
and T2 are aligned with a small number of sentences from the beginning and

2.2. STATISTICAL PRINCIPLES 13

end of T2. Then pairs of words (W1, W2) are considered: each word W1 in a
sentence S1 in T1 is compared with every word W2 in sentences S2 in T2, where
S1 may align to S2. If the distributions of W1 and W2 are sufficiently similar,
then W1 and W2 are assumed to align. Based on word alignment hypotheses,
new sentence alignment hypotheses are calculated by considering how well the
words in T1 align with words in T2. Now, a new iteration step is made. The
method is tested with a scientific article available in English and German.

Gale and Church [GC93] do sentence alignment by assuming that longer
sentences in T1 align to longer sentences in T2, and that shorter sentences
in T1 align to shorter sentences in T2. A probabilistic score is assigned to
each pair of proposed sentence pairs, based on the ratio of lengths of the two
sentences (in characters) and the variance of this ratio. This probabilistic score
is used in a dynamic programming framework in order to find the maximum
likelihood alignment of sentences. The method is tested with the large Canadian
Parlament corpus in English and French. The resulting sentence alignment is
used to find word alignments.

Dagan et al. [DCG93] describe a variant of the work of Brown et al.
[BCPT90] (see below), where the number of parameters is reduced in order
to enable aligning corpora that are smaller and noisier than the Canadian Par-
lament corpus. The reduction is achieved by making various assumptions, such
that every word in T2 aligns to one or zero words in T1 and that it is more likely
that the first word in a sentence in T1 aligns to a word near the beginning of
the corresponding sentence in T2. Furthermore, most and least frequent words,
as well as function words are excepted from the analysis. The method is applied
to induce bilingual terminology lexica from software manuals.

2.2.5 Statistical Translation

Alignment can also be used for statistical machine translation [BCPT90]. Given
a sentence T in the target language, one seeks the sentence S from which the
translator produced T. The chance of error is minimized by choosing the sen-
tence S that is most probable, given T. Hence, S should be chosen so that
P (S| T) is maximized. Bayes’ theorem implies:

P(S|T) = #375

Since P(T) does not depend on S, it suffices to find the S that maximizes the
product P(S) P(T|S). The first factor is called the language model probability,
and the second the translation probability. The latter can be calculated from
the word alignments of the words in T and S. The language model probability
expresses, how the words found by alignment should be ordered to make a
sentence, and is implemented as an N-gram, as known from speech recognition
language modeling [Jel90]. The method is tested with the Canadian Parlament
corpus, and achieves an acceptable translation rate of 48 %.

Further work by Brown et al. aims at reducing translation time by dividing

14 CHAPTER 2. RELATED WORK

long sentences [BPPT91], and increasing translation performance by statistical
word-sense disambiguation [BLM91b]. The latter works by automatically find-
ing the binary question related to a word’s context that distinguishes it the most
between two word senses.

2.2.6 Example Based Translation

Another method of direct translation is Example Based Translation [FI92,
FSI92]. It contains two knowledge sources: first, a data base of translation
examples manually picked from a bilingual corpus; and second, a concept hi-
erarchy, containing semantic scores. To translate a sentence, first a lookup is
performed in the bilingual data base to find similar translations. The best trans-
lation is found by exchanging the differing words in a similar translation. The
translation distance is found by consulting the concept hierarchy, and calculat-
ing the semantic distance of the differing words. The advantage of this method
is its robustness, because it uses semantic dependencies. Further, it is efficient,
since the distance calculation is fast. The drawback is the manual time effort
in building the two knowledge sources, and that efficiency decreases with large
knowledge bases, since the translation runs sequentially.

2.2.7 Lexical Methods

Another method of finding similar words other than alignment is using a word
space [Sch92]. Here, four-grams of letters are picked out of a running (newspa-
per) text. By filtering out infrequent, redundant, uninformative and the most
frequent ones, the number of four-grams is reduced to 5000. Now, for every
word w, a context window is defined around every occurrence of the word, and
the four-grams in the context are viewed as a context representation for w. The
context representations for all occurrences are then normalized and summed up
to form the word representation. More formally, if C'(w) is the set of positions
in the corpus at which w occurs and if ¢(f) is the vector representation for
four-gram f, then the vector representation 7(w) of w is defined as: (the dot
stands for normalization)

=3 S el (2.1)

ieC(w) ¢ close to 4

The training material consists of 5 months of New York Times News Service.
Listing nearest neighbor of the word representations, shows that words having
similar semantic and syntactic properties are bundled.

In the paper [Sch93] a similar principle is presented, where word occurrences
are applied instead of four-grams. The collocation matrix is reduced by sin-
gular value decomposition, and then a context window is examined. A sum is
calculated as in the previous paper, giving a word representation ¢ for a word

2.3. CONNECTIONIST PRINCIPLES 15

in language L1. Another word representation ¢’ is defined by using the sum
of all ¢ in sentences where the word occurs. By using results from alignments
between sentences in L1 and L2, the author shows how representations for word
in a language L2 can be found similarly. This gives representations for words
in L1 and L2, and in addition to similarity within one language, also similarity
between words in two languages can be found. The latter is then in principle a
bilingual lexicon, and can be used for translation. The method is tested with
the Canadian Parlament corpus, and the author provides plausible examples of
similarities.

2.3 Connectionist Principles

Connectionist principles (neural networks) [HKP91a] allow other forms for rep-
resentation of lexicon and structural information than those offered by symbolic
principles. Learning, a central topic of all connectionist processing, is used in
most connectionist NLP systems, and utilizes corpora of training examples. The
latter suggests that connectionist principles are actually a subtopic of statistical
principles. However, due to the similarities within connectionist principles, they
are treated as a separate topic.

2.3.1 Representation Issues

Connectionist Principles allow both localist and distributed representations. Lo-
calist representation means that one item or item feature is represented by the
activity of a single unit in a neural net [WP85]. Distributed representation
means that items or item features are represented as a distributed pattern of
activation across a number of units [HMR86]. When using localist representa-
tion, the smallest semantically interpretable part of the representation is called
a microfeature [WP85]. The advantage of localist representation is its trans-
parency, whereas the distributed representation is appreciated for its learnabil-
ity and storage efficiency. The FGREP [MD89b] mechanism illustrates how to
learn distributed input representations by extending the error back-propagation
[RHWS86] one step further than in normal back-propagation. FGREP is applied
to a small and regular corpora, and proves to possess good learning capabilities.

Pollack [Pol88] implemented recursive structures, e.g. a stack, by using
a three-layer network. The input consisted of two parts: stack and element.
The hidden layer represented the stack, and the output consisted of a stack
and an element. The stack representation was learned in the hidden layers.
The elements used normal local representation. His model is called RAAM
(Recursive Auto-Associative Memory). He also presents a further example,
where a RAAM learns a context free grammar.

16 CHAPTER 2. RELATED WORK

2.3.2 Learning Symbolic Structures

Certain research has focused on the ability of neural networks to compute sym-
bolic structures, like context free grammars, in order to provide a basis for
grammar processing. Pioneering work by Elman [Elm90, EIm91] presented a
network architecture, later called Elman Networks. A sequence of input is pre-
sented in separate time steps to the network. Its architecture consists of the
normal input, hidden, and output layers, and in addition a context layer. The
latter is copied from the hidden layer at time ¢, and then fed into the hidden
layer together with the input layer at time ¢ + 1. The usage for learning struc-
ture in letter sequences, word boundaries and lexical structure is shown. The
network learned to predict the next element in the input.

Berg [Ber91] applied a mixture of RAAM and Elman networks to implement
the recursiveness of the head principle of constituents. Input consisted of context
and word, and output of specifier, head and two complements. The error rate
was from 1 to 4%, where most errors were of lexical nature. Giles et al. [LFG95a]
investigate the ability to learn to differentiate between a grammatical and an
ungrammatical sentence with respect to transitivity, given regular examples.
Eight different networks are tested with the task, and Elman networks learn it
best.

2.3.3 Direct Translation

Chrisman [Chr91] suggests combining two RAAMs into a dual-ported RAAM, so
that they share the distributed representations being learned. During learning,
a sentence in language L1 is presented at the input and output of one of the
RAAMs, and the corresponding sentence in language L2 is presented at the
input and output of the other RAAM. The system is evaluated with 216 possible
English-Spanish sentence pairs that were generated from a vocabulary of 36
English and 36 Spanish words. All sentences contain only one clause, consisting
of subject, verb and predicate/object. Translation performance is 75 %. The
number includes only those sentences, where rephrasing into the same language
succeeded.

2.3.4 Non-learning Connectionist Parsers

A few approaches suggest building parsers where the operations are performed
by neural networks, and the network weights are not learned. Waltz and Pollack
[WP85] present a hand-coded mutual connected network using spreading acti-
vation and lateral inhibition. The parser has levels for input, lexical microfea-
tures, syntactic structure, semantic and contextual information. Also included
is a hand coded lexicon, with localist representation, using microfeatures. The
purpose is semantic disambiguation. The main claim is that different kinds of
information are easy to integrate. In another paper [KS93] the same idea is fol-

2.3. CONNECTIONIST PRINCIPLES 17

lowed, and uses four layers (Input, Lexical, Context, Syntax), a Semantic Space
and a Memory to disambiguate sentences containing prepositional attachment
ambiguities.> Another approach is to dynamically build small networks corre-
sponding to CFG rules during a parse, and connect these with inhibitory and
excitatory connections [KK93]. Wilkens and Schnelle [WS90a] suggest a mu-
tual non-learning network using spreading activation and lateral inhibition to
do chart parsing based on Earley’s algorithm. By using localist representation,
they make three spaces of units which represent parse list, computation of parse
list and correct parse. In another paper [WS91, WS90b], they also introduced
a mutual non-learning network applying spreading activation and lateral inhi-
bition for representing feature co-occurrence restrictions as known from GPSG
[GKPS85a]. Their representation of atomic feature values is similar to the one
in this thesis, but they do not present how to represent structure. Henderson
[Hen94] presents a neural network parser for syntactic parsing that performs
the basic operations in a unification formalism. The work argues what is plau-
sible from a linguistic, cognitive and biological perspective, but does not discuss
issues such as performance and robustness.

2.3.5 Learning Connectionist Parsers

Miikkulainen and Dyer [MD89a, MD91] present a three-layer network, with
learnable input and output. The network size and input and output lengths are
fixed. The network module is called FGREP. A paraphrasing system is built,
consisting of 4 FGREP modules. The module tasks are to map from sentence to
case roles, from case roles to scripts, and then back to case roles and sentences.

Wermter and Weber [WW94, WW96] present SCREEN, a parser for spoken
language consisting of five parts, where each part consists of several modules.
Each module can have a symbolic program and a neural network. The speech
interface part receives input from a speech recognizer as word hypotheses and
provides an analysis of the syntactic and semantic plausibility of the recognized
words. The category part receives words and provides basic syntactic, basic se-
mantic, abstract syntactic and abstract semantic categories. Knowledge about
words and phrases and their categories are received by the correction part, which
provides knowledge about spontaneous effects, like repair or restart. The sub-
clause part is responsible for the detection of subclause borders. Finally, the
case frame part is responsible for the overall interpretation. This part receives
knowledge about abstract and semantic categories of a phrase and provides the
integrated interpretation. The architecture is interesting because it explicitly
models fault tolerance. The system is trained and tested on the German Re-
gensburg corpus (train information), and the Time Scheduling Task (see Section
3.3). Test results are only presented for five selected networks. They vary from
72 % to 89 % (Time Scheduling Task). Unfortunately, no overall results are

5Example: Susi sees Peter with the telescope.

18 CHAPTER 2. RELATED WORK

given. Since the modules use output from other modules, the error rates must
be assumed to multiply. Further, it is not stated how many networks there
are in total. Clearly, there are at least five, since results for five networks are
presented. Making a best-case calculation, using the quoted performance and
assuming that all other networks have a perfect test performance®, would yield
35 % performance. Finally, the parser output formalism is not described, so it is
not clear if the parse information is sufficient for other NLP processing modules.

Since PARSEC is the most relevant work to this thesis, it is described in more
detail. The task of PARSEC [Jai89, Jai90, JW89, JW90b, JW90a, Jaidl, Jaig2]
is to incrementally parse incoming words into a three level structure. It assumes
that the input is one sentence. It consists of six three-layer feed-forward net-
works: A preprocessor that filters alphanumeric input, two networks that split
the input into phrases, and then phrases into clauses. The last three networks
label the three levels (phrase, clause and the full sentence). The training set
must be labeled consistently by the modeler. All networks are classification net-
works, and follow the same constructive learning paradigm. The lexicon uses a
localist representation, where binary features are defined by the modeler. The
binary features make up a bit vector. When a word has several meanings, the
features are overloaded, i.e. the corresponding bit vectors are OR’ed together.
This bit vector and a unique ID binary number together make up the input
vector. The input vectors are presented one at a time to the network. The
system calculates the dimensions of the networks, and sets up parameter files
for learning.

The training process is performed by programmable constructive learning,
PCL. Two key concepts in PCL are hidden unit type and learning phases. The
PCL algorithm, as shown in Figure 2.1, consists of 3 nested loops. The innermost
loop iterates over forward and backward propagations [RHW86]. The middle
loop increases the number of connections by adding another unit to the hidden
layer. The outermost loop increases the hidden unit type. The stop criteria for
the innermost and middle loop is that test set performance does not increase
any more. For each type of network to learn, 3 or 4 hidden unit types are
specified. In general, type 0 has a low degree of connectivity, i.e. only local
information and little or no context is taken into consideration. The modeled
context increases with the types. The idea is to learn context-free relations
before context-dependent ones.

PARSEC also has 8 learning phases: Phase 1 performs standard back prop-
agation. Phase 2 is entered when all tokens can be learned during an epoch. In
Phase 2, the learning rate is adjusted while learning. Phase 3 is entered when
only a very few tokens remain. In Phase 3, weight modifications are only made
for tokens with error rates above a certain threshold. Phases and hidden unit
types are increased independently.

In order to capture the time aspect of the input, a second weight wvelocity

6This is an unrealistically good assumption.

2.3. CONNECTIONIST PRINCIPLES 19

PROCEDURE PCL(NN: neural_network)

VAR
T, E: integer;
U: unit of type T;
performance_epoch,
performance_unit: array of float;

BEGIN
FOR each hidden unit type T = 0 TO max_unit_type (NN)
FOR each hidden unit U = 0 TO infinite
BEGIN
create(U);
add U to NN;
FOR each epoch E = 0 TO infinite
BEGIN
forward_backward_propagate (NN) ;
performance_epoch(E) = measure(NN);
IF performance_epoch(E) = 100 %
return;
IF performance_epoch(E) < performance_epoch(E-1)
break;
END;
performance_unit(U) = performance_epoch(E-1);
IF performance_unit(U) < performance_unit(U-1)
break;
END;
END.

Figure 2.1: Programmable constructive learning (PCL) algorithm: see text for
further explanations.

is used in every node in addition to the normal weight. Velocity expresses the
change in activation of a node. Learning is time-consuming. It generally con-
verges well, but depends on lexicon feature diversity, consistency in the training
set, and not too complex mapping between input and output. The sentence
level label, called mood, is the most difficult to train.

PARSEC is extended also to consider the intonation of a spoken sentence:
The pitch contour is smoothed and normalized, and presented as a 75 unit

20 CHAPTER 2. RELATED WORK

vector, hooked on to the mood label, and then trained as the other networks.
Performance rises significantly.

PARSEC is applied to the Conference Registration Task (see Section 3.2),
consisting of 204 sentences based on a 400 word lexicon. Another application is
the ATIS task [Jai91, PW92] which focuses more on semantic parsing. When
PARSEC is integrated with JANUS-I, one problem is that PARSEC’s output
contains less information than the f-structure being used for further processing.
When parsing English, this is solved by building a script-based mapper with
defaults. It is tailored to the test set. When parsing German, building the
mapper is only possible for the simplest sentences. The more complex morpho-
syntax in German, and the fact that word disambiguation has to be done to find
the correct f-structure semantic concepts, makes any principally correct effort
impossible.

PARSEC is tested in JANUS with recognition noise input on the training
data, after being trained in all phases 1-3. Generalization is tested after training
phases 1-2, and looking at output without sending it through the mapper.

Finally, PARSEC is tested on the spontaneous speech effects, ungrammati-
cality, repairs, restarts and non-words, and is reported to be robust [Jai91]. How-
ever, neither non-trivial examples nor performance results are given. Among
trivial examples that PARSEC managed, was Yes, that are right. (verb disagree-
ment). As the labels did not reflect number, they are naturally not picky about
input breaking a number rule.

2.4 Conclusion

Unification-based parsers have the advantage of highly specific analyses and
therefore very precise translations. The drawback of all symbolic approaches
is the need of hand modeled grammars, which have to be adapted to language
and domain. Further, robustness issues cause the need for extra hand modeling
efforts. Two parsers have been evaluated on the same task as FeasPar, ESST
(see Section 3.3):

e Phoenix has a simpler parse formalism (RTNs) than FeasPar, consisting
of hierarchical slots without attributes. Phoenix has a similar accept-
able translation end-to-end performance, but the simpler parse formalism
causes many standardized translations, without the variations and refine-
ments that more expressive parse formalisms offer. Further, the limited
formalism forces the grammar writer to introduce non-general rules, highly
targeted towards the domain [WMG196]. The lack of attributes causes
problems when modeling languages rich in morpho-syntax, e.g. German
[Rec93], whereas FeasPar is capable of learning morpho-syntactic labels.
To model a Phoenix grammar also takes more time than modeling FeasPar
training data and lexicon.

2.4. CONCLUSION 21

e GLR* has the advantage of a similar acceptable translation end-to-end
performance, and the same output formalism as FeasPar. Therefore, it is
compared with FeasPar throughout this thesis. The major drawback of a
GLR* parser is the long grammar development time.

Approaches based on statistics or neural networks have been proposed. Their
advantage is learnability and robustness. However, they all have one or more of
the following disadvantages or open questions:

1. Large amounts of training data (e.g. millions of sentences) are needed.

2. The parser output formalism contains too few linguistic features to be used
for further language processing, and is not guaranteed to be consistent.

3. It is an open question if the parser performs satisfactory with real world
data, because it has only been evaluated with highly regular data.

4. Tt is not clear how well the parser as a whole performs, since no clear and
quantitative statement is made about overall performance.

FeasPar combines ideas from the theory of feature structures used in the
unification-based parsers in order to form a learnable problem, which is learned
by a connectionist architecture. The latter contains elements from the PAR-
SEC architecture, but provides far more information in the parser output. The
output consistency and performance is enhanced considerably by various neural
network techniques and a search that is not present in the PARSEC system. Fi-
nally, whereas PARSEC is evaluated with read speech, FeasPar’s performance
is measured on spontaneous speech, which is harder to analyze.

In summing up, FeasPar combines the advantages of unification based ap-
proaches with those of connectionist approaches, and leaves out the disadvan-
tages. It delivers feature structure parses, and has a performance as good as
a good hand modeled unification based parser. Further, it only needs a small
corpus and a minimum of hand modeling to learn. FeasPar is robust towards
spontaneous speech and speech recognizer effects.

Chapter 3

Experimental Environment
and Measures

This work is aimed at producing not only principles and architectures that
seem plausible, but also at working well with respect to performance. Hence,
the descriptions throughout the next chapters are accompanied by performance
measurement analysis.

This chapter explains the environment in which FeasPar is tested and evalu-
ated, the domains and data sets being used, and finally the performance measure
methods and their advantages and disadvantages.

3.1 Experimental Environment

The experimental environment for FeasPar is the JANUS[WNMT'91,
WJIMT91, OAM*T92, WIMT92, WAWBT94, GSB'95] speech-to-speech trans-
lation system, as shown in Figures 3.1 and 3.2. The JANUS-I domain is the
Conference Registration Task (see Section 3.2 for details), whereas the JANUS-
IT domain is the Spontaneous Speech Task (see Section 3.3 for details). The core
of the translation system, excluding speech recognizer and synthesizer, mainly
consists of the GLR or GLR* parser and generator system, see Section 2.1.

The major architectural difference between the JANUS versions is that the
JANUS-I parser analysis contains mainly syntactic information which have to be
mapped into the semantic interlingua. The JANUS-II parser analysis contains
all necessary semantic information, so that they can be used as interlingua
directly, without the need for a mapping component. The mappers at the
generation side are motivated analogously.

22

3.2. CR DATABASE AND JANUS-1 23

3.2 CR Database and JANUS-I

The conference registration (CR) task consists of imaginary telephone calls to a
secretary’s office of an international scientific conference. The callers ask ques-
tions about hotel rooms, how to get there and request registration formulas. All
sentences are read speech, i.e. reading from a sheet of paper. This means that
the sentences are well formed, and no spontaneous effects or phrases occurred.
The database exists in English, German, and Japanese. This thesis uses the 12
dialogs of the German database. The GLR parsers and generators of JANUS-I

acoustic signal

|

‘ speech recognizer ‘

sentence hypothesis

|

‘ German GLR parser ‘

syntactic feature structure

|

mapper

interlingua

| mapper | mapper |

‘ GLR generator L1 ‘ ‘ GLR generator L2 ‘
‘ synthesize L1 ‘ ‘ synthesize 1.2 ‘
speech in L1 speech in L2

Figure 3.1: JANUS-I: speech-to-speech translation of read speech in the German
Conference Registration (CR) task

24 CHAPTER 3. EXPERIMENTAL ENVIRONMENT AND MEASURES

are syntax-based, so that additional mappers between syntax and semantics are
necessary.

3.3 The ESST Database and JANUS-II

The Spontaneous Scheduling Task (ESST) is a negotiation situation, in which
two subjects have to decide on time and place for a meeting. The subjects’
calendars have conflicts, so that a few suggestions have to go back and forth
before finding a time slot suitable for both. The database exists in English
(ESST), German (GSST), Japanese (JSST) and Spanish (SSST).

The GLR* translation system focuses on parsing ESST, and translating into
the other languages. Among the generators, the English generator was the
most developed. However, due to the many structurally malformed sentences

in the database it is too difficult to write syntactic parsers for ESST with the

acoustic signal

|

speech recognizer

sentence hypothesis

|

‘ English GLR* parser ‘

ILT (interlingua) as
semantic feature structure

‘ GLR* generator L1 ‘ ‘ GLR* generator 1.2 ‘
‘ synthesize L1 ‘ ‘ synthesize L2 ‘
speech in L1 speech in L2

Figure 3.2: JANUS-II: speech-to-speech translation of spontaneous speech in
the English Spontaneous Scheduling Task

3.4. PERFORMANCE COMPARISON: GLR* PARSER 25

GLR* technology. Therefore, the GLR* parsers and generators apply semantic
analysis, which is used as interlingua.

The GLR* grammar and generation authors agreed on a common interlin-
gua, ILT (InterLingua Transcription), so that the parse output could be used
as generator input. During the two years of GLR* parser and generator gram-
mar development time, the ILT was changed and extended over 50 times (!), in
order to be as optimal for the GLR* parser and generators as possible. Since
FeasPar is trained from data labeled with ILT segments, These labels had to
be continuously manually adjusted, and the neural networks retrained when the
ILT was changed. After a few times, I decided to ’freeze’ the ILT for myself, and
therefore conserved the ILT specification and all sentences with ILTs available
by the internal JANUS-II project evaluation in March 1994. It is important to
realize that FeasPar had to learn an ILT specification, which was highly tuned
towards symbolic processing.

In total, this work utilizes the following ESST corpora:

Training Set (Set 1) : Approximately 560 sentences with corresponding ILT's
(as of March 1994). Each sentence was manually chunked and aligned
with corresponding ILT parts. The set is used for training during FeasPar
development. All sentences are transcribed data (not speech data).

Test Set (Set 2) : Approximately 65 sentences with corresponding ILTs (as
of March 1994). Each sentence was manually chunked and aligned with
corresponding ILT parts. The set is used for testing during FeasPar de-
velopment. All sentences are transcribed data (not speech data).

Evaluation Set (Set 3) : Approximately 120 sentences with corresponding
ILTs (as of March 1994). are used for evaluation of the final FeasPar
baseline version. The set exists in two versions: as speech data (with
speech recognizer errors) and as transcribed data (without speech recog-
nizer errors)

Final Evaluation Set (Set 4) : 99 utterances (approximately 350 sentences)
without corresponding ILTs. The set is used for the final evaluation of
FeasPar. This set exists as speech and transcribed data.

3.4 Performance Comparison: GLR* Parser

To show the learning ability of FeasPar, it is compared with the GLR* parser.

Since parsing spontaneous speech is more difficult and challenging than read
speech, FeasPar is tested with ESST. Further, ESST offers a good chance for
testing FeasPar with semantic features. Additionally, a few experiments are
run with the German CR task, showing that FeasPar also can learn syntactic
features (see Section 4.5.1).

26 CHAPTER 3. EXPERIMENTAL ENVIRONMENT AND MEASURES

On the parsing side, an ESST GLR* semantic grammar only exists for En-
glish. On the generator side, a German generator was developed only through
March 94, while an English generator was continuously developed. The English
grammar and generator were developed for 2 years.

3.4.1 PM 1: Parse Quality

The first performance measure, PM 1, expresses the parse quality. PM1 is also
called ILT feature accuracy and is defined as:

Ceorr=M
Ceorr

where:

e M is the number of mismatches made, while checking all features in the
correct ILTs and the suggested ILTs from the parser.

e (Ciorr is the number of considerations of existing features in the correct
ILTs.

It is important to notice that this number can become negative: if a sug-
gested ILT contains a feature A not present in the correct ILT, M is counted
up, but Ceuprr is not. The latter is only incremented if feature A occurs in the
correct ILT.

The advantage of PM 1 is that the measure is computed automatically and is
independent of human judgement. Its disadvantage is that it is only an indirect
indicator for translation quality, since not all ILT features are equally important
for the generator.

3.4.2 PM 2: Translation Quality

The second performance measure, PM 2, is also called the end-to-end compari-
son, expresses the quality of the translated sentences. A translated sentence is
graded as ‘acceptable if all relevant information is conveyed and the sentence
is natural (i.e. perfect), or slightly unnatural, but clear enough to understand
the meaning (i.e. ok). It is graded as ‘not acceptable’ if incorrect or not all
information is conveyed, or (with speech data only) an irrecoverable recogni-
tion error occurs. Furthermore, trivial sentences, whose translations can easily
be retrieved by lookup, e.g. “yes”, “no”, “thank you”, “well”, “sounds good”,
“terrific”, “okay” etc., are excluded, so that only truly translated sentences are
counted.

Two variants exist for PM2: PM 2E is used when the parser is coupled with
the English generator (developed for 2 years), and PM 2G, when the parser is
combined with the German generator (development stopped March 94).

3.4. PERFORMANCE COMPARISON: GLR* PARSER 27

[43 ”

The sentence is trivial (“yes”, “no”,

Excluded Trivial “okay” etc.) and excluded from evaluation
Perfect, Fluent translation with all information conveyed
Acceptable OK All important information translated correctly,
but translation is awkward
Bad Unacceptable translation
Not acceptable | Irrecoverable | Translation failed due to irrecoverable
recognition speech recognition error (speech data only)

Table 3.1: Evaluation Grade Categories

The advantage of measure 2 is that translation quality is measured directly.
Its disadvantage is that the grading must be done by humans, i.e. it depends on
human judgement, and is therefore subjective. Also, grading becomes a fairly
time consuming task.

Chapter 4

Baseline Principle and
Architecture

Based on the general observations made about unification based and connec-
tionist parsers made in chapter 2, this chapter will present a parsing method and
architecture that omit the drawbacks of other parsers, as described in Section
2.4.

Section 4.1 describes the feature structure formalism. In Section 4.2 the
chunk’n’label principle will be introduced and motivated. The following sec-
tion describes the FeasPar baseline parser architecture, which is based on the
chunk’n’label principle. A more detailed description of each of the three FeasPar
baseline modules is given in Sections 4.4 - 4.6. The next section focuses on the
various neural network extensions and improvements. In the last section, the
final FeasPar baseline performance is presented.

4.1 Feature Structures

Many natural language processing components and applications use the feature
structure formalism. It can describe all kinds of linguistic information, includ-
ing discourse representation, semantics, syntax, and phonetics. When feature
structures are applied in parsing, they represent the syntax or semantic analy-
sis. Further, the they form the core of well-known unification-based formalisms
e.g. LFG [KB82], GPSG [GKPS85a], and HPSG [PS87b], which all are used
for a high number of parsers and natural language generators. Feature struc-
tures are used as output formalism for FeasPar. Their syntactic properties and

terminology are introduced in the following;:

1. A feature structure is a set of none, one or several feature pairs.

28

4.1. FEATURE STRUCTURES 29

((speech-act *confirm)

(sentence-type *state)

(frame *clarify)

(topic ((frame *simple-time)

(day-of-week monday)))

(adverb perhaps)

(clarified ((frame *simple-time)
(day-of-week monday)
(day 27))))

Figure 4.1: Feature structure with the meaning “by monday i assume you mean
monday the twenty seventh”

2. A feature pair, e.g. (frame *clarify) , consists of a feature, e.g. frame
or topic, and a feature value.

3. A feature value is either:
(a) an atomic value, e.g. *clarify!

or:

(b) a complex value
4. A complex value is a feature structure.

Throughout this work, examples of a certain kind of feature structures, ILTs,
are presented. The following example intends to give the reader an intuitive
understanding of the information contained in an ILT. The following sentence
corresponds to the feature structure shown in Figure 4.1:

“by monday i assume you mean monday the twenty seventh?”
The semantic of the ILT in Figure 4.1 is explained briefly in the following:

e (speech-act *confirm): The sentence confirms (and not denies or re-
quests) a statement.

e (sentence-type *state): The sentence is a statement (not a question
or command).

Mn the ILT specification, atomic values have an asterisk '*’, and some do not. FeasPar by
no means distinguishes between values with or without "*’. The examples in this work include
asterisks where appropriate only in order to follow the ILT specification in every detail.

2All natural language examples throughout the thesis are spontaneous speech examples,
and therefore presented without orthographic notation, e.g. upper case letters, commas and
punctuation.

30 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

e frame: At each level in a feature structure the feature frame has one
and only one value. *clarify means that an unclarity is clarified.
*simple-time indicates a time expression.

e clarified: The information being clarified is given as the value of
clarified.

e topic expresses the semantic topic or focus being emphasized in the sen-
tence.

e (adverb perhaps): An adverbial expressing uncertainty is present.
e (day 27): The time expression contains the 27th day of a month.

e (day-of-week monday): The weekday monday is part of the time expres-
sion.

ILT features and atomic values are listed in Appendix A for completeness.

4.2 The Chunk’n’Label Principle

In contrast to the standard feature structure definition of Section 4.1, an al-
ternative view-point is to look at a feature structure as a tree of nodes and
branches.? Each node is annotated with a set of zero, one, or several atomic
feature pairs. The branches are annotated with complex features, so-called path
elements. Each complex feature corresponds to one path element. Next, each
branch is allowed to have zero, one, or several path elements. Atomic feature
pairs belonging to the same branches, have the same path to all other branches.

It is assumed that there exists sentence, clause, phrase and word chunks.
Then, when comparing a sentence* with its feature structure, it appears that
there is a correspondence between parts of the feature structure, and specific
chunks of the sentence. In the example feature structure of Figure 4.1, the
following observations about feature pairs and paths apply:

e feature pairs: corresponds to:
(day 27) “the twenty seventh”
((frame *simple-time)
(day-of-week monday) “monday the twenty seventh”
(day 27))

37This assumes that structure sharing is not possible, see Section 4.2.1.
4The chunk’n’label principle can easily be applied to larger parts of natural language, like
e.g. an entire spoken utterance.

4.2. THE CHUNK’N’LABEL PRINCIPLE 31

e paths: the complex value of the feature topic corresponds to the chunk
“by monday”, and the complex value of the feature clarified corresponds
to “you mean monday the twenty seventh”. Therefore, these chunks should
be annotated with the paths topic and clarified, respectively.

Finally, a correspondence between chunks and nodes is defined, yielding a
tree with four levels. Note that since each branch may be annotated with more
than one path element, the corresponding feature structure can easily have a
nesting deeper than four.

c; = Q@ ; C; = chunk, i = 1..4, Q = path
P ; P = atomic feature pairs
Cilyoy ; Ci11 = subchunk
Cs = w ; single word of input sentence (terminal)
Q = '["[e(’/’¢)*] ']’ ;e = path element (terminal)
P = X|'C AT’y ;A = one atomic feature pair
A = ' fov’y ; f = feature, v = atomic value (terminals)

Figure 4.2: Chunk parse: Syntax and meaning.

Manually aligning the sentence with parts of the feature structure, gives a
chunk parse. The underlying syntax and meaning is explained in Figure 4.2.
An example is shown in Figure 4.3. A few comments apply to chunk parses:

e The sentence is hierarchically split into chunks.
e Feature pairs are listed with their corresponding chunk.

e Paths are shown in square brackets, and express how a chunk relates to
its parent chunk. Paths may contain more than one element. This allows
several nesting levels in the corresponding feature structure.

Once having obtained the information in Figure 4.3, producing a feature
structure is straight forward, using the algorithm of Figure 4.4 on Page 33.

Summing up and formalizing, the following principle, the Chunk’n’label prin-
ciple, is introduced:

1. Split the incoming sentence into hierarchical chunks, see Figure 4.6.
2. Label each chunk with feature pairs and feature paths, see Figure 4.8.

3. Convert this into a feature structure (see Figure 4.9 for an example),
using the algorithm of Figure 4.4.

The algorithm traverses the chunk parse in a top-down manner, and builds

32 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

([1 ((speech-act *confirm)
(sentence-type *state)
(frame *clarify))

qn
([topic]l ((frame *simple-time))
([1((day-of-week monday)) monday))
N] i))
([1 ((adverb perhaps))
qn assume)))
([clarified]
N l you))
N QN mean))

([1]((frame *simple-time))
(01 ((day-of-week monday)) monday)

(1 the)
(1 ((day 27)) ([rego] twenty seventh)))))

Figure 4.3: Chunk parse: Sentence aligned with its feature structure (see text
for explanation).

up a feature structure for a chunk from its path elements, atomic feature pairs,
and subchunks.

4.2.1 Theoretical Limitations

The chunk’n’label principle has a few theoretical limitations compared with the
feature structure formalisms commonly used in unification-based parsing, e.g.
[GKPS85a]. These are discussed in the following.

Depth

With the chunk’n’label principle, the feature structure has a maximum nesting
depth. One could expect the maximal nesting depth to cause limitations. How-
ever, these limitations are only theoretical, because very deep nesting is hardly
needed in practice for spoken language. Due to the ability to model paths of
more than length 1, no nesting depth problems occurred while modeling over
600 sentences from ESST.

4.2. THE CHUNK’N’LABEL PRINCIPLE 33

FUNCTION start_convert(top_level_chunk: chunk): feature_structure

VAR
S: feature_structure;
C: chunk;

BEGIN
S := the_empty_feature_structure;
convert (S,top_level_chunk) ;
return(S);

END;

PROCEDURE convert (VAR S: feature_structure;

C: chunk);
VAR
E : path_element;
S’ : feature_structure;
C’ : chunk;

P,T : feature pair;

BEGIN
Q := chunk_path(C);
FOR each E in @
BEGIN
S’ := the_empty_feature_structure;
T := feature_structure(E,S’);
insert T in S;
S :=8’;
END;
FOR P in C ; process atomic feature pairs
insert P in S;
FOR each C’ in C ; process subchunks
convert(S,C);
END;

Figure 4.4: Top-down algorithm for converting a parse to a feature structure

Structure Sharing

Many unification formalisms allow feature values to be shared: In an example
from [PS87h], p.32, subject and verb both have 3rd person-singular-feminine,

34 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

e.g. verb agreement, and they therefore have this information shared:

((subject (agreement [1] ((person 3rd)
(number singular)
(gender feminine))))
(predicate (agreement [1])))

The chunk’n’label principle does not incorporate any mechanism for struc-
ture sharing. The information can of course be represented in duplicated form.
All work with ESST and ILT empirically showed that there is no need for struc-
ture sharing. This observation suggests that for semantic analysis, structure
sharing is statistically insignificant, even if its existence is theoretically present.

Handmodeling

lexicon chunk parses

Automatic Training

Set-Up
for each network:
number and
interpretation of e starting architecture
networks e architecture hidden

types
e training data

}

Automatic Training
(parallel for each network)

FeasPar’s architecture for run mode

Figure 4.5: FeasPar’s architecture for learn mode

4.3 Baseline Parser Overview

The chunk’n’label principle is the basis for the design and implementation of
the FeasPar parser. This section describes the parser in overview, and the three

4.3. BASELINE PARSER OVERVIEW 35

“i have a meeting till twelve”

|

3 segmentation NNs } Chunker
A\
\4
A\

sentence clause phrase word
chunk: chunk: chunk: chunks:

] [] (1] LT

[] [1 have
L1 a
D [] meeting
[] till
twelve

T T g T
sentence clause phrase word

chunk chunk chunk chunk LFL

feature NNs feature NNs feature NNs feature NNs
+ + + +
sentence clause phrase word
chunks path chunks path chunks path chunks path| ¢ CRF
NNs NNs NNs NNs

v
A\
v

chunk parse (as shown in Figure 4.8)

!

Converter ‘

!

feature structure (ILT)

Figure 4.6: FeasPar’s architecture for run mode. The Converter module varies
among the different versions. In the baseline version, the algorithm in Figure
4.4 is applied, in Chapter 5, the Cooperative Networks, and in Chapter 6, the
Consistency Checking Search.

36 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

(((speech-act *state-constraint)
(sentence-type *state))
(((frame *booked))

(((frame =*i))

(i)
(have)
(((frame =*meeting))

(((specifier indefinite)) a)

(meeting))
(((frame *simple-time)

(../frame *interval)

(../incl-excl inclusive))

(till)

(((hour =12)) ([regc] twelve)))))

Figure 4.7: Chunked and labeled sentence (labels shown in boldface)

([]((speech-act *state-constraint)
(sentence-type *state))
([I((frame *booked))
([who]((frame =*i))
i i)
(0 have))
([what]((frame =*meeting))
([]((specifier indefinite)) a)
i meeting))
([when/end]((frame *simple-time)
(../frame *interval)
(../incl-excl inclusive))
(1l till)
([)((hour =12)) ([rege] twelve)))))

Figure 4.8: Chunk parse (chunk paths shown in boldface)

next sections its three main modules in more detail.
According to the chunk’n’label principle, a sentence can be chunked, and its
chunks can be labeled with feature pairs and paths. This gives a chunk parse (as

4.3. BASELINE PARSER OVERVIEW 37

((speech-act *state-constraint)

(sentence-type *state)

(frame *booked)

(who ((frame *i)))

(what ((frame #*meeting)
(specifier indefinite)))

(when ((incl-excl inclusive)
(frame *interval)
(end ((frame *simple-time)

(hour 12))))))

Figure 4.9: Feature structure parse

in Figure 4.3), which can be converted into a feature structure by the algorithm
in Figure 4.4. Hence, the hard problem is to produce a chunk parse. FeasPar
uses neural networks to learn to produce chunk parses. It has two modes: learn
mode and run mode. In learn mode, manually modeled chunk parses are split
into several separate training sets; one per neural network. Then, the networks
are trained independently of each other, allowing for parallel training on several
CPUr’s, see Figure 4.5 on Page 34. In run mode, the input sentence is processed
through all networks, giving a chunk parse, which is passed on to the converting
algorithm shown in Figure 4.4. The architecture and an example run is shown
in Figure 4.6 on Page 35, which will both be explained in the following. FeasPar
consists of several neural networks[HKP91a]. These can be grouped into three
functional modules:

1. The Chunker
2. The Linguistic Feature Labeler (LFL)
3. The Chunk Path Finder (CRF)

The Chunker splits an input sentence into chunks. It consists of three neu-
ral networks. The first network finds numbers. They are classified as being
ordinal or cardinal numbers, and are presented as words to the following net-
works. The next network groups words together to phrases. The third network
groups phrases together into clauses. In total, there are four levels of chunks:
word /number, phrase, clause and sentence.

The Linguistic Feature Labeler attaches features and atomic feature values
(if applicable) to these chunks. A feature normally only occurs at a certain
chunk level. During parsing, a neural network assigns values to features. The
neural network is tailored to decide on a particular feature at a particular chunk

38 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

level. This specialization is there to prevent the learning task from becoming
too complex. At each chunk level there are several features, each of them being
assigned one or zero atomic feature value. Since there are many features, each
chunk may get no, one or several pairs of features and atomic values. For the
LFL, two different representations are suggested. These will be discussed in
greater detail in Section 4.5.3. A special atomic feature value is called lexical
feature value. It is indicated by =’ and means that the neural network only
detects the occurrence of a value, whereas the value itself is found by a lexicon
lookup. The lexical feature values are a true hybrid mechanism, where symbolic
knowledge is included when the neural network signals so. Furthermore, features
may be marked as up-features (e.g. ../incl-excl in Figure 4.7 and 4.8 on
Page 36). An up-feature is propagated up to its parent branch when building
the feature structure (see Figure 4.9).

The Chunk Path Finder determines how a chunk relates to its parent chunk
and consists of one network per chunk level and chunk path element.

The following example illustrates in detail how the three parts work. The
parser gets the English sentence:

“i have a meeting till twelve”

The Chunker segments the sentence before passing it to the Linguistic Fea-
ture Labeler, which adds semantic labels (see Figure 4.7 on Page 36). The
Chunk Path Finder then adds paths, where appropriate, and we get the com-
plete parse as shown in Figure 4.8 on Page 36. Finally, processing it by the
algorithm in Figure 4.4 on Page 33, gives the feature structure as shown in
Figure 4.9.

For simplicity, this example assumes that all networks perform perfectly. The
converter in Figure 4.4 only considers the output with the highest activation for
every network. How to consider all outputs will the topic of chapter 5 and 6.

4.3.1 Lexicon

FeasPar uses a full word form lexicon.? The lexicon consists of two parts®: first,
a syntactic and semantic microfeature [Sha91] vector per word, and second,
lexical feature values.

Syntactic and semantic microfeatures are represented for each word as a vec-
tor of binary values. These vectors are used as input to the neural networks.
As the neural networks learn their tasks based on the microfeatures, and not
based on distinct words, adding new words using the same microfeatures is easy
and does not degrade generalization performance. The number and selection of
microfeatures are domain dependent and must be made manually. For CR and

«;

5This means that for example the word forms “be”, “is”, “are”, and “been” are separate
lexicon entries, even if they all have the word root “be” in common.
6T he lexicon is later extended with a third part, statistical microfeatures, see Section 4.7.4.

« 2

4.4. THE CHUNKER 39

ESST, the lexicon contains domain independent syntactic and domain depen-
dent semantic microfeatures. To manually model a 600 word ESST vocabulary
requires 3 full days.

Lexical feature values are stored in look-up tables, which are accessed when
the Linguistic Feature Labeler indicates a lexical feature value. These tables
are generated automatically from the training data, and can easily be extended
by hand for more generality and new words. An automatic ambiguity checker
warns if similar words or phrases map to ambiguous lexical feature values.

4.3.2 Neural Architecture and Training

All neural networks have one hidden layer, and are conventional feed-forward
networks. The learning is done with standard back-propagation [RHWS86,
HKP9I1b], combined with the constructive learning algorithm PCL [Jai91] (see
Section 2.3.5), where learning starts using a small context, which is increased
later in the learning process. This causes local dependencies to be learned first.

Generalization performance is increased by sparse connectivity. This connec-
tion principle is based on the microfeatures in the lexicon that are relevant to a
particular network. The Chunker networks are only connected to the syntactic
microfeatures, because chunking is a syntactic task. With ESST, the Linguistic
Feature Labeler and Chunk Path Finder networks are connected only to the
semantic microfeatures, and to relevant statistical microfeatures’. All connec-
tivity setup is automatic.

4.4 The Chunker

The Chunker is almost identical to the first three PARSEC [Jai91] modules,
Preprocessor, Phrase Module, and Clause Mapping Module. One extension to
the Chunker is described in this section.

4.4.1 Ordinal and Cardinal Numbers

In PARSEC’s preprocessor module, alphanumeric strings are detected. How-
ever, no distinction is made between cardinal and ordinal number, e.g. “three”
and “third”. For a task like ESST, however, this distinction is important, which
should be obvious from the following example:

“I'm free at three on the third”

Here, “third” indicates the third day of the month, whereas “three” indicates
three o’clock.

The Chunker uses an extended preprocessor output representation, consist-
ing of three values: 'number’, ’ordinal number’; and ’cardinal number’: ’Num-
ber’ is used for “twenty” in “twenty nine” or “twenty ninth”. ’Ordinal number’ is

"Explained in Section 4.7.4

40 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

number
ordinal number

fardinal number

but . . .
any [] [] []
afternoon . . .
twenty @ | o |
ninth e | @ | o
thirtieth e | @ | ¢
o — [HIDDEN UNITS | — |,
first . o .
after]] .
three . . o
iS [} [} °
good o« | o | @

Figure 4.10: New preprocessor representation.

used for “ninth” in “twenty ninth” or “ninth”. Finally, ’Cardinal number’ is used
for “nine” in “twenty nine” or “nine”. A complete example sentence is illustrated
in Figure 4.10.

4.5 Linguistic Feature Labeler

This section will discuss two aspects of the Linguistic Feature Labeler: plau-
sibility for different kinds of parsing and representation. In order to test the
plausability for FeasPar for both syntactic and semantic parsing, two different
Linguistic Feature Labelers (LFL) are trained, one for German, yielding syn-
tactic labels, and one for English, computing semantic labels. For syntactic
analysis, German is chosen as a challenging example language, because of its
relatively complicated morpho-syntax. This makes it a more interesting task
than English syntax would have been.

4.5. LINGUISTIC FEATURE LABELER 41

(((form passive) (tense present)

(mood ind) (agr sing-3)) ;features

(falls)

((case nom) (agr sing_3) (gender masculine)) ihr artikel) ;features
akzeptiert)

(wird))

(((form active)

(tense future) (mood ind) (agr plu_-1)) ;features

(werden)

(((case nom) (agr plu_1)) wir) ;features

(((case dat) (agr pol-2)) ihnen) ;features

(auch)

(((case acc) (agr plu_3) (gender neuter)) spezielle formulare) ;features

(((case acc) (agr sing-3) (gender masculine)) fiir ihren artikel) ;features

(zusenden)

)

of verb clause 1

of NP 1

of verb clause 2

of NP 2
of NP 3

of NP 4
of PP 1

Figure 4.11: Syntactic labels (labels shown in boldface)

4.5.1 Syntactic Labels

One Chunker and an LFL are trained with the German CR task.® The following
sentence will illustrate how parsing works (see also Figure 4.11):

“falls ihr artikel akzeptiert wird werden wir ihnen auch spezielle formulare fiir ihren artikel zusenden

(“if your article accepted is will we you also special forms for your article send”)
“If your article is accepted, we will also send you special forms for your article.”

First, the original sentence is chopped up into chunks. These chunks are
passed to the Linguistic Feature Labeler. In this example, the Linguistic Feature
Labeler faces the problem that “wird”, word form of “werden”, and “werden”
itself have two distinct meanings (passive and future), in addition to being
different word forms. For example, the tense feature depends both on meaning
and word form. Figure 4.11 shows a parse. The feature pairs are emphasized.
For completeness, Table 4.1 on Page 42 shows the features from the CR corpus,

along with their meanings and value ranges.

8The GLR translation system for the German CR task is syntax-based. The morpho-
syntactic labels used and learned by the LFL are exactly those used by the GLR translation
system.

”

42 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

| feature type | Feature name | feature values |

hrase case nominative, accusative, dative, genitive
?eatures agreement 1st_singular, .., 3rd_plural, 2nd_polite
gender feminine, masculine, neuter
form active, passive
clause tense present, past, perfect, pluperfect, future
features mood indicative, subjunctive, infinitive
agreement 1st_singular, .., 3rd_plural, 2nd_polite

Table 4.1: Syntactic labels used in German CR task

4.5.2 Semantic Labels

In order to test plausibility also for semantic labels, another Chunker and LFL
is trained with ESST? to form a parser. The following sentence serves as an
example for how the parser works:

“Can you meet in the morning”

Here the Chunker also segments the sentence before passing it to the LFL,
which adds semantic labels, as shown in Figure 4.12. The complete list of
semantic features is shown in Appendix A.

(((frame *free))
(can))
(((frame *you))
(you)
(mest)
(Eframe *special-time)) |
(((specifier definite)) the)
(((time-of-day =morning)) morning)))

Figure 4.12: Semantic labels (labels shown in boldface)

9The GLR* translation system for ESST is semantics-based. The semantic labels used and
learned by the LFL are exactly those used by the GLR* translation system.

4.5. LINGUISTIC FEATURE LABELER 43

4.5.3 Representation Methods

Two different neural network representations for the Linguistic Feature Labeler
are suggested:

1. Common network representation: A network represents all features for a
chunk type, so that for example all phrase chunk features are represented
by one network together, and all clause chunk features in another.

2. Separate network representation: A network represents only one feature.

syntactic features semantic features
1. common 2. separate 1. common 2. separate
network network network network
Feature type representation | representation | representation | representation
word features | n/a n/a 97.6 % n/a
phrase features | 93.1 % 88.8 % 94.6 % 96.1 %
clause features | 86.7 % 85.8 % 85.6 % n/a

| Total average | 89.4 % 96.1 %

873 % [92.6 %

Table 4.2: Syntactic and semantic features’ test set performance comparison

4.5.4 Results

This subsection discuss the test set results in the Tables 4.2 on Page 43, 4.3 on
Page 44, 4.11 on Page 59, and 4.13 on Page 61 in respect to different kinds of
parsing tasks and representation methods.

Syntactic and semantic parsing tasks are well mastered. The parser has
learned features in German, which has with a rich and complex morpho-syntax.
One word has many word forms, and each word form has many meanings. This
is a very interesting problem, because the mapping from word forms to features
is not trivial. Among the features, distinction can be made between simple
and complex features: simple features, like gender, depend on one word only,
and the task for them is only finding the correct feature within a word meaning.
Complex features, like tense and agreement also have to combine several words
that all have several meanings. For example, “werden”, which has three distinct
meanings, or nouns like “Artikel”, which are the same in singular and plural in
German. In spite of these difficulties, the LFL generalizes well. The experiments
with English sentences and semantic features further confirm that the approach
is suited for other kinds of features and languages. Further, all results show
a tendency that features corresponding to smaller constituents are easier to

44 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

| Feature type | Feature name | |

case 91.2 %

phrase agreement 94.3 %
features gender 93.8 %
Average 93.1 %

form 91.1 %

clause tense 91.4 %
features mood 83.9 %
agreement 80.4 %

Average 86.7 %

| Total average | 89.4 % |

Table 4.3: Test set performance on the Linguistic Feature Labeler for syntactic
features from the German CR task, broken down by features.

learn than those corresponding to larger ones. This tendency is seen for both
the morpho-syntactic and the semantic features. The tendency is stronger for
the semantic features, due to the lexical feature values, which are often used
for semantic features, especially for those corresponding to small constituents.
Lexical feature values are not used for the experiments with morpho-syntactic
features described here.

The two representation methods have different advantages and disadvan-
tages. Common network representation have the advantage of co-operation,
i.e. potentially, correlations between features are exploited. Evidence for this
is that total average performance for syntactic features is better with common
network representation than with the separate one. Further, overall training
time is shorter, and the overall network size is smaller. The separate network
representation benefits from specialization. Each network is dedicated to one
task only and can concentrate on that one. This is demonstrated by the results
of the semantic features. The co-operation gain is hardly present for seman-
tic features, since they do not correlate as much as syntactic features do: e.g.
exclaim and day have nothing to do with each other, whereas case and gender
have a strong correlation. As a consequence, the separate modules approach is
included in the baseline version of the ESST parser.

4.6 The Chunk Path Task

The Chunk Path Task determines the paths of all chunks. Each chunk path
element at each chunk level is represented by a neural network. By choosing
the right representation of feature structures as chunk paths, the learning prob-

4.6. THE CHUNK PATH TASK 45

((speech-act *suggest)
(sentence-type *directive)
(frame *schedule)
(what ((frame *it)))
(when ((frame *time-list)
(connective -)
(items (*MULTIPLE=*
((frame *simple-time)
(day 8))
((frame *interval)
(incl-excl inclusive)
(start ((frame *simple-time)
(hour 8)))
(end ((frame *simple-time)
(hour 10))))))))

(conjunction then))

Figure 4.13: ILT for “then let +s plan it for then on the eighth eight to ten”.

lem complexity is reduced considerably. This will be shown in this section by
comparing two representation methods, brute force modeling and tree modeling.

As mentioned in Section 4.1, a chunk path may contain more than one ele-
ment, in order to allow nesting depth. An example is the chunk path when/end
in Figure 4.9 on Page 37. However, some feature structures have paths contain-
ing the path element items, e.g. the ILT in Figure 4.13. Since ILT models time
scheduling, many time expressions appear in this style. The question is, what
is the best modeling for such paths.

A brute force modeling, gives a training pattern as shown in Figure 4.14 on
Page 46,'° containing e.g. the chunk path when/items/1/start, where items
and 1 seem necessary to determine the exact position of the atomic feature pairs
of the chunk. This modeling has the problem that the chunk path of a chunk
depends highly on the appearance of similar chunks in its context, and very
little on the chunk content. This is apparent in Figure 4.13: only because both
“on the eighth” and “eight to ten” appear in the same sentence, there is an extra
step of depth containing (frame *time-list).

A more consistent labeling paradigm, the tree modeling, models the chunks
as if they appeared alone, and how sibling chunks relate to each other, i.e.

10The feature pair (frame *interval) is not modeled explicitly, because it is always
triggered by the feature incl-excl. The same thing applies for (frame xtime-list) and
(connective -), which are due to [items]

46 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

([1 ((speech-act *suggest)
(sentence-type *directive))

]
([1((conjunction =then))

(11 then))
qn qn let))
N l +s))
([] ((frame =*schedule))

(r1 plan))
([what] ((frame =xit))

N it))
([when/items/1] ((frame *simple-time))

QN for)

QN then)

N on)

N the)

([1((day =8)) ([rego] eighth)))

([when/items/2/start] ((../incl-excl inclusive)
(frame *simple-time))

([1 ((hour =8)) ([regc] eight)))
([when/items/2/end] ((frame *simple-time))

(01 to)

(01 ((hour =10)) ([regc]l ten)))))

Figure 4.14: Brute force modeling: training example for the sentence “then let
+s plan it for then on the eighth eight to ten.” Notice the usage of when/items/1
and when/items/2

ignoring the items and 1 path elements, and model how to incrementally build
a structure from separate paths. Figure 4.15 on Page 47 shows an example
for how to model a training sentence. The idea behind the tree modeling is
illustrated in Figures 4.16- 4.18: The chunks are viewed as loose tree branches
that are incrementally added to form a tree: The first branch (“on the eighth”)
is created as normal, i.e. as if it were the only chunk with the path when. The
second branch (“eight”) is also labeled as if it were the only chunk with the path
when, with the additional control information new. The latter means that this
branch should be merged as a new when branch.

The merge result is shown in the left part of Figure 4.17. Further in the
same figure, a third branch (“to ten”) is also labeled as if it were the only chunk

4.6. THE CHUNK PATH TASK 47

([1 ((speech-act *suggest)
(sentence-type *directive))

N
([1((conjunction =then))
(01 then))
(1 qn let))
N l +s))
([] ((frame =*schedule))
(1 plan))
([what] ((frame =xit))
(a1l it))
([when] ((frame *simple-time))
QN for)
QN then)
(a1l on)
(a1l the)
([1((day =8)) ([rego] eighth)))

([new/when/start] ((../incl-excl inclusive)
(frame *simple-time))

([1 ((hour =8)) ([regc] eight)))
([same/when/end] ((frame *simple-time))

(01 to)

(01 ((hour =10)) ([regcl ten)))))

Figure 4.15: Tree modeling: training example for the sentence “then let +s plan
it for then on the eighth eight to ten”. Notice the usage of when, new/when/start,
and same/when/end, and compare with Figure 4.16 - 4.18.

with the path [when], with the control information same. The latter means that
a new branch should not be created, but that it is added to the same branch
that was most recently added. The final result is shown in Figure 4.18, which
is structurally equivalent to the entire [when] branch of the ILT in Figure 4.13
on Page 45.

In more general terms, a chunk is labeled regardless of its neighbour chunks
as if they were standalones, with the addition of control information that ex-
presses how to merge with the last chunk having the same chunk path element
(e.g. when).

However, the control information new or same is not suffcient for an unambi-
gious specification, as the following example will show: In Figure 4.19 on Page

48 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

add

[when] [when/start]

control: new

for then on the eighth eight

Figure 4.16: Tree modeling of chunk paths:
Left: a standalone [when] chunk
Right: another standalone [when] chunk to be merged

add
%
[when] [when]
[start] [when/end]
control: same
for then on the eighth|eight to ten

Figure 4.17: Tree modeling of chunk paths:
Left: result of merging the two first [when] chunks
Right: a third standalone [when] chunk to be merged

4.6. THE CHUNK PATH TASK 49

[wher] [wher]

[start] [end]

for then on the eighth‘eight ‘o ten

Figure 4.18: Tree modeling of chunk paths:
Result of merging all three [when] chunks

50 the parser must add the chunk first as a new branch to the parse tree.
However, this is ambiguous, because it is not clear if the new branch should
be a neighbor to all other branches, as in Figure 4.20 on Page 50, or if there
should be a split of the previous branch, as in Figure 4.21 on Page 51. For this
purpose, a control bit representing neighbor or split is necessary.

Summing up, two control bits new or same and neighbor or split for every
chunk path element are in principle necessary. However, for many chunk path
elements, this control information is superfluous, and receives a ‘don’t care’ value
during training. In the back-propagation algorithm, target errors calculated
from ‘don’t care’ values are not back-propagated.

20 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

add
-
[when] [when] [when]
control: new
twenty ninth thirtieth firgt
Figure 4.19: Tree modeling of chunk paths:
Ambiguous merging of the third branch.
[wher)] [when]
[when]

twenty rinth ‘thi tieth ‘first

Figure 4.20: Tree modeling of chunk paths:
The third branch was included with neighbor.

4.7. NEURAL NETWORK IMPROVEMENTS o1

[when] [when]/ \[wher]

twenty ninth [thirtieth ‘first

Figure 4.21: Tree modeling of chunk paths:
The third branch was included with split.

4.7 Neural Network Improvements

This section describes various improvements that have the potential of increasing
efficiency and performance of the separate neural networks. By considering the
number of networks, it is clear that the Linguistic Feature Labeler networks
for word chunks and phrase chunks (LFLWP) are especially important for two
reasons:

1. Number of Networks: The LFLWP networks make up 2/3 of all net-
works (29 out of 44).

2. Usage: For each analysis, there are more lower level chunks than upper
level chunks. The LFLWP networks are applied more often than other
networks. Hence, low performance in one LFLWP network would damage
the final parse more than low performance in a non-LFLWP network.

Therefore, most extensions are tested on LFLWP networks. Some of the
methods did not give any performance increase with ESST, but might increase
performance on other tasks. One of the methods, hybrid encoding, in a reduced
variant, EGREP, has been very successful (see Section 2.3.5).

92 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

4.7.1 Initial improvements

For practical reasons, neural network type of PARSEC [Jai91] is used as a
starting point for the implementation. Reduction of memory usage and speed
up of the training and parsing process is achieved by the following technical
changes to the PARSEC software:

e No Replication of Networks: PARSEC replicates its networks when
building a run time system after training, instead reusing networks with
varying parameters. This replication has two disadvantages: Firstly, cer-
tain fixed architectural limits are introduced, e.g. constraining how many
phrases could occur in a sentence. Secondly, memory is allocated exces-
sively. FeasPar reuses networks by running them with varying parameters,
thus eliminating these architectural constraints and reducing memory de-
mand.

e Skipping Unneccessary Unit Calculations: For various reasons, e.g
small context during early training phases, not all neural network units
outputs are connected to other input units. Hence, the calculation of
these outputs is not strictly necessary. Not calculating these unconnected
units brings a speed up during early training of up to a factor of 5 (differs
for various modules). In FeasPar, unconnected units are tracked, and
excluded from calculation.

e No Incremental Presentation of Words: The input sentence is fed
into PARSEC word by word, calculating all networks several times during
this incremental feeding. The idea behind it is robustness for deletion and
insertion of words. In FeasPar, all words are presented at once, so that
the networks only must be run once.

e Non-Recursive (normal) Units: PARSEC contains a recursive unit
type, where the new output calculation of a unit is a function also includ-
ing the old unit output. This is motivated by the need to hold unit output
values during the incremental presentation of words. In FeasPar, recur-
siveness is removed. Because non-recursive units have simpler derivates
than recursive units, complexity is reduced and computation speed im-
proved.

The implementation of the last two points causes LFL performance to in-
crease slightly (see Table 4.4), and training and run times to decrease by a factor
of 5 to 10, depending on sentence length.

4.7.2 Hybrid Encoding

Since neural networks have learning capabilities, one promising idea is to learn
the lexicon as well, instead of having to model it by hand. This idea was first

4.7. NEURAL NETWORK IMPROVEMENTS 93

Incremental presentation | presenting all
and recursive units words simultaneously
Feature type | Feature name | (PARSEC style) and non-recursive units

case 91.2 % 94.3%
phrase agreement 94.3 % 95.8%
features gender 93.8 % 94.8%
Average 93.1 % 95.0 %
form 91.1 % 92.9%
clause tense 91.4 % 84.0%
foatires mood 83.9 % 91.1%
' agreement 80.4 % 78.6 %
Average 86.7 % 86.7 %
| Total average | 89.4 % | 90.2 %

Table 4.4: Gain of presenting input words simultaneously and using non-
recursive units. Test set results on syntactic features from the German CR
task.

advantage is that a learned lexicon can contain lexical knowledge that the human
modeler does not perceive. On the other hand, one can argue that if certain
lexical knowledge is obvious, it would be easy to model manually. The time
effort for lexicon modeling is only a few days for a limited domain.

presented by Miikkulainen [MD89b], as described in Section 2.3.5. A further

Based on these ideas, a hybrid encoding of the lexicon is suggested. The
manually lexicon is expanded with one unit, which may be learned. When
learning is done, and still the behavior is not perfect another one is added etc.
Hence, the new units are added constructively. Since learning of the different
networks occurs in parallel, the extra bits that a network trains should be visible
only to that network (the first p bits remain equal for all networks, as these are
the hand modeled microfeatures). If assuming n networks, the word input of
network k£ will have the format:

hand modeled microfeatures Jearned microfeatures

p bits I bits

where p is a constant determined before learning. I is 0 during the main
phase of the learning, and then incremented until the network has learned per-
fectly.

This approach had never been tried before. Miikkulainen’s FGREP [MD89b]
has a fixed number of units in the lexicon that are all learnable. Hybrid encoding
has two advantages over this: a) Learning goes faster when providing linguistic
information. b) The number of learnable units needed are as low as possible.

o4 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

For new words, the p bits are defined as described in Section 4.3.1. For the
l;, bits, a simple solution is to set them to the 0-vector. A better solution is to
adopt values from similar words.

| | Without hybrid encoding | With hybrid encoding |

train | 92.8 % 93.2 %
test | 91.1 % 90.0 %

Table 4.5: Results with/without hybrid encoding

Experiments with hybrid encoding on the phrase chunking module of ESST
give the results as shown in Table 4.5. They clearly indicate that hybrid en-
coding reduces performance. In the opinion of the author, the reason is lack of
data and lack of regularity in data. Miikkulainen’s sentences are highly regular,
and the ESST data are very irregular. Because the approach also adds further
complexity, it is not included in the final FeasPar baseline version for ESST.

4.7.3 Second Parse

The parse method described in Section 4.3 is a first parse, because each Lin-
guistic Feature Labeler or Chunker network only has the sentence as input and
decides based only on word input, without knowing the results of other classi-
fying networks. Since the features are not independent, it would make sense to
let different network decisions influence each other. The second parse approach
enables this. First, a parse is produced as described in Section 4.3. The first
parse is then presented together with the word input when the networks are run
a second time. The first parse is presented as input during the second parse in
the following manner:

N is a Linguistic Feature Labeler network or a Chunk Path Finder of chunk
C. Then all parse results for all super- and subchunks of C' are input to N.

In Table 4.6 results are shown for ESST semantic features at the phrase
level. Test set performance is measured by the average over all features. Also
included is the total MSE (Mean Square Error), which is a good indicator for
how good the correct and incorrect learning patterns are.

| test results | Without Second Parse | With Second Parse |
Average phrase feature | 96.1 % 95.9 %
MSE 0.210342 0.212359

Table 4.6: Results with/without Second Parse

4.7. NEURAL NETWORK IMPROVEMENTS 39

The results clearly indicate that second parse reduces performance. In the
opinion of the author, this is due to the high number of parameters to learn.
Since the approach also adds further complexity (more networks), it is not
included in the final FeasPar baseline version for ESST.

4.7.4 Statistical Microfeatures

Statistical microfeatures are represented for each word as a vector of continuous
values vgtq¢. These microfeatures, each of them representing a feature pair (fv),
are extracted automatically. For every feature value at a certain chunk level, if
there exists a word such that, given this word in the training data, the feature
value occurs in more than 50 % of the cases, i.e:

Jword w: #(in chunk ¢ feature f has val;;vv aword w occurs in chunk ¢ S 05A #w> 1

One continuous microfeature value vg,; for a word w is set automatically to
the percentage of feature value occurrence given that word w, i.e:

_ #(in chunk ¢ feature f has value v Aword w occurs chunk ¢)
'Ustatw,fvu - #w

In Table 4.7 results with ESST semantic features at the phrase level are
shown. Test set performance is measured as average over all features. Also
included is the total MSE (Mean Square Error).

| test results | Without stat microfeatures | With stat microfeatures
average feature | 95.3 % 95.9 %
MSE 0.231392 0.227669

Table 4.7: Results with/without statistical microfeatures

The results clearly indicate that statistical microfeatures increase perfor-
mance. Therefore, it is included in the final FeasPar baseline version for ESST.

4.7.5 Linear - Nonlinear Connectivity (LNC)

The LNC idea is an extension of PARSEC’s PCL idea: The principle of learning
types with small context first, and extend the context in later types, is extended
in the dimension ‘linearity <« nonlinearity’. Certain tasks are easy enough
to be learned with linear connections (neural networks without hidden layer),
and actually learn better than with nonlinear connections (neural network with
hidden layer), due to the lower number of parameters. Therefore, to every
nonlinear type in the learning process, a linear one with the same context is

o6 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

vl v2 v3 none
output layer

(full connectivity)

hidden layer

(full connectivity)

input layer I:] I:]

_ =

context

Figure 4.22: Without SCS: Output layer and hidden layer are fully connected

constructed. The learning process starts with a learning type that adds linear
connections with a certain context context;. In the next learning type, nonlinear
connections with the same context context; are added. Then the context is
increased to conterts, and the learning type contains linear connections with
contexts are added. In the next learning type, nonlinear connections with the
same context contexts are added, and so on.

| test results | Without LNC | With LNC |

frame 97.0 % 100 %
MSE 0.017471 0.003620

Table 4.8: Results with/without LNC

In Table 4.8 results are shown for ESST semantic feature frame for word
level chunk. Test set performance is measured as average over all features. Also
included is the total MSE (Mean Square Error). The results clearly indicate
that LNC increases performance. Therefore, it is included in the final FeasPar
baseline version for ESST.

4.7. NEURAL NETWORK IMPROVEMENTS o7

vl v2 v3 none

output layer

hidden layer [

(full connectivity)

input layer |:| |:|

_— =

context

Figure 4.23: Selected connection structure (SCS): Output layer and hidden layer
connected in a selective manner

| test results | Without SCS | With SCS |

| feature name | all | non-none-values | all | non-none-values |
frame 100.0 % 100 % | 100.0 % 100 %
minute 98.9 % 0% | 100.0 % 100 %
month 99.4 % 0% | 100.0 % 100 %
am-pm 100.0 % 100 % | 100.0 % 100 %
hour 98.4 % 75 % 99.8 % 97 %
name 98.2 % 25 % 98.0 % 42 %
specifier 96.6 % 35 % | 974 % 50 %

Table 4.9: Selected connection structure (SCS) performance

4.7.6 Selected Connection Structure (SCS)

Most Linguistic Feature Labeler networks for word chunks and phrase chunks
(LFLWP) are uneven classification problems. This means that only 97% to 98%
of the classifications should give the value none (i.e. no feature value for this
feature), and the remaining 2 to 3 % should result in a normal feature value.
Therefore, while analyzing performance, if focus is set on these 2 to 3%

o8 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

of normal feature values (non-none values), performance is significantly worse
than for all values (see column 1 and 2 in Table 4.9). In the current network
connectivity, there is full connectivity between the outputs (representing fea-
ture values) and the hidden layer (see Figure 4.22 on Page 56). This means
that the hidden units are not specially dedicated to any particular part of the
classification problem.

The idea of SCS is to dedicate hidden units to parts of the classification
problem. The hidden unit 7 only has the task to decide if the ith feature value
is present (output unit ¢ high) or not (output unit low), (see Figure 4.23 on
Page 57).

Table 4.9 shows results for a few example ESST semantic features for word
level chunk. The results clearly indicate that SCS increases performance. There-
fore, it is included in the final FeasPar baseline version for ESST.

4.7.7 Extended Context

Finally, the context growth in the learning types mentioned in Section 4.7.5 is
expanded. This means that the learning process can go on beyond points where
it could run out of learning types, if extended context would not be included.
If performance continues to increase, it is a true gain. If not, an earlier network
with better performance is chosen as the optimal architecture, and the only loss
is training time. No extra performance comparison tests with extended context
are presented here, since the networks in best case profit from it, and in worst
case, get the same performance as without it. Extended context is included in
the final FeasPar baseline version for ESST.

| feature type | module name | MSE | performance |
clauses, level 0 | 0.030038 97.0 %
chunk phrases, level 0 | 0.033886 78.2 %
paths phrases, level 1 | 0.002185 971 %
words, level 0 0.002902 99.8 %
chunking reg 0.000307 100.0 %
networks phrase 0.039171 91.2 %
clause 0.026379 94.1 %

Table 4.10: Final baseline FeasPar for ESST: Test data set performance on
chunk path and chunking networks

4.8. FEASPAR BASELINE PERFORMANCE 99

4.8 FeasPar Baseline Performance

A complete version of FeasPar, including the Chunker, Linguistic Feature La-
beler, and the Chunk Path Finder is trained for ESST. In total, this means
running training processes for 44 different networks. The test set results for all
44 networks are shown in Tables 4.13 on Page 61 and 4.10 on Page 58. Single
network results are shown for completeness. This version of FeasPar is in later
chapters referred to a the (final) FeasPar baseline version for ESST.

To see the cumulative performance increase of the extensions in Section 4.7,

syntactic features semantic features
common | separate | common | separate | separate
Feature type modules | modules | modules | modules | modules
final
baseline
word features | n/a n/a 976 % | n/a 99.6 %
phrase features | 93.1 % 88.8 % 94.6 % 96.1 % 96.9 %
clause features | 84.0 % | 85.8% | 85.6% | n/a 92.5 %
| Total average | 88.6 % [873% [926% [n/a [96.3 % |

Table 4.11: Syntactic and semantic features’ test set performance comparison.

PM 1:
| data set [precision | normal]
test 63.4% | 45.2%

evaluation 58.3% | 33.8%

Explanations:

e ‘normal’ is the measure defined in Sec-
tion 3.4.1.

e ‘precision’ is the measure as defined in
Section 3.4.1, but allows extra features
and/or feature values in the output,
without counting these as wrong. ‘Preci-
sion’ is a weaker criterion than ‘normal’.

Table 4.12: ILT feature accuracy on ILT in ESST

60 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

the Linguistic Feature Labeler results are contrasted with the initial results in
Table 4.11 on Page 59. It is apparent that performance increases significantly.

Finally, the parser is run as a whole to produce feature structures (ILT).
FeasPar parses two different data sets. First, the test set used throughout this
chapter. Second, an unseen evaluation set. Both data sets include correct
ILTs. The results on the evaluation set are significantly worse than on the test
set. This is not very surprising. It shows that development has been targeted
towards the test set. Also, we see that the ILT performance is considerably lower
than the individual networks’ performance. This is due to the multiplication of
individual network errors.

4.9 Summary

This chapter presented the chunk’n’label principle for mapping natural language
into feature structures. The FeasPar parser baseline version was introduced. It
consists of several back-propagation neural networks. New methods for improv-
ing the performance of these networks were presented and tested. The final
baseline evaluation shows that each neural network performs well or very well,
but that the total parse result (ILT feature accuracy) is not satisfactory.

4.9. SUMMARY 61

| feature type | feature name | MSE | performance |
am-pm 0.004702 100.0 %
day 0.005742 100.0 %
day-of-week 0.006374 99.4 %
exclaim 0.001386 100.0 %
first-name 0.001292 99.8 %
frame 0.001480 100.0 %
hour 0.000547 100.0 %
last-name 0.000888 100.0 %
word minute 0.001468 100.0 %
features month 0.001806 100.0 %
name 0.014036 98.0 %
period 0.005075 99.4 %
quantity 0.002295 99.8 %
specifier 0.017490 97.4 %
time-of-day 0.003022 100.0 %
title 0.001695 100.0 %
unit 0.000819 100.0 %
Average 99.6 %
../frame 0.000540 100.0 %
../incl-excl 0.003584 98.2 %
adverb 0.039457 93.8 %
attitude 0.010799 98.5 %
babble 0.005375 99.4 %
phrase conjunction 0.010376 98.8 %
features connective 0.000130 100.0 %
degree 0.014352 96.8 %
frame 0.110836 79.1 %
name 0.005887 100.0 %
specifier 0.018327 96.2 %
type 0.001837 100.0 %
Average 96.9 %
adverb 0.000572 100.0 %
conjunction 0.014241 98.5 %
clause degree 0.000569 100.0 %
features type 0.028168 95.5 %
frame 0.204309 68.7 %
Average 92.5 %
frame 0.064294 92.5 %
sentence sentence-type | 0.099496 79.1 %
features speech-act 0.246514 49.3 %
Average 73.6 %

Table 4.13: Final baseline FeasPar for ESST: Test set performance on Linguistic
Feature Labeler for semantic features.

Chapter 5

Cooperative Networks

In this chapter, another neural framework for finding the best feature structure
is presented. The idea is to couple results from the baseline architecture, and
combine them with information about how features occurred together.

This chapter first gives an analysis of the knowledge sources available (Sec-
tion 5.1). Then the suggested architecture is presented and discussed in Section
5.2, followed by the presentation of results and conclusions from that.

5.1 Knowledge Sources Analysis

In various systems of different nature (cognitive and non-cognitive), the system
builders combine different kinds of knowledge sources. The combination of dif-
ferent knowledge sources is being referred to as the mizture of experts principle.

This principle often has a positive impact on performance. An intuitive
explanation for this is a comparison with the human decision making process:
the more knowledge or facts that are available, the better the quality of the
decisions.

When using this principle, the key tasks are to identify the knowledge
sources, to model them, and to combine them. The latter two tasks are hard,
and depend on the kind of knowledge sources.

5.1.1 Identifying Knowledge Sources
The three knowledge sources in the baseline version are:

1. The Input Sentence Text to be Analyzed. This is the most obvious
knowledge source for any natural language understanding system.

2. The Mapping From Input Words to Feature Pairs. This knowl-
edge source is provided to FeasPar as examples, and the baseline neural
networks learn the mapping.

62

5.2. ARCHITECTURE 63

3. The Lexicon. The lexicon provides the word representation that the
learning task needs.

However, as the results in Section 4.8 show, these knowledge sources are
not sufficient to give a good performance. Therefore the following additional
knowledge sources are taken into consideration:

4. Logical Consistency of feature pairs: It is important to understand that
only certain feature combinations make sense. For the JANUS ILT, this
information is already available as an ILT specification document, which
is a context free grammar (see Figure 5.1 for an example rule). A program
computes which feature pair combinations are consistent or not, based on
the grammar.

5. Statistical Consistency of feature pairs: Additionally, frequencies of
feature combinations can be computed based on the training material.
See Table 5.1.

(<SIMPLE-TIME> = ((frame *simple-time)

(minute [NUMBER-VALUE])
(hour [INUMBER-VALUE))
(day [NUMBER-VALUE])
(month [NUMBER-VALUE])
(day-of-week [DAY-OF-WEEK])
(time-of-day [TIME-OF-DAY])
(am-pm [AM-PM])

(specifier [SPECIFIER])))

Figure 5.1: ILT specification example rule

ax as ‘ #(ares N ages) ‘ #(azes) ‘ %
(frame #*simple-time) (day-of-week =) 174 174 1.00
(day-of-week =) (frame *simple-time) 174 510 0.34

Table 5.1: Statistical consistency

5.2 Architecture

A new neural network architecture called cooperative networks for exploiting the
consistency information is suggested.

64 CHAPTER 5. COOPERATIVE NETWORKS

Figure 5.2: Example flat cooperative network

This architecture is explained in this section, which successively describes
the various cases that must be considered. For clarity, a complete cooperative
network hierarchy for a real ILT is provided in Figure 5.5, which includes all
cases, and shows how they are used. The simplest case is discussed first: A flat
feature structure, containing only atomic feature pairs.

5.2.1 Flat Feature Structures

The basic idea is to have a node for every possible feature pair, and connect
every node with every other node (see example network in Figure 5.2 and the
network S in Figure 5.5). The consistency information is expressed as weighted
connections between those nodes. The nodes take as initial activation the base-
line architecture output. When updating the node activations iteratively, they
will influence each other. Nodes connected with positive weights, will excite
each other, whereas nodes with negative weights will inhibit each other. The
change of activations will converge towards zero over time. By reading out the
nodes with high! activations, the feature structure is obtained. This intuitive
explanation can be formalized. Assume a network S with the following proper-
ties:

AeS (5.1)

d+e

'If the value range is [d,e], then a value v is high if v > %F©

5.2. ARCHITECTURE

0a = o(f input,)

#(aesany N T€Sany)

Wa,x =
7 (265 my)
input, = E Wa, 20z
z#aNXeS

where:

e #(P) is the number of times that event P occurred in the training data.

e @ is an atomic feature pair.

A is a node representing a.

s is the upper most level of a feature structure.

S a network representing s.

® 5.ny runs through all feature structures of the training set.
e z is any (atomic or complex) potential feature pair of s.

e X is a node representing x.

b= % is a constant. T is called the temperature.

e o(z) = H—% is the sigmoid function.

Hopfield Interpretation

The cooperative network model has a strong resemblance of Hopfield network
models [HKP91c]: It consists of a connected network, whose nodes get initial
activations being almost correct. Iteration of the network calculations 5.2 and
5.4 leads to a correct feature structure. In Hopfield networks, the nodes get
initial activations corresponding to an almost correct picture. Iteration of the

network leads to a correct picture.

Both the cooperative model and the Hopfield model have two knowledge
sources: The almost correct answer, i.e. initial activations, and knowledge about
correct answers, i.e. the connection weights. In both models, the weights are

calculated from training patterns. The two models differ in three aspects:

1. Cooperative networks use continuous values, whereas Hopfield networks

use discrete values.

66 CHAPTER 5. COOPERATIVE NETWORKS

2. The Hopfield connection weights are symmetrical, whereas cooperative
ones are not. The reason for the latter, is that one feature may trigger
another, but not vice versa. This information would get lost if weights
were symmetrical.

3. The cooperative model includes a temperature 7. With high tempera-
tures, the change in input required to flip? the activation, is very small.
With low temperatures, it takes a lot to flip the activation. To cool off
the temperature while iterating, is a good way to promote convergence,
as known from Boltzman machines [HS86].

Statistical Interpretation

A cooperative network can also be given a statistical interpretation. A unit’s
output activation is viewed as the probability of an atomic feature value. The
connection weight corresponds to the conditional probability. The total input is
viewed as a sum of probability conjunctions. The recalculated output activation
represents an estimate for the probability of an atomic feature value.

An estimate for P(z;) is calculated instead of P(x;) itself for the following
reason: Feature pairs are highly dependent on each other. This means that
assumptions of an independent event cannot be made. Hence, an accurate
probabilistic calculation for P(z;) would lead to highly complex expressions that
cannot be calculated. The probabilistic calculations would contain events where
one feature depends on several other features. These events are too complex
to be quantified by the information contained in a limited training data set.
Therefore, the statistical model only takes into account events involving one or
two feature values, and constructs an estimate based on those events.

A formal definition of the statistical interpretation is:

P(zi |[W) = o; (5.5)
P(z; | z;,W) = P(z; | x;) = 7 Wil (commented below) (5.6)
J
1
P(ziz; | W) = P(zi | 2, W)P(z; | W) = w0 (5.7)
J
input; = Z kjP(x;x; | W) (5.8)
J#iNT ;€S
P(z; | W) := o(8 input;) (5.9)

where:

2To flip, here means that the output of the o(x) function changes from the upper end of
the value scale to the lower end, or vice versa.

5.2. ARCHITECTURE 67

e W represents the input words w;...w,.

o P(x; | W) is an estimate for P(z; | W), made by a linear combination of
probabilities. The ¢ function ensures that the value ranges from 0 to 1.

e k; are constants, so that the probability criteria is fulfilled:
Zj P(z; | z;) = Zj;ﬁi k%-wi,j =1

Note that the assumption was made:

This means that:

i #(iesany A jESany)
kj #(jesany)

P(’El ‘ .’Ej,W) = P(’El | .’Ej) = %wi,j = (511)

3

The assumption is introduced for simplicity, since there would not be enough

data available to calculate the frequencies in respect to W, which would be the

expression: #(z’;s(‘;"i;\z"ei“ﬁ}fw). The Hidden-Markov-Model [Rab90] assump-

tion, where only thé last state of a sequence of states is considered, is a similar
assumption.

5.2.2 Nested Feature Structures

So far, feature structures consisting only of atomic feature pairs have been dis-
cussed. However, since a feature structure contains substructures, these struc-
tures must all be represented somehow. A simple extension within the frame-
work is to let every structure and substructure be represented by a network, and
let a complex feature be represented by a node that is a member of both net-
works (see example network in Figure 5.3 and the networks S and C; in Figure
5.5). The node takes activations from both nets as input, and contributes to the
input of all other nodes of both nets. Formally, this amounts to the following
extensions:

Assume:

1. A complex feature pair (f ¢;), with feature f and complex value c;.
2. (f ¢;) is part of feature structure s.

3. Consequently, ¢; is a substructure of s (follows from 1. and 2.).

Then let:

4. anode Qs .,) represent (f c;).

68 CHAPTER 5. COOPERATIVE NETWORKS

Figure 5.3: Example complex value cooperative network

5. a network S represent s.

6. a network Cj represent ¢;. Qs ;) is called the parent node of Cj.
7. Q(f ;) € S A Q(f ;) € Cj.

In total, there is an interaction of two effects: On one side, in each network
the nodes will adjust to each other. This means the complex feature node Qs ;)
will get a high or low activation, i.e. the other nodes in S will 'tell’ the complex
feature node @)y ;) whether it ’fits in’ in S or not. Further, the activation o,
then influences the nodes in Cj, so that if o is high, node representing relevant
features in C; gets high, and vice versa. On the other side, the nodes in C; will
influence o, i.e. they will "tell’ the complex feature node Q(; ;) whether it fits
as parent for C;. Formally, this means that the cooperative network model is
extended with the following formulas:

input(y o) = Z W(f ¢;),20z + Z w'(f ¢;)a0z (5.12)
z#£(f c;)AXeS 2 Z£(f c;)ANXeC
#((f Cany)esany A mesany)
Wit ei)w = - (5.13)
(f <), H#(T€Sany)

#(CUCCam; N(f Canu)esanv)
1 _ [! ! .14
Wit c;).e #(x€Sany) (5:14)

5.2. ARCHITECTURE 69

Figure 5.4: Example multiple complex value cooperative network

5.2.3 Multiple Feature Values

Features normally take one value. However, sometimes, they take two or more.
These values may be either all atomic or all complex.? This section shows how
to fit multiple featur values into the frame work.

multiple atomic values are simply handled by letting e.g. the feature pair
(f1 a1,.1) be represented by another node than (f1 a1 2). All equations are
then valid also for these two nodes.

multiple complex values of the feature f are represented by one node @, in
network S, and one network C; per complex value ¢; (see example network
in Figure 5.4 and the networks C1; and C in Figure 5.5). Node Q ¢;)
is member of S and all C;. To avoid dominance from all C; versus S in
influence on o, the average, rather than the sum, of the impacts from all
C; are used:

, 1
input(s o =y We.a0x + Yo wig0stt Y w,00)

z#cNXeS r#cNXeCq z#cNXeCyp
(5.15)

3Both types of values never occur together.

CHAPTER 5. COOPERATIVE NETWORKS

speech-act * suggest
sentence-type *directive

frame*smple-time

frame*simpletime

C C

111 112

Figure 5.5: Real example cooperative network for the ILT in Figure 4.13

5.3. EXPERIMENTS 71

5.2.4 Initialization Values

Another topic is how to initialize the o, and o, values. In principle, they should
be initialized with the results from the baseline parser, as presented in the last
chapter. The baseline architecture yields activations for atomic feature pairs
(the Linguistic Feature Labeler networks) and for chunk paths (the Chunk Path
Finder). The suggested way to combine these activations is to multiply the
activations of each path element and the atomic feature value activation. The
product is normalized with respect to the number of factors in the product by
taking the nth root, because various path segment combinations may lead to
the same path.
Formally, the cooperative model is extended with the formulas:

Initial activation for atomic feature pair node A in network N:

init .__ baseline baseline baseline baseline
Oq i pathg,o “*“pathg x, "“pathi o "Opﬂthl,kloa (516)
m
m factors

Initial activation for complex feature pair node C in network N:

O¢ = patho,o “"“patho kg, ~"“pathio "Opflthl,k,

m

init ,__ baseline baseline baseline (5 17)

m factors
where:

o obaseline ig the neural network output activation for the atomic feature
value v of the network for the feature f in the Linguistic Feature Labeler,
i.e the feature pair a = (f v).

° o;’]‘}li,eff?e are the activations for the chunk path segments values.
pathg o..pathy ;, together make up the path for N referred to the upper

most network.

e N is a network at any level, including the upper most network.

5.3 Experiments

The first implemented version of the cooperative network model has the follow-
ing disadvantages:

1. All units are asymptotically drawn towards zero. The reason for this is
that many activations and weights have values in the lower half of their
range. The range is initially [0, 1]. Experiments with other value ranges
showed that the most promising is [—1, 1] for both activations and weights.

72 CHAPTER 5. COOPERATIVE NETWORKS

2. Some nodes representing the same feature pair, beloging to different net-
works, due to different paths, become activations being all high. Since the
interpretation of the paths is that only one of them is correct, only one of
these feature pair nodes should get high activation. Therefore, inhibitory
global constraint weights are introduced.

3. When the activations get stable in sensible value ranges, it turns out that
activations stabilize at values very far from the initial values, i.e. that
the networks stabilize into feature structures that have very little to do
with the feature structures from the baseline version. Therefore, in later

implementations, 0" may also impact the activation calculation in later

iterations.

PM 1:

| System | precision | normal |
LR 69.5% | 51.6%
FeasPar baseline 58.3% | 33.8%
FeasPar cooperative networks, experiment 0 23.3% -26%
FeasPar cooperative networks, experiment 39 66.8% -42%
FeasPar cooperative networks, experiment 44 43.2% -81%

Explanations:

e ‘normal’ is the measure defined in Section 3.4.1.

e ‘precision’ is the measure as defined in Section 3.4.1, but allows extra features and/or
feature values in the output, without counting these as wrong. ‘Precision’ is a weaker
criterion than ‘normal’.

Parameter settings:

| # | Zo | Zw | Winit | Wo | Omin | Wmin | Wincons | Tlpath | Astop | Tstart | Tdecay |
01]-1.0]-1.0 1.0 1.0]10°° 0.05 —-10? 10| 1079 1.0 0.9
39 | -1.0 | -1.0 1.0 0.0 10°° 0.05 —-10% 100 | 1072 1.0 0.95
44 | -1.0 | -1.0 1.0 0.0]10°° | 0.05 —-10? 100 | 1072 1.0 0.95

Figure 5.6: Cooperative networks results

Therefore, the second implemented version additionally contains these pa-
rameters:

e 2,, output zero point. The output value range is [z,, 1]

5.4. SUMMARY 73

e 2, weight zero point. The weight value range is [z, 1]

® Winit, init weighting, and w,, output weighting. Equation 5.2 is replaced
by: o
04 1= 0(B(Winit 0" + wyinput,)) (5.18)

® Opin: if 04 < Opmin then the node @), is not created in the network to
represent, A.

® wpy: if X; and X are consistent, but w; ; < Wi, then w;j 1= wWmin

® Wincons, inconsistent weight. If X; and X; are inconsistent, then w; ; :=

Wj,i ‘= Wincons

® 7path, path factor. In order to strengthen the significance of structure, the
output of a node,). for complex feature value (see 5.2.2), is multiplied

by npatn before being used as input activation in the sums in Equations
5.4 and 5.12.

e Agiop. Stop criteria for the iterations: If the sum of output changes is less
than Agsp, then these networks are assumed to have reached stability.

® Tgiart- Starting value for T'.
® Tyeccay Decay factor for T Ty = TiTqecay

Most, parameter combinations cause one or more problems: most units get
saturated at the top or bottom of the value range; or the activations end up
oscillating instead of stabilizing. The most successful parameter combinations*
and their experimental results on the entire evaluation set are shown in Table
5.6.

5.4 Summary

The results clearly state that cooperative networks do not give the desired per-
formance compared to the baseline version, given the ESST task and data.
However, since the method is theoretically sound, and has strong parallels to
other successful models, e.g. the Hopfield model, it may provide good results
with other tasks. In the opinion of the author, the cooperative network model
requires more data to work well, like other statistically motivated models do
[BCP*90, BLM91a, BPP*91].

Though, for tasks with little training data as in ESST, the cooperative net-
works do not work well, and other methods must be used for improving the
performance. A method more successful for ESST is presented in the next
chapter.

4In total 45 combinations were tested.

Chapter 6

Consistency Checking
Search

In the previous chapter, the knowledge analysis shows that there are more knowl-
edge sources available than those that are used in the baseline system. However,
it is also shown that cooperative networks do not provide the desired perfor-
mance increase. This chapter presents another method for adding the extra
knowledge source that leads to a substantial performance increase.

6.1 Knowledge Sources Analysis

As already stated in Section 5.1, the baseline parser of chapter 4 should be
enhanced with consistency information. The complete parse depends on many
neural networks. Most networks have a certain error rate; only a few networks
are perfect. When building complete feature structures, these network errors
multiply up, resulting in not only that many feature structures are erroneous,
but also inconsistent and making no sense. A search algorithm compensates
for this. It is based on two main information sources: first, probabilities that
originate from the network output activations; second, a formal feature struc-
ture specification, stating what combination of feature pairs is consistent. This
specification is already available as an interlingua specification document (see
Section 5.1).

6.1.1 Global Constraints

Additionally, a few other ILT constraints must be considered. that are not
modeled in the interlingua specification document. They are called global®
constraints, and include three types:

IThe term global is used for reasons explained in Section 6.3.

74

6.2. ARCHITECTURE 75

1. Frame Constraint: An ILT is a feature structure, where at each branch
the feature frame has one and only one value.

2. Up-Features (see Section 4.3) as e.g. ../incl-excl may not appear at
the top most branch, because no parent branch is available.

3. Compulsory Constraints: Not only a feature pair F| may appear
with another feature pair F,, but that F| must appear with Fy, i.e. in
some sense, F) triggers F,. An example is (frame *simple-time) and
(day-of-week =). The frequencies in the right-most column of Table 5.1
suggest that (day-of-week =) triggers (frame *simple-time).

6.2 Architecture

6.2.1 Search Task

In combining the network output and the constraints, the search finds the fea-
ture structure with the highest probability, under the given constraints being
consistent. The outputs of each neural network are normalized to give a prob-
abilistic interpretation. Then they are sorted by probability. They can now be
viewed as an N-best list. Hence, the search input is one N-best list per network.
To combine these N-best lists hierarchically to build an N-best list of feature
structures, forms the search task.

6.2.2 Search Complexity Precautions

The ESST baseline version of FeasPar had 37 Linguistic Feature Labeler Net-
works and 4 Chunk Path networks. Each network has up to 15 different output
values. It is crucial to keep complexity and search times low. Therefore, the
following principles and constructs are applied:

Hierarchy of Feature Structure Fragments: A feature structure is assem-
bled using partial feature structures. These are called fragments. The
hierarchy corresponds to the chuck hierarchy and in what sequence the
fragments are put together to form a complete feature structure (see the
algorithm in Figure 4.4).

Agendas: Agendas (one per fragment) are used to direct the search, so that
always the most probable of the unexamined combination is examined
first.

Lazy Evaluation: The Lazy Evaluation delays the expensive calculations of
fragments and agenda as long as possible. This is extremely important to
reduce search time.

76 CHAPTER 6. CONSISTENCY CHECKING SEARCH

6.3 Search Principles

h elements

agenda: l.item: | logP fragment parti ; | fragment party s |..... fragment party p

2.item: | logP» fragment parts 1 | fragment parta s |..... fragment parts n

h elements

fragment for chunk¢ype=n: ‘ chunk pathtype=n z‘ ‘ chunk featuretype=n 2‘ ‘ chunk¢ype=n+1 0‘ ‘ chunk¢ype=n+41 J
fragment for chunk¢ype=n path i | segment 0 || segment jtype=n |
fragment for chunkyype—r features i ‘ featuresype=n 0‘ ‘ featuretype=n ktype=n ‘
Examples:
fragment for chunkyype=n: ‘ when(‘ ‘ (frame *simple-time) ‘ ‘ (time-of-day *morning)

fragment for chunksype—=n path
fragment for chunksype—n features iz | ()| ‘ (frame *simple-time) ‘

Figure 6.1: Agenda and fragments. Double framed fragment parts indi-
cates another fragment. Single framed fragment parts indicates neural network
output.

When building a feature structure, the search uses structures as shown in Figure
6.1: For the partial feature structure of every chunk, it defines an N-best list of
fragments. The fragment parts correspond to chunk path, chunk features, and
subchunks.

Example: The fragment example for chunk;yp.—,, in Figure 6.1 corresponds
to the chunk:

([when]((frame *special-time))

(0 in)

(1l the)

([((time-of-day =morning)) morning))

Building a fragment is an expensive operation. In order to build fragments
as few times as possible, an agenda is used in parallel to each fragment list.

6.3. SEARCH PRINCIPLES 77

Agenda calculations are much cheaper than fragment calculations. The agenda
and fragment interact as follows:

The agenda keeps hold of possible fragment configurations. It is sorted by
log probability. Upon a request for a new fragment, the next configuration is
fetched from the agenda, and the fragment is built. If during fragment build-
ing, an inconsistency is detected, the building operation is abandoned, and the
next element on the agenda is used as configuration. Then a new fragment is
built. This continues until a complete consistent fragment has been built. This
fragment is then stored in the N-best list of its chunk, and returned.

During building, fragment parts must be fetched. These are mostly frag-
ments themselves (e.g. in Figure 6.1 fragment for chunk path;ype—r 4). If this
fragment part has already been calculated during the search, it is already avail-
able in the N-best list. If not, a request for a new fragment is made.

The agenda itself is expanded as little as possible: When a new agenda item
has been accessed, those candidate agenda items that may follow immediately
are inserted in the agenda. This avoids an combinatorial explosion, but ensures
that no configuration is left out, or tried too late, with respect to logP (the
logarithmic probability).

The consistent constraints mentioned above, are derived as follows: A feature
structure formalism contains rules that express in which context what feature
pairs may appear. Prior to the parsing process, the program statically calculates
for every combination of two feature pairs, if the two feature pairs may occur
together or not. This information is consulted during fragment building, as
mentioned above.

Global constraints (see Section 6.1.1) can only be tested on the complete
feature structure. When the search returns a complete feature structure for the
upper most chunk, the global constraints are tested on the feature structure. If
a test fails, the search is continued, until a complete feature structure satisfying
all global constraints have been found.

Even if all possible care is taken to speed up the search, the worst-case search
is too long. To prevent this, the search is broken off at a certain depth, and the
search is repeated, this time allowing one inconsistency. If this search gets too
deep, two inconsistencies are allowed, and so on.

6.3.1 Search Implementation

In the following, the search algorithm will be explained in more detail. Its core
consists of three interacting procedures: (See also Figure 6.2 - 6.5.)

get_fragment: This procedure produces the feature structure fragment cor-
responding to a chunk. Calculation is only started if the fragment has
not previously been computed, otherwise the corresponding item from the
N-best list is returned. Before the fragment is calculated, all immediate
succeeding agenda elements are calculated and inserted in the agenda. A

78 CHAPTER 6. CONSISTENCY CHECKING SEARCH

check is also made to the search depth to prevent search time from getting
too long.

get_subfragment: This procedure is called to increase the agenda: The call
(in get_fragment) is made in a loop. In this loop, for the subchunks of
the currently examined chunk, each subchunk is examined one element
deeper in its N-best list, the so-called new list element. The notion of
subchunk includes chunk paths, chunk features, as well as three subchunks.
get_subfragment therefore has two purposes. First, the feature structure
fragment corresponding to a subchunk is fetched. Second, the agenda is
expanded by the new list element. This ensures two things: one, that
the agenda is expanded as late as possible, e.g. only one step in each
direction (subchunk) from the current agenda position; and two, that its
not generated too late, after it should have been evaluated. The latter is
true, because any agenda element N is generated when a agenda element
O is calculated, where O differs from N by one list element, and therefore
O is more probable than N, and N should therefore be evaluated after O.

get_subfragment _lazy: Perform a lazy evaluation of the subfragment, by
making a look-up in the respective N-best list.

6.4 Improvements

The following improvements are added to FeasPar in order to gain performance:

Rescoring and N-best: Since the Consistency Checking Search in principle
can deliver an N-best list of resulting ILTs, the potential for rescoring (i.e.
not using neural network generated probabilities, but some other measure
for choosing the number one ILT candidate) was examined. In an initial
experiment, the PM1 calculation program is changed, so that it calculates
PM1 for the best 20 ILTs for every sentence, and picks the one with fewest
errors for summing up. This gives an error reduction to about the half?.
The only remaining (non-trivial) problem is to find a rescoring that would
pick a better number one alternative than the neural network probability
does. A few different scores have been tried without success. Therefore,
the rescoring and N-best principle is not used in the final Consistency
Checking Search version.

Allowing Multiple Equal Feature Pairs: Occasionally, when building a
fragment during a search, more than one subfragment contains the same

2In that early Consistency Checking Search version, PM1 using first-best, is 54.4 %, and
using N-best 76.9 %

6.4. IMPROVEMENTS 79

typedef struct CHUNK_STRUCT{
struct FRAGMENT_LIST_STRUCT *attr_fragment_list;
struct FRAGMENT_LIST_STRUCT *path_fragment_list;
struct CHUNK_STRUCT *subchunks;
int n_subchunks; /* the *total* number of subchunks is * /
/* ’n_subchunks+2’, since * /
/* number of ’subchunks’ is n_subchunks */
struct FRAGMENT_LIST_STRUCT *fragment_list;
} CHUNK;

typedef struct FRAGMENT_LIST_STRUCT{

struct FRAGMENT_STRUCT *fragments;

int n_fragments;

struct AGENDA_STRUCT *top; /* agenda top */

struct AGENDA_STRUCT *calc; /* currently calculated element */
} FRAGMENT_LIST;

typedef struct AGENDA_STRUCT{
int *subfragment_n_best;
double logP;

} AGENDA;

typedef struct FRAGMENT_STRUCT{

double logP;

struct FEATURE_PAIR_STRUCT *feature_pairs;
} FRAGMENT;

Figure 6.2: Search algorithm: data types. See the following figures for usage.
Only relevant information is shown for clarity.

feature pair, i.e. more than one chunk is responsible for adding a par-
ticular feature pair at a particular feature structure branch. This occurs
even if it is not supposed to happen, according to the principles of the
hand modeled alignment. The earlier Consistency Checker Search does
not accept this, and requires that one and only one instance of a feature
pair is produced for a particular branch. A later version allows multiple
feature pair instances.

Sloppy Lexical Feature Value: As described in Section 4.3 and Section
4.3.1, FeasPar uses lexical feature values. These are collected from the

80 CHAPTER 6. CONSISTENCY CHECKING SEARCH

FRAGMENT *get_fragment (CHUNK *chunk, int n_best)
{

FRAGMENT **fragment;

int i, j;

AGENDA *next_calc;

/% if fragment has already been calculated,
get old result by looking up in table */
if (n_best <= chunk->fragment_list->n_fragments-1){
(*fragment) = &(chunk->fragment_list->fragments[n_best]);
return(*fragment); }
else
while (1){
if (chunk->fragment_list->top != NULL){
for (i=0; i<chunk->n_subchunks+2; i++){
j = chunk->fragment_list->calc->subfragment_n_best[i];
/* get subfragment and produce new agenda element,
and extend agenda */
get_subfragment (chunk,i, j+1); }
/* get next agenda element */
next_calc = next_agenda_e(chunk->fragment_list->calc);
if (next_calc == NULL) return(NULL);
chunk->fragment_list->calc = next_calc;
}
if (break_search(chunk->fragment_list)){
printf ("QUIT DUE TO DEEP SEARCH \n");
return(NULL); }
/* evaluate (eager) next fragment, and return if legal */
if ((calculate_fragment (chunk,fragment)) &&
((check_global_constraints(fragment)))){
save_fragment (fragment,chunk->fragment_list);
return(*fragment); 1}

}
return(NULL) ;
}

Figure 6.3: Search algorithm: get_fragment. See text for further explanation.

6.4. IMPROVEMENTS 81

FRAGMENT *get_subfragment_lazy(CHUNK *chunk, int i, int j)

{

FRAGMENT_LIST *fragment_list;

if (i == chunk->n_subchunks)

fragment_list = chunk->attr_fragment_list;

else if (i == chunk->n_subchunks+1)

fragment_list = chunk->path_fragment_list;

else

fragment_list = chunk->subchunks[i].fragment_list;

if (fragment_list->n_fragments <= j) return(NULL);
else return(&(fragment_list->fragments[j]));

Figure 6.4: Search algorithm: get_fragment_lazy. See text for further explana-

tion.

training data and stored in the lexicon. However, due to incompleteness
or speech recognizer errors, a situation may arise, where a natural lan-
guage chunk is not being stored in the lexical feature value lookup table.
In many cases however, a similar chunk may be present, and could be
used. An example will clarify this:

Assume that in the lexical feature value table, only the phrase chunk
“out of town” is stored, with the lexical feature value *out-of-town for
the frame feature. Now, the phrase chunk “out of the town” causes the
frame feature network output value for lexical feature values to have the
value act = 0.85. However, since “out of the town” is not stored in the
lexical feature value lookup table, instead of failing, the sloppy mechanism
compares with table entries, computes the difference, diff 2 as well as
storing the table value, *out-of-town. A new activation value actgoppy =
act * k%/7 is calculated and used instead of the original act in further
processing. (0 < k < 1 is an empirical constant. 0.9 works well.) Then,
the alternatives are sorted by increasing dif f, so that in the example, the
top most alternative value for frame is *out-of-town with actsoppy =

3The difference measure, diff , is the same as used when calculating word accuracy in

a speech recognizer, i.e. the minimal number of insertions, deletions and substitutions steps
needed to change one string to the other.

82 CHAPTER 6. CONSISTENCY CHECKING SEARCH

void get_subfragment (CHUNK *chunk, int i, int j)
{
FRAGMENT *fragment,
*0ld_fragment;
AGENDA *new_agenda;

if (i == chunk->n_subchunks)
fragment = get_attr_fragment (chunk,j);
else if (i == chunk->n_subchunks+1)
fragment = get_path_fragment (chunk,j);
else
fragment = get_fragment (&chunk->subchunks[i],j);

if (fragment == NULL) return;

new_agenda = copy_agenda(chunk->fragment_list->calc,
chunk->n_subchunks+2) ;

old_fragment =

get_subfragment_lazy(chunk,i,

new_agenda->subfragment_n_best[i]);
new_agenda->logP = new_agenda->logP - old_fragment->logP
+ fragment->logP;
new_agenda->subfragment_n_best[i] = j;
insert_in_agenda(new_agenda,chunk—>fragment_list—>top,
chunk->n_subchunks+2) ;

Figure 6.5: Search algorithm: get_subfragment. See text for further explanation.

0.85% 0.9 =0.765

Remodeling of (frame *busy) and (frame *free): Initial experiments
with the performance measure 2 shows that a high error rate is due to
confusions between (frame *busy) and (frame *free). These were dur-
ing manual labeling of the training data mostly aligned with the clause
chunks. The corresponding network has quite a high error rate. How-
ever, since these features can easily be remodeled and aligned with one or
more phrase chunks, this was done. The retraining then only involved two
networks (for the frame feature for clause and phrase chunks).

6.5. EVALUATION 83

Constraint Relaxation: One important problem with the search algorithm is
that sometimes (1 % to 3 % of the analyses), the search takes too long, 4
and therefore has to be broken off. This is due to the worst case scenario,
where all combinations must be searched to find a consistent configuration.

To escape from infinite searches, is the purpose of the following break
strategy: If a fragment N-best list exceeds a fixed large number, e.g. 5000,
then the search is stopped, and an empty ILT is returned as a parse result.
However, since it is better to get a suboptimal analysis than no analysis
at all, a constraint relaxation mechanism is added: If a search is broken
off, then a new search is made, where one constraint may be relaxed. If
this does not give any parse result, then two inconsistencies are allowed
etc. (A maximum number of inconsistencies, e.g. 7, is there to prevent
infiniteness.)

6.5 FEvaluation

FeasPar is compared with a hand modeled GLR* parser. The hand modeling
effort for FeasPar is 2 weeks. The hand modeling effort for the GLR* parser is
4 months. All performance measures are described in Section 3.4. The parsers
are evaluated with the evaluation set (Set 3). Results are shown in Figure 6.1.

FeasPar FeasPar GLR* parser
(with Search) || (without Search) | (4 months)
PM1-T | 71.8% 33.8% 51.6 %
FeasPar GLR* Parser
(with Search) | (4 months)
PM1-T 71.8 % 51.6 %
PM1 - S 52.3 % 30.3 %
PM2E-T || 74 % 63 %
PM2E-S || 49 % 28 %
PM3G-T || 49 % 42 %
PM2G -S || 36 % 17 %

Table 6.1: Comparing FeasPar with a GLR* parser hand modeled for 4 months
(Evaluation set (Set 3), S=speech data, T=transcribed data).

As one can see, FeasPar with Consistency Checking Search is better than the
GLR* parser in all six comparison performance measurements that are made.

4Tn normal cases (97 % to 99 % of the analyses), the search takes 1 to 3 seconds. In the
remaining few cases, the search can run for 10 minutes without completing.

84 CHAPTER 6. CONSISTENCY CHECKING SEARCH

6.6 Final Evaluation

At last, a final evaluation on a new, final evaluation set (Set 4) is made. The
purpose is threefold:

1. To make sure that search development has not been tuned towards the
first evaluation set (Set 3).

2. Run a comparison with the newest GLR* grammar, that has been devel-
oped for 2 years®.

3. Examine if insertion of new words into the lexicon reduces performance.
Set 4 contains 60 words not covered by the Sets 1-3. These words are
added manually as new words to the lexicon before performing the final
evaluation. Each new word is defined by copying and modifying features
of similar words. The process of extending the lexicon with the 60 words
takes approximately 4 hours.

FeasPar with Search GLR* Parser - 2 years
independent independent
grading (my grading) || grading (my grading)
PM2E-T | 751 % (75.7 %) 78.6 % (78.6 %)
PM2E - S || 60.5 % (63.5 %) 60.8 % (61.5 %)

Table 6.2: Comparing FeasPar (old ILT) with a GLR* parser (new ILT) devel-
oped over 2 years. (Final evaluation set (Set 4), S=speech data, T=transcribed
data)

6.6.1 Results

All output was graded by an independent person, a student whose native lan-
guage is English and not involved in any parser research or development, and
the author. Grading results are shown in Figure 6.2. By referring back to the
purposes of this comparison, one sees that:

1. When comparing Table 6.2 with 6.1, one can see that for FeasPar, PM2E-
T is practically the same: 75.1 % (75.7 %) vs. 74 %. This shows that the
development of the search is not based on information contained in the
evaluation set (Set 3). Further, one can see that for FeasPar, PM2E-S is
better in the latter comparison. This is due to the ESST speech recognizer
improvement from March 94 to September 95.

5To be totally correct: almost 2 years, that is 22 months.

6.6. FINAL EVALUATION 85

2. Further, from Figure 6.2 one sees that for speech data, which is the sit-
uation for being used in an actual speech-to-speech translation system,
FeasPar and the GLR* parser have practically the same performance.

3. Adding the new words caused no reduction of performance (refer to point
1 above). This shows that the system generalizes well also in respect to
new words.

6.6.2 Comparison Comments

For completeness, this subsection explains some considerations that had to be
made for running the final comparison.

FeasPar is trained with the March 94 ILT version (in the following called
the old ILT), whereas the newest GLR* grammar uses the September 95 ILT
version (in the following called the new ILT), being changed over 50 times (!)
since March 94. ¢ Therefore, some steps are taken to avoid comparisons that
would be biased towards FeasPar:

Not Correcting for GLR*’s ILT Performance Advantage: Because the
GLR* grammar had a more sophisticated ILT, its translation performance
(English-to-English) would of course be better than if it would have used
the old ILT. This ILT performance advantage is estimated by the GLR*
author to be slightly more than 10 % [Lav96a]. Note that the numbers in
Table 6.2 are not corrected due to this, in order not to favor FeasPar.

German Generator: The German generator was only developed until the
March 94 evaluation. This means that it knows all constructs of the
old ILT, but has problems with the September 95 ILT. This means that
it would generate well from FeasPar’s output, but not so well from the 2
year GLR* parser’s output (new ILT), meaning a comparison would be in
favor of FeasPar. Therefore, no English-to-German translations are run,
and hence, the performance measure 2G is not made.

English Generator: The English generator knows the new ILT, so it can cope
with both the output of the 2 year GLR* parser (new ILT), and the output
of FeasPar (old ILT). The English generator is still able to cope with the
old ILT, because during generator development, constructs were mainly
added, but not removed. If certain constructs were removed, it could
mean a performance decrease for FeasPar, but by no means a performance
increase.

Sentence Break Finding: In the GLR* system for parsing speech data, sym-
bolic preprocessing which looks for pauses and silences, splits the utter-
ances into sentences. Since FeasPar is trained with sentences, the utter-

6Due to time constraints, FeasPar was not retrained on the newest ILT version.

86 CHAPTER 6. CONSISTENCY CHECKING SEARCH

ances are run through this preprocessing to divide them into sentences
before presenting them to FeasPar.

Further, the final evaluation set does not include ILTs, only natural language.
Hence, performance measure 1 cannot not be made. As a conclusion, only
performance measure 2E can be made.

The GLR* parser output was produced in an internal GLR* project evalu-
ation at Carnegie Mellon University July 15 1995.

Due to the skip part of the GLR* parser system, the speech data translations
are several times split into smaller natural language pieces. In order to favor the
GLR* parser, these pieces are graded individually, so that e.g. a sentence split
up into 2 pieces, where 1 pieces are acceptable and 1 piece are non-acceptable,
this is counted as 1 acceptable and 1 non-acceptable (piece) translations, and
not as 1 (sentence) non-acceptable. Therefore, for speech data, 374 pieces are
graded for the GLR* parser, and only 348 for FeasPar.

Chapter 7

Evaluation

This chapter contains an overall evaluation of this thesis. First, a comparison
with other approaches is described. The usefulness for various tasks and the ease
for non-experts to build a parser are then explained. Finally, other advantages
are discussed.

7.1 Comparison with Other Approaches

This section will compare FeasPar with hand modeled grammars and connec-
tionist systems. For clarity, the comparison only includes systems evaluated on
similar tasks as FeasPar.

7.1.1 Comparison with Hand Modeled Grammars

Symbolic parsers with hand modeled grammars have the advantage of high
performance. Further, many symbolic parsers yield a parse output formalism
allowing fine-grained descriptions of the analysis.

The GLR* parser, based on Tomita’s efficient parsing algorithm, uses an uni-
fication engine and a hand model parsing grammar. Several GLR grammars,
syntactic and semantic, both for text and speech, have been written over the
years. Much work has been invested to successfully improve its robustness for
usage with speech and especially spontaneous speech. The GLR* parser pos-
sesses a very powerful output formalism, feature structures, which are applied
(in variants) in all unification based parsers and have been shown to be expres-
sive enough to model all types of linguistic information, ranging from phonetics
to discourse modeling.

For the GLR* grammars for the English Spontaneous Speech Task (ESST),
two samples of the grammar were selected: The first after 4 months of develop-
ment, and the second after two years of development. In order to test not only

87

88 CHAPTER 7. EVALUATION

parse performance, but also translation performance, a GLR* generation gram-
mar for English and one for German are added to get a complete translation
system.

Compared with the GLR* grammar developed for 4 months, FeasPar has a
better performance both in the parse performance (PM1) as well as in perfor-
mance for acceptable translations into English (PM2E) and German (PM2G).
This applies both for transcribed and speech input (see Figure 6.1), using the
evaluation set (Set 3, see Section 3.3 on page 25).

On the unseen, final evaluation set (Set 4), FeasPar has a similar performance
(60.5 % versus 60.8 %) as the GLR* grammar developed for 2 years, when
measuring the performance for acceptable translations into English (PM2E)
with speech input. For transcribed input, i.e. input not processed by the speech
recognizer, the GLR* grammar performs slightly better than FeasPar (78.6 %
versus 75.1 %)".

A performance comparison for German is not provided, because it would be
positively biased towards FeasPar for technical reasons. Since the final evalua-
tion set used for performance tests, did not include correct parser output (ILTs)
it is also not possible to measure parse performance.

The RTN based Phoenix parser, whose grammar was developed over 9
months, has a similar performance. However, FeasPar has a richer parse for-
malism than Phoenix, since RTNs do not include attributes.

3

Summing up, FeasPar has a better or equal performance as hand modeled
grammars that have been developed for months or years, whereas FeasPar itself
only needs 2 weeks of hand modeled information.

7.1.2 Comparison with Connectionist Parsers

The main advantages of connectionist parsers are robustness and learning
capabilities. PARSEC is the parser that is closest related to FeasPar. PAR-
SEC was evaluated with read speech, whereas FeasPar is evaluated with spon-
taneous speech. A direct performance comparison is therefore not possible.
PARSEC’s output formalism contains three (architecturally fixed) levels with
one label per level, and no attributes (see example in Figure 7.1). FeasPar’s out-
put formalism has no architecturally fixed maximum levels and allows several
(not architecturally fixed) features, with atomic or complex values (see exam-
ple in Figure 7.2). The architectural, connectionist and learning principles that
are successfully applied in PARSEC, proved to be insufficient for the parsing
task of FeasPar, and are therefore supplemented in this work. PARSEC re-
quired a highly domain specific mapper to work within a translation system,
whereas FeasPar outputs interlingua directly. Further, PARSEC only deliv-

!For technical reasons, these comparison were made in disfavor of FeasPar. FeasPar’s
performance would have been 10 % (estimated) better if measured under equal conditions,
see Section 6.2.2

7.1

COMPARISON WITH OTHER APPROACHES

([statement]

([clause]
([misc] then)
([iaux] let+s)
([action] plan)
([patient] it)
([time] for then)
([mod-1] on the eighth)
([mod-1] eight)
([mod-1] to ten)))

89

Figure 7.1: PARSEC parse for “then let+s plan it for then on the eighth eight to

ten”.

((speech-act *suggest)
(sentence-type *directive)
(frame *schedule)
(what ((frame *it)))
(when ((frame *time-list)
(connective -)
(items (*MULTIPLE*
((frame *simple-time)
(day 8))
((frame *interval)
(incl-excl inclusive)
(start ((frame *simple-time)
(hour 8)))
(end ((frame *simple-time)
(hour 10))))))))

(conjunction then))

Figure 7.2: FeasPar parse for “then let +s plan it for then on the eighth eight to

7

ten

ers one parse hypothesis, whereas FeasPar can deliver an N-best-list of parse
hypotheses ranked by probabilities.

SCREEN performs a syntactic and semantic analysis of spontaneous speech.
Time Scheduling Task evaluation results are only given for some submodules,
and not for the overall system. My best-case estimate yields an overall perfor-

90 CHAPTER 7. EVALUATION

mance of at most 35 % (see Section 2.3.5 on page 17) on the Time Scheduling
Task. In comparison, FeasPar has a performance of 60.5 %. It is not defined as
to what kind of output formalism SCREEN has, and not discussed or described
how to apply it to other NLP system components, e.g. a generator. In contrast,
FeasPar has well known and highly descriptive parse output formalism. It is
clearly shown in this thesis that integration with a generation grammar for a
target language is trivial.

7.2 Suitability for Various Tasks

This thesis gives clear evidence for the successful application of FeasPar as
a semantic parser, extracting the semantic meaning (ESST). Additionally, a
syntactic labeling task for German is well mastered (CR). Since German is
known for its complex morpho-syntax, this shows that FeasPar is also suited
for syntax parsing tasks. Further, it suggests that FeasPar’s architecture is
language independent.

Feature structures as representation formalism play a dominant role within
classical computational linguistics, due to its powerful means of representing all
types of linguistic information. This expressiveness is a major reason for the
popularity of unification based grammars. FeasPar utilizes feature structures
as parse output formalism, allowing for complex analysis descriptions with high
information content. FeasPar makes no architectural constraints whether on
the number of features nor on the depth in the structures. Both are learned
from the domain training examples. Hence, this thesis suggests that FeasPar is
applicable to various domains and various analysis needs.

FeasPar is easily integrated to other NLP components, due to its standard
input (sentence hypothesis) and its standard output (feature structure). JANUS
exemplifies this integration, where the speech recognizer feeds FeasPar, which
again can feed a target language generator directly.

7.3 Ease of Use for Non-Experts

Since the trend in NLP has been going from general, domain-independent, sys-
tems to specialized systems targeted towards a special domain, the importance
of portability has grown. The central issue is the time required to develop an
NLP system for a new domain. To parse (often) malformed input is a hard task.
Grammar development is often the most time consuming task in building a total
natural language understanding or translation system. When developing parse
grammars, in theory, one needs a domain independent kernel, and a domain spe-
cific part, enabling reuse of the kernel in new domains. In practice, however, for
various reasons, like the need to reduce parse ambiguities, the entire parse gram-
mar is developed from scratch, requiring a lot of time from a grammar writer

7.4. OTHER ADVANTAGES 91

expert. Further, experience from the JANUS project also shows that much time
is spent by grammar writers and generator writers to adjust their common in-
terface, the interlingua, so that grammar and generator development tasks are
made as easy as possible. With FeasPar, the person in charge of the parser avoids
these time consuming human processes: neither grammar theory understanding
nor time for grammar development are required. Further, no agreements with
generation grammar developers and interlingua adjustments are necessary. The
only requirements are passive language competence, i.e. knowing the language
just well enough to understand the semantics of various parts of a sentence, and
an understanding of what various interlingua parts mean. For a person with
this knowledge it will take two weeks to do the hand modeling effort, which in-
cludes modeling a lexicon and aligning training sentences with the ILTs, which
are available from the generator grammar developers. They have to agree on an
interlingua and a hand produced set of interlingua examples for the purpose of
their own work. Also, their work is made easier as they do not have to consider
the needs of the parse grammar developers in interlingua design. Further, the
number of training sentences needed for FeasPar’s learning process is small, only
approximately 630 for ESST. This contributes to keeping the human effort low.

Automatic architecture set-up takes care of the division and distribution of
the parsing task over several neural networks. FeasPar generates training data
and all necessary architectural parameters, both for training and for run-time.

7.4 Other Advantages

The automatic architecture set-up typically splits the parse task into many net-
works (for ESST: 44 networks). Fortunately, these can be trained independently
of each other without any need of communication between the training processes,
allowing for parallel training on separate CPUs. In run-time, parallel parsing
is in principle possible?. As soon as the three Chunker networks are done, the
input for all remaining networks is fixed. Hence, the remaining networks could
be run in parallel on separate CPU’s, and then the results could be collected on
one machine, which performs the search.

Another spin-off result from the generator grammar development is the inter-
lingua specification. FeasPar uses it in its efficient Consistency Checking Search,
so that it is guaranteed that the parse is consistent, and does not cause unex-
pected problems for the generators. Surprisingly, consistency checking is not
available in any of the symbolic or connectionist parsers known to the author.

FeasPar delivers a probability score along with the parse, based on the neural
network activations. The search guarantees that the valid parse with the highest
probability is delivered as a result. FeasPar experiments show that it is possible
to produce N-best lists of valid parses, ranked by probability, and that their
evaluation could increase the parse performance (see Section 6.4).

2This is not implemented, but the implementation is substantially easy.

Chapter 8

Conclusion

This chapter will sum up the thesis by describing contributions, shortcomings
and future work.

8.1 Contributions of the Thesis

This thesis claims that it is possible to build a neural net based parser that
has a performance similar to a good hand modeled unification based parser.
The presented parser delivers feature structure parses, needs a small corpus
and a minimum of hand modeling, learns, and is robust towards spontaneous
speech and speech recognizer effects. This section will in short discuss these
characteristics.

1. High Performance - Low Cost: By evaluating FeasPar with JANUS, it
was shown that FeasPar achieves similar performance as a good unification
grammar (GLR*) and a good RTN grammar (Phoenix) without requiring
tedious grammar development. FeasPar required only 2 weeks for training
data and lexicon preparations, compared with 2 years for GLR* and 9
months for Phoenix.

2. Learning to Parse Spontaneous Speech: FeasPar is the first learning
parser clearly stating generalization results on a spontaneous speech task.
1

3. Robustness to Spontaneous Speech and Speech Recognizer Er-
rors: FeasPar is the first parser being robust towards both spontaneous

! Jain presents results for PARSEC evaluated for read speech. These include generalization
results for transcribed data and training results for speech data. Wermter and Weber present
results for SCREEN evaluated with spontaneous speech data, but only at module level, not
as overall performance.

92

8.2. SHORTCOMINGS 93

speech effects and speech recognizer errors, without needing explicit ar-
chitectural or hand modeled constructs? for this. Also, the training set
contains no speech recognizer error examples. All these types of malforma-
tion are tolerantly handled by the FeasPar networks and the Consistency
Checking Search.

4. Dividing Feature Structure into Smaller, Learnable Problems:
The Chunk’n’Label principle introduced in this thesis demonstrates how
a feature structure can be reformulated as a tree, how feature pairs and
paths are defined, and aligned to the natural language chunks. Further,
it is shown how the separate neural networks are defined with their out-
put representations, their training data, and the lexicon. Finally, it is
demonstrated how the interaction of the networks work in run time.

5. Various Learning Techniques: The learning techniques applied in
PARSEC are insufficient for the more complex task of FeasPar, and are
therefore supplemented with the LNC, SCS, and extended context con-
nectivity principles as well as with statistical microfeatures in the lexicon.
They all positively influence learning performance. Two other techniques
(hybrid encoding and 2nd parse) have a negative influence on the ESST
learning performance, due to the little and highly irregular training data.
With larger training data, these might be valuable.

6. Consistency Checking Search: To my knowledge, no other parser per-
forms a consistency check of its parsing result. Four advantages are offered
by the Consistency Checking Search processing: first, FeasPar only out-
puts valid parses, and thereby guarantees other NLP components (the
target language generators in JANUS) that their input fulfills the for-
malism definition; second, the parse performance increases considerably,
since obviously wrong parses are sorted out; third, a parse probability
is returned along with the parse; and fourth, an N-best list ranked with
probabilities may be returned as parse result, allowing NLP components,
e.g. discourse analyzers, to apply further constraints.

8.2 Shortcomings

The FeasPar’s lexicon contains no lexical disambiguation, so that words like
schedule are represented both as a verb and as a noun, and this ambiguous
representation is presented to the networks. They must apply the correct in-
terpretation and produce the right feature structure information, meaning that

2Symbolic parsers contain grammar modules and grammar-independent modules dedicated
for robustness handling. The connectionist parser SCREEN contains modules specialized for
various repair tasks.

94 CHAPTER 8. CONCLUSION

the networks must be robust towards ambiguities too. The connectionist repre-
sentation of lexical ambiguities is modeled by setting all features that are valid
in one or more interpretations. Especially English contains many lexically am-
biguous words, since verb and noun forms are often identical. This is clearly
illustrated by parsing the sentence “time flies like an arrow”. Even if the Fea-
sPar evaluation performance is good for the English Spontaneous Speech Task,
the performance might be even better if the networks do not have to be robust
towards lexically ambiguous input.

8.3 Future Work

Certain aspects of FeasPar could be further investigated and expanded. Sug-
gestions for future work will be discussed in this section.

e Implementing Parallel Network Processing for Parse Mode: Cur-
rently, an average sentence takes about 7 sec to parse, from which more
than four fifth of the time is spent on running neural networks. ® Since
most of these neural networks can run independently of each other, one
could let these be processed in parallel on several CPU’s.

e Implementing Utterances as Input instead of Sentences: The cur-
rent FeasPar implementation takes separate sentences as input. One ut-
terance contains several sentences. To make it work with utterances, there
are two options; first, integrate the GLR* sentence breaker with FeasPar,
since the breaker is currently an external preprocessor when utterances
are to be parsed by FeasPar; or second, introduce another chunk level
and learn sentence breaks, which means extending FeasPar with one more
chunker network and utterance feature networks.

e Performance Improvement Through Rescoring : Currently, Fea-
sPar is able to produce N-best lists of valid parses ranked by probability.
An initial experiment shows a potential for reducing the parse error rate to
the half, if a rescoring would rank the N-best candidates differently. One
important, so far unused knowledge source to draw on for an alternative
criterion, could be the statistical consistency, discussed in Section 5.1.1.

e More Training Data: In general, more training data normally increases
evaluation performance. In FeasPar, the increase may be especially large,
since more training data would probably also enable a positive perfor-
mance contribution from the cooperative networks, hybrid encoding and
second parse.

e Lattice or N-best Hypothesis Parsing: FeasPar currently only uti-
lizes the speech recognizer hypothesis with the highest score from acoustics

3When using one CPU on an Alpha Server 2100 4/275, 512 MB RAM

8.3.

FUTURE WORK 95

and language modeling. It would be interesting to parse several hypothe-
ses, either as N-best lists or as speech lattices. The first is trivial to im-
plement, the second is not. However, analyzing several hypotheses causes
parse time to rise significantly.

Integration of Acoustic Scores: Since the speech recognizer produces a
score for a speech hypothesis, it would be valuable to utilize it in FeasPar,
either as part of the input sentence, or as a mixture with the probability
score of every feature structure.

Appendix A

ESST Features

The ESST feature that FeasPar learns:

| no. | Feature name

Feature values

0

speech-act

*opening *address *suggest *accept *acknowledge
*state-constraint *reject *confirm *request-response *closing
*affirm *negate *request-suggestion *confirm-time

sentence-type

*fixed-expression *names *state *query-if
*directive *query-ref *fragment

frame

*oreet *hello *address *person-name *schedule *we *meeting
*gpecial-time *length *respond *booked *1 *something *simple-time
*interval *meet *you *clarify *class *considering *interject

*adverb *busy *time-list *how *that *free *it *restaurant-name
*thank *seminar *out-of-town *babble *settled *let-me-check
*see-you *exclaim *return *what *relative-time *apologize
*calendar *takecare *city-name *length-list *inform *know
*conference-room *bye *event-list *needed *wait *appointment
*here *look-forward *haveanice *undesired *check *lunch *pro
*they *tennis *event-time

type

(COMPLEX VALUES)

first-name

(open class)

attitude

*should *possible *desired *needed *how-about *undesired *shall

who

(COMPLEX VALUES)

~| O U =

specifier

indefinite sometime definite next 2 plural at-least that anytime
brunch all-range late following perhaps what approximate couple early
this only another other even any the-rest-of most-member more-than
all-member a-lot except 3 also first full both-of either-of third

right most-range negative

what

(COMPLEX VALUES)

name

(open class)

96

97

| no. | Feature name | Feature values

10 | when (COMPLEX VALUES)

11 | unit hour week

12 | quantity 2 1 couple how-many 1.5 short-time how-long 2.5

13 | how-long (COMPLEX VALUES)

14 | type affirmative yes no negative i-dont-know

15 | degree weak normal superlative strong

16 | adverb babble perhaps actually really only if-possible again generally also
already just right-now completely still unfortunately sort-of after-all
surely always barely definitely

17 | day-of-week (open class)

18 | topic (COMPLEX VALUES)

19 | incl-excl inclusive exclusive

20 | hour (open class)

21 | start (COMPLEX VALUES)

22 | end (COMPLEX VALUES)

23 | time-of-day morning afternoon evening

24 | whose (COMPLEX VALUES)

25 | day (open class)

26 | clarified (COMPLEX VALUES)

27 | conjunction so therefore and then because if but or unless

28 | connective - and or eor between

29 | items (COMPLEX VALUES)

30 | am-pm pm am

31 | minute (open class)

32 | month (open class)

33 | where (COMPLEX VALUES)

34 | with-whom (COMPLEX VALUES)

35 | babble lets-see well

36 | why (COMPLEX VALUES)

37 | exclaim geez gee goodness my god

38 | length (COMPLEX VALUES)

39 | direction +

40 | origin (COMPLEX VALUES)

41 | to-whom (COMPLEX VALUES)

42 | of (COMPLEX VALUES)

43 | title (open class)

44 | last-name (open class)

45 | period day

46 | from (COMPLEX VALUES)

47 | event (COMPLEX VALUES)

Bibliography

[All88a]
[ALI88D)]

[BBD*95]

[BBMG94]

[BCP+90]

[Ber91]

[BIS92]

[BLM91a]

J. Allen. Basic Parsing Techniques. In [All88b], chapter 2. The
Benjamin/Cummings Publishing Company, Inc., 1988.

J. Allen. Natural Language Understanding. The Ben-
jamin/Cummings Publishing Company, Inc., 1988.

Samuel Bayer, Erica Bernstein, David Duff, Lynette Hirschman,
Susann LuperFoy, and Margot Peet. Spoken Language Under-
standing: Report on the MITRE Spoken Language System. In
Proceedings of ARPA Spoken Language Systems Technology Work-
shop, 1995.

S. K. Bennacef, H. Bonneau-Maynard, J. L. Gauvain, L. Lamel,
and W. Minker. A Spoken Language System For Information Re-
trieval. In Proceedings of the International Conference on Spoken
Language Processing - ICSLP, Yokohama, sept 1994.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent
J. Della Pietra, Fredrick Jelinek John D. Lafferty, Robert L. Mer-
cer, and Paul S. Roossin. A Statistical Approach To Machine
Translation. Computational Linguistics, 16(2):79-85, June 1990.

George Berg. Learning Recursive Phrase Structure: Combining
the Strengths of PDP and X-Bar Syntax. Technical report TR
91-5, Dept. of Computer Science, University at Albany, State Uni-
versity of New York, 1991.

Robert Bobrow, Robert Inria, and David Stallard. Syntac-
tic/Semantic Coupling in the BBN DELPHIi System. In Proceed-
ings of ARPA Spoken Language Systems Technology Workshop,
1992.

Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. Align-
ing Sentences In Parallel Corpora. In Proceedings 29th Annual

Meeting of the Association for Computational Linguistics, pages
169 176, Berkeley,CA, 1991.

98

BIBLIOGRAPHY 99

[BLMY1b]

[BPP+91]

[BPWY4]

[Bre82)

[Bug92]

[BW96a]

[BWO6b]

[BW96c]

[CHS3)

[Chr91]

[CMGS91]

Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. Word-
sense Disambiguation Using Statistical Methods. In Proceedings
29th Annual Meeting of the Association for Computational Lin-
guistics, pages 264—270, Berkeley, CA, 1991.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
Robert L. Mercer, and Surya Mohanty. Dividing and Conquering
Long sentences in a Translation System. Technical report, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, 1991.

Finn Dag Bug, Thomas Polzin, and Alex Waibel. Learning Com-
plex Output Representations In Connectionist Parsing of Spo-
ken Languages. In International Conference on Acoustics, Speech
& Signal Processing, pages 365 368, vol. 1, Adelaide, Australia,
April 1994. TEEE.

J. Bresnan, editor. The Mental Representation of Grammatical
Relations. The MIT Press, Cambridge, MA, 1982.

Finn Dag Bug. A Learnable Connectionist Parser that Outputs
Feature Structures. Ph.D proposal, Fakultat fiir Informatik, Uni-
versitdt Karlsruhe, Germany, November 1992.

Finn Dag Bug and Alex Waibel. FeasPar - A Feature Structure
Parser Learning to Parse Spoken Language. In Proceedings of the

International Conference on Computational Linguistics, August
1996.

Finn Dag Bug and Alex Waibel. Learning To Parse Spontaneous
Speech. In Proceedings of the International Conference on Spoken
Language Processing, October 1996.

Finn Dag Bug and Alex Waibel. Search in a Learnable Spoken
Language Parser. In Proceedings of the 12th FEuropean Conference
on Artificial Intelligence, August 1996.

Jaime G. Carbonell and Philip J. Hayes. Recovery Strategies for
Parsing Extragrammatical Language. American Journal of Com-
putational Linguistics, 9(3-4):123-146, 1983.

Lonnie Chrisman. Learning Recursive Distributed Representa-
tions for Holistic Computation. Connection Science, 3(4):345 366,
1991.

Anna Corazza, Renato De Mori, Roberto Gretter, and Giorgio
Satta. Computation of Probabilities for an Island-Driven Parser.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(9):936 950, 1991.

100

[DCGY3]

[EIm90]

[Elm91]

[ER6S]

[F192]

[Fil68]

[FST92]

[GC93]

[GKPS85a]

[GKPS85b]

[GSB*95]

[Hen94|

BIBLIOGRAPHY

Ido Dagan, Kenneth W. Church, and William A. Gale. Robust
Bilingual Word Alignment for Machine Aided Translation. In Pro-
ceedings of the Workshop on Very Large Corpora at ACL, 1993.

J. L. Elman. Finding Structure in Time. Cognitive Science,
14:179 211, 1990.

Jeffrey L. Elman. Distributed Representations, Simple Recurrent
Networks, and Grammatical Structure. Machine Learning, pages
195-225, 1991.

E.Bach and R.Harms, editors. Universals in Linguistic Theory.
Holt, Rinehart and Winston, New York, 1968.

Osamu Furuse and Hitoshi Iida. Cooperation between Transfer

and Analysis in Example-Based Framework. In Proceedings of
COLING, 1992.

Charles J. Fillmore. The case for case. In [ER68], pages 1 88.
Holt, Rinehart and Winston, New York, 1968.

Osamu Furuse, Eiichiro Sumita, and Hitoshi lida. Building Trans-
fer Knowledge from a Bilingual Spoken-Dialogue Corpus. ACL,
13(5), 1992.

William A. Gale and Kenneth W. Church. A Program for Align-
ing Sentences in Bilingual Corpora. Computational linguistics,
19(1):75-91, 1993.

G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. A theory of
syntactic features. In [GKPS85b], chapter 2. Blackwell Publishing,
Oxford, England and Harvard University Press, Cambridge, MA,
USA, 1985.

G. Gazdar, E. Klein, G. K. Pullum, and 1. A. Sag. Generalized
Phrase Structure Grammar. Blackwell Publishing, Oxford, Eng-
land and Harvard University Press, Cambridge, MA, USA, 1985.

P. Geutner, B. Suhm, F. D. Bug, T. Kemp, L. Mayfield, A. E. Mc-
Nair, I. Rogina, T. Schultz, T. Sloboda, W. Ward, M. Woszczyna,
and A. Waibel. Integrating Different Learning Approaches into
a Multilingual Spoken Language Translation System. In Work-
shop on New Approaches to Learning for Natural Language Pro-
cessing, International Joint Conference on Artificial Intelligence,
Montreal, Canada, August 1995.

James B. Henderson. Description Based Parsing in a Connection-
ist Network. PhD thesis, University of Pennsylvania, 1994.

BIBLIOGRAPHY 101

[HKP91a]

[HKP91b]

[HKP91c]

[HMRSG6]

[HS86]

[TW93]

[Jaig9)]

[Jai90]

[Jai91]

[Jai92]

[Jel90]

[JIM92]

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction
to the Theory of Neural Computation. Addison-Wesley, 1991.

John Hertz, Anders Krogh, and Richard G. Palmer. Multi-Layer
Networks. In [HKP91a], chapter 6. Addison-Wesley, 1991.

John Hertz, Anders Krogh, and Richard G. Palmer. The Hopfield
Model. In [HKP91a], chapter 2. Addison-Wesley, 1991.

Geoffrey E. Hinton, J. L. McClelland, and David E. Rumelhart.
Distributed Representations. In [RM¢Prg86]. The MIT Press,
1986.

G. E. Hinton and T. J. Sejnowski. Learning and Relearning in
Boltzmann Machines. In [RMtPrg86]. The MIT Press, 1986.

Sunil Issar and Wayne Ward. CMU’s robust spoken language
understanding system. In Proceedings of Furospeech, 1993.

Ajay Jain. A Connectionst Architecture for Sequential Symbolic
Domains. Technical report, School of Computer Science, Carnegie
Mellon University, Pitt. PA, USA, 1989.

Ajay Jain. Parsing Complex Sentences with Stuctured Connec-
tionist Networks. In Jeffrey Elman, editor, Neural Computation
3, pages 110 120. MIT, School of Computer Science, Carnegie
Mellon University, Pitt. PA, USA, 1990.

Ajay N. Jain. A Connectionist Learning Architecture for Pars-
ing Spoken Language. PhD thesis, School of Computer Science,
Carnegie Mellon University, Dec 1991.

Ajay N. Jain. Generalization Performance in PARSEC - A
Structured Connectionist Parsing Architecture. In J.E.Moddy,
S.J.Hanson, and R.P.Lippman, editors, Advances in Neural Infor-
mation Processing Systems 4. Morgan Kaufmann Pub., 1992.

F. Jelinek. Self-Organized Language Modeling For Speech Recog-
nition. In Alex Waibel and Kai-Fu Lee, editors, Readings in Speech
Recognition. Morgan Kaufmann, San Mateo, CA, USA, 1990.

F. Jelinek, J.D.Lafferty, and R.L. Mercer. Basic Methods of Prob-
abilistic Context Free Grammars. In P.Laface and R. De Mori,
editors, Speech Recognition and Understanding. Recent Advances,
pages 345-360, Berlin Heidelberg, 1992. NATO ASI Series, Vol
F.75, Springer-Verlag.

102

[JLM+94]

[TW8Y]

[JTW90a]

[TW90b]

[KB82]

[KK93]

[KR93]

[KS93]

[Lan90]

[Lav96a]

[Lav96b]

BIBLIOGRAPHY

F. Jelinek, J. Lafferty, D. Magerman, L. R. Mercer, A. Rat-
naparkhi, and S. Roukos. Decision Tree Parsing Using a Hid-
den Derivation Model. In Proceedings ARPA Workshop on Hu-
man Language Technology, pages 260-265, Princeton, New Jersey,
March 1994.

Ajay Jain and Alex Waibel. A Connectionist Parser Aimed at
Spoken Language. Technical report, School of Computer Science,
Carnegie Mellon University, Pitt. PA, USA, august 1989.

Ajay Jain and Alex Waibel. Incremental Parsing by Modular Re-
current Connectionist Networks. In D.S. Touretzky, editor, Ad-
vances in Neural Information Processing Systems 2. Morgan Kauf-
mann, San Mateo, CA, USA, Computer Science, Carnegie Mellon
University, Pitt. PA, USA, 1990.

Ajay Jain and Alex Waibel. Robust Connectionst Parser of Spoken
Language. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing. School of Computer
Science, Carnegie Mellon University, Pitt. PA, USA, 1990.

R. Kaplan and J. Bresnan. Lexical-Functional Grammar: A For-
mal Sysytem for Grammatical Representation. In [Bre82], pages
173 281. The MIT Press, Cambridge, MA, 1982.

Christel Kemke and Habibatou Kone. INCOPA - An Incremental
Connectionist Parser. In Proceedings of Would Congress on Neural
Networks, pages 41-44, Portland, Oregon, 1993.

Martin Kay and Martin Roscheisen. Text-Translation Alignment.
Computational linguistics, 19(1):120 142, 1993.

Christel Kemke and Christoph Schommer. PAPADUES - Par-
allel Parsing of Ambiguous Sentences. In Proceedings of Would
Congress on Neural Networks, pages 79 82, Portland, Oregon,
1993.

Hagen Langer. Syntaktische Normalisierung gesprochener
Sprache. Arbeitsbericht nr.23, DFG-Forschergruppe Kohérenz,
Fakultat fur Linguistik und Literaturwissenschaft der Universitat
Bielefeld, 1990.

A. Lavie. personal communication. e-mail, Jan 1996.

Alon Lavie. GLR*: A Robust Focused Parser for Spontaneously
Spoken Language. PhD thesis, CMU, to appear 1996.

BIBLIOGRAPHY 103

[LFG95a]

[LFG*95b]

[LGQ*95]

[LR90]

[LT93]

[MBB+95]

[MBSI94]

[MD89a]

[MD89b)

Steve Lawrence, Sandiway Fong, and C. Lee Giles. On the Ap-
plicability of Neural Network and Machine Learning Method-
ologies to Natural Language Processing. In Workshop on New
Approaches to Learning for Natural Language Processing, Inter-
national Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, August 1995.

Bruce Lund, William M. Fischer, John S. Garofolo, David S. Pal-
lett, Mark Przybocki, and R. Allen Wilkinson. A Spoken Natural
Language Interface To Libraries. In Proceedings of ARPA Spoken
Language Systems Technology Workshop, 1995.

Lori Levin, Oren Glickman, Yan Qu, Donna Gates, Alon Lavie,
Carolyn P. Rose, Carol Van Ess-Dykema, and Alex Waibel. Using
Context in Machine Translation of Spoken Language. In Proceed-
ings of Theoretical and Methodological Issues in Machine Trans-
lation, 1995.

Sebastian Lisken and Hannes Rieser. Ein inkrementeller Parser zur
Analyse von simulierten Reparaturen (”repairs”). Arbeitsbericht
nr. 29, DFG-Forschergruppe Kohérenz, Fakultit fir Linguistik
und Literaturwissenschaft der Universitat Bielefeld, 1990.

A. Lavie and M. Tomita. GLR* - An Efficient Noise-skipping
Parsing Algorithm for Context-free Grammars. In Proceedings
of Third International Workshop on Parsing Technologies, pages
123-134, 1993.

S. Miller, M. Bates, R. Bobrow, R. Ingria, J. Makhoul, and
R. Schwarz. Recent Progress in Hidden Understanding Models
(HUM). In Proceedings of the ARPA Spoken Language Systems
Technology Workshop, 1995.

S. Miller, R. Bobrow, R. Schwarz, and R. Ingria. Statistical
Language Processing Using Hidden Understanding Models. In

Proceedings of the ARPA Spoken Language Systems Technology
Workshop, 1994.

R. Miikkulainen and M. Dyer. A Modular Neural Network Ar-
chitecture for Sequential Paraphrasing of Script-Based Stories. In
Proceedings of the International Joint Conference on Neural Net-
works. TEEE, 1989.

R. Miikkulainen and M. Dyer. Encoding Input/Output Repre-
sentations in Connectionist Cognitive Systems. In D.S.Touretzky,
G.E.Hinton, and T.J.Sejnowski, editors, Proceedings of the 1988

104

[MDO1]

[MG93]

[MGS*95]

[MGWW95]

[Min95]

[MNC91]

[MST+92]

[Net92]

[NNP92]

[NS92]

BIBLIOGRAPHY

Connectionist Models Summer School. Morgan Kaufmann Pub-
lishers, Los Altos, CA, 1989.

R. Miikkulainen and M. Dyer. Natural Language Processing With
Modular PDP Networks and Distributed Lexicon. Cognitive Sci-
ence, 15:343-399, 1991.

M. McCandless and J. R. Glass. Decision Tree Parsing Using a
Hidden Derivation Model. In Proceedings ARPA Workshop on
Human Language Technology, pages 981-984, 1993.

L. Mayfield, M. Gavalda, Y-H. Seo, B. Suhm, W. Ward, and
A. Waibel. Parsing Real Input in JANUS: A Concept-Based Ap-
proach to Spoken Language Translation. In Proceedings of TMI,
Leuven, 1995.

L. Mayfield, M. Gavalda, W. Ward, and A. Waibel. Concept-
Based Speech Translation. In ICASSP 95, pages 97 100. IEEE,
1995.

Wolfgang Minker. An English Version of the LIMSi IATIS Sys-
tem. Technical Report Notes et documents LIMSI No. 95-12,
Laboratoire d’Informatique pour la Mecanique et les Sciences de
I'Ingenieur, LIMSI - CNRS, apr 1995.

Teruko Mitamura, Eric H. Nyberg, and Jaime G. Carbonell. An
Efficient Interlingua Translation System for Multilingual Docu-
ment Production. In Proceedings of the Machine Translation Sum-
mit ITI, Washington DC, july 1991.

Tsuyoshi Morimoto, Masami Suzuki, Toshiyuki Takezawa,
Gen’ichiro Kikui, Masaaki Nagata, and Mutsuko Tomokiyo. A
Spoken Language Translation System: SL-TRANS2. In Proceed-
ings of COLING-92, pages 1048-1052. ATR Intepreting Telephony
Research Laboratories, Aug. 23-28. 1992.

Klaus Netter. On Non-Head Non-Movement. In Proceedings of
Konvens 92, pages 218-227. Springer-Verlag, Berlin Heidelberg,
1992.

John Nerbonne, Klaus Netter, and Carl Pollard. German Gram-
mar in HPSG. In CSLI Lecture Notes. Chicago, 1992.

Sven Naumann and Jirgen Schrepp. An empirical approach to
syntax learning. In Giinther Goétz, editor, Proceedings of KON-
VENS92, pages 209-217. Gesellschaft fiir Informatik, Springer-
Verlag, Oct 1992.

BIBLIOGRAPHY 105

[NT87]

[OAM*92]

[Par92]

[PBA93]

[Pol8g]

[PS87a]

[PS87h]

[PW92]

[Rabh90]

[Rec93]

[RHWS6]

See-Kiong Ng and Masaru Tomita. Probabilistic LR Parsing for
General Context-free Grammars. Technical report, Center for Ma-
chine Translation, CMU, 5000 Forbes Ave., Pittsburgh, PA 15213
USA, 1987.

Louise Osterholtz, Charles Augustine, Artur McNair, Ivica
Rogina, Hiroaki Saito, Tilo Sloboda, Joe Tebelskis, and Alex
Waibel. Testing Generality In JANUS: A Multi-Lingual Speech
Translation System. In Proceedings of ICASSP. IEEE, 1992.

M. Paritong. Constituent Coordination in HPSG. In Proceedings
of Konvens 92, pages 228 237. Springer-Verlag, Berlin Heidelberg,
1992.

Lutz Prechelt, Finn Dag Bug, and Rolf Adams. Transportable
Natural Language Interfaces for Taxonomic Knowledge Represen-

tation Systems. In Conference on Artificial Intelligence Applica-
tions, Orlando, Florida, March 1993. IEEE.

J. B. Pollack. Recursive Auto-Associative Memory: Devising
Compositional Distributed Representations. In Proceedings of the
Tenth Annual Conference of the Cognitive Science Society., Hills-
dale, NJ, 1988. Lawrence Erlbaum.

C. Pollard and 1. Sag. An Information-Based Syntax and Seman-
tics. CSLI Lecture Notes No.13, 1987.

C. Pollard and I. Sag. Formal Foundations. In /[PS87a], chapter 2.
CSLI Lecture Notes No.13, 1987.

T. S. Polzin and A. Waibel. Learning the ATIS-Task. Technical
report, Carnegie Mellon University, 1992.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Se-
lected Applications in Speech Recognition, 1989. In Alex Waibel
and Kai-Fu Lee, editors, Readings in Speech Recognition. Morgan
Kaufmann, San Mateo, CA, USA, 1990.

Christine Reck. Robustes Parsen von Dialogen mit semantischen
Grammatiken. Studieanarbeit, Fakultit fiir Informatik, Univer-
sitit Karlsruhe, Germany, Jan 1993.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating errors.
In /[RMiPrg86]. The MIT Press, 1986.

106

BIBLIOGRAPHY

[RMtPrg86] David Rumelhart, James L. McClland, and the PDP research

[SBY2]

[Sch92]

[Sch93]

[Sen92]

[Sha91]

[SL92]

[St093]

[TC87]

[TMMLSS]

[Tom85]

[Tom87]

group, editors. Parallel Distributed Processing. The MIT Press,
1986.

David Stallard and Robert Bobrow. Fragment Processing in the
DELPHI System. In Proceedings of ARPA Spoken Language Sys-
tems Technology Workshop, 1992.

Hinrich Schiitze. Word Space. In J.E.Moody, S.J.Hanson, and
R.P.Lippman, editors, Advances in Neural Information Processing
Systems 4. Morgan Kaufmann Publishers, 1992.

Hinrich Schiitze. Translation by Confusion. In Spring Symposium
on Machine Translation. AAAT, 1993.

Stephanie Seneff. TINA: A Natural Language System for Spoken
Language Applications. Computational linguistics, 18(1), 1992.

Noel E Sharkey. Connectionist Representation Techniques. Tech-
nical Report R 217, Centre for Connection Science, Department
of Computer Science, University of Exeter, 1991.

K. Sikkel and M. Lankhorst. A Parallel Bottom-Up Tomita Parser.
In Proceedings of Konvens 92, pages 238-247. Springer-Verlag,
Berlin Heidelberg, 1992.

Andreas Stolcke. An Efficient Probabilistic Context-Free Parsing
Algorithm that Computes Prefix Probabilities. Technical Report
TR-93-065, ICSI, Berkeley, CA, 1993.

M. Tomita and J. Carbonell. The Universal Parser Architec-
ture for Knowledge-Based Machine Translation. Technical report
CMU-CMT-87-101, Center for Machine Translation, CMU, 5000
Forbes Ave., Pittsburgh, PA 15213 USA, 1987.

M. Tomita(ed.), Teruko Mitamura, Hiroyuki Musha, and Marion
Lee. The Generalized LR Parser/Compiler Version 8.1: User’s
Guide. Technical report CMU-CMT-88-MEMO, Center for Ma-
chine Translation, CMU, 1988.

M. Tomita. Efficient Parsing for Natural Language: A Fast Algo-
rithm for Practical Systems. Kluwer Academic Publishers, Boston,
MA, 1985.

Masaru Tomita. An Efficient Augmented-Context-Free Parsing
Algorithm. Computational Linguistics, 13(1-2):31 46, 1987.

BIBLIOGRAPHY 107

[Tr88]

[TSP+95]

[Usz86a]

[Usz86b)]

[Usz87]

[War91]

[WAWB*94]

[WBB+94]

[Wen93|

[WET89]

M. Tomita and Eric H. Nyberg 3rd. Generation Kit and Transfor-
mation Kit Version 3.2: User’s Manual. Technical report CMU-
CMT-88-MEMO, Center for Machine Translation, CMU, 1988.

Dinesh Tummala, Stephanie Seneff, Douglas Paul, Clifford Wein-
stein, and Dennis Yang. CCLINC: System Architechure and Con-
cept Demonstration of Speech-to-Speech Translation for Limited-
Domain Multilingual Applications. In Proceedings of ARPA Spo-
ken Language Systems Technology Workshop, 1995.

Hans Uszkoreit. Constraints on Order. Technical Report CSLI-
86-46, Center for the Study of Language and Information, Leland
Stanford Junior University, january 1986.

Hans Uszkoreit. Linear Precedence in Discontinuous Constituents:
Complex Fronting in German. Technical Report CSLI-86-47, Cen-
ter for the Study of Language and Information, Leland Stanford
Junior University, january 1986.

Hans Uszkoreit. Word order and constituent structure in German.
Center for the study of language and information, CSLI/Stanford,
Ventura Hall, Stanford, CA 94305, 1987.

Wayne Ward. Understanding Spontaneous Speech: The Phoenix
System. In ICASSP 91, pages 365-367. IEEE, 1991.

M. Woszczyna, N. Aoki-Waibel, F. D. Bug, N. Coccaro,
K. Horiguchi, T. Kemp, A. Lavie, A. McNair, T. Polzin, I. Rogina,
C.P. Rose, T. Schultz, B. Suhm, M. Tomita, and A. Waibel.
JANUS 93: Towards Spontaneous Speech Translation. In Interna-
tional Conference on Acoustics, Speech € Signal Processing, pages

345 348, vol. 1, Adelaide, Australia, April 1994. IEEE.

A. Waibel, U. Bodenhausen, F. D. Bug, N. Coccaro, H. Hild,
T.S. Polzin, and B. Suhm. Connectionist Modules in a Multi-
Lingual Speech Translation System. In International Conference
on Neural Information Processing (ICONIP), Seoul, Korea, Oc-
tober 1994. IEEE.

Fuliang Weng. Handling Syntactic Extra-Grammaticality. In Pro-
ceedings of Third International Workshop on Parsing Technolo-
gies, pages 319 331, 1993.

Lars Holter Walter F. Tichy, Rolf Adams. NLH/E: A Natural
Language Help System. In Proceedings of the 11th International
Conference on Software Engineering, 1989.

108

[WI95]

[WIM*91]

[WIM*92]

[WMG+96]

[WNM*91]

[WPS5]

[WS90a]

[WS90b)]

[WS91]

[WW94]

BIBLIOGRAPHY

Wayne Ward and Sunil Issar. The CMU ATIS System. In Proceed-
ings of ARPA Spoken Language Systems Technology Workshop,
1995.

Alex Waibel, Ajay Jain, Arthur McNair, Joe Tebelskis, Hiroaki
Saito, and Alexander G. Hauptmann. JANUS: A Speech-to-
Speech Translation System Using Connectionist and Symbolic
Processing Strategies. In ICASSP. IEEE, 1991.

Alex Waibel, Ajay Jain, Arthur McNair, Joe Tebelskis, Louise
Osterholtz, Hiroaki Saito, Otto Schmidbauer, Tilo Sloboda, and
Monika Woszczyna. JANUS: Speech-to-Speech Translation Using
Connectionist and Non-Connectionist Techniques. In J.E.Moody,
S.J.Hanson, and R.P.Lippman, editors, Advances in Neural In-
formation Processing Systems 4. Morgan Kaufmann Publishers,
1992.

Monika Woszczyna, Laura Mayfield, Marsal Gavalda, Matthias
Denecke, Christine Reck, and Andreas Eisele. personal communi-
cation, 1993-96.

Alex Waibel, Ajay N.Jain, Arthur E. McNair, Hiroaki Saito,
Alexander G. Hauptmann, and Joe Tebelskis. JANUS: A Speech-
To-Speech Translation System Using Connectionist And Sym-
bolic Processing Strategies. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,

May 1991.

D. Waltz and J. Pollack. Massively parallell parsing: A strongly
interactive model of natural language interpretation. Cognitive
Science, 9, 1985.

Rolf Wilkens and Helmut Schnelle. A connectionist parser for
context-free phrase structure grammars. In G. Dorffner, edi-
tor, Konnektionismus in Artificial Intelligence und Kognitions-
forschung. Springer, Sept 1990.

Rolf Wilkens and Helmut Schnelle. Konnektionistische
Reprisentation von grammatischem Wissen. 1990.

Rolf Wilkens and Helmut Schnelle. Representation of Principles
and Parameters in a Connectionist Network. 1991.

Stefan Wermter and Volker Weber. Learning Fault-tolerant
Spreech Parsing with SCREEN. In Proceedings of Twelfth Na-
tional Conference on Artificial Intelligence, Seattle, 1994.

BIBLIOGRAPHY 109

[WW96] Stefan Wermter and Volker Weber. SCREEN: Learning a Flat
Syntactic and Semantic Spoken Language Analysis using Artifi-
cial Neural Networks. Journal of Artificial Intelligence Research,
submitted, 1996.

Geboren:
Staatsangehorigkeit:
Schulausbildung:
08/1973 - 06/1982
08/1982 - 06/1985
07/1985 - 07/1986

Lebenslauf

22. Juni 1966 in Stockholm, Schweden
Norwegisch

Grundschule, Asker, Norwegen
Gymnasium, Baerum, Norwegen

Wehrdienst, Norwegen

Universitatsausbildung:

09/1986

03/1991

Studium der Informatik an der Norwegischen Technischen
Hochschule (NTH), Trondheim, Norwegen;
Abschluf: Sivilingenigr (Diplom-Informatiker)

Studienaufenthalte im Ausland:

08/1989
10/1990

06/1990
03/1991

Technische Hochschule Link6ping, Schweden

Universitdt Karlsruhe (TH), Institut fiir Programm-
strukturen und Datenorganisation, Lehrstuhl Prof. Dr. Tichy
Diplomarbeit

Praktische Tatigkeiten:

10/1984
09/1987
06/1989
06/1990
09/1991

01/1993

seit 03/1996

06/1989
05/1989
08/1989
08/1990
12/1992

06/1996

Customizing und Support, Kellydata, Norwegen

Tutor, NTH, Norwegen

Hotline-Support, Hewlett-Packard, Norwegen

Entwickler, Hewlett-Packard, Palo Alto, CA, USA
Stipendiat/Wissenschaftlicher Mitarbeiter, Institut fiir
Programmstrukturen und Datenorganisation,

Lehrstuhl Prof Dr. Tichy, Universitdt Karlsruhe (TH)
Stipendiat/Wissenschaftlicher Mitarbeiter, Institut fiir Logik,
Komplexitit und Deduktionssysteme, Lehrstuhl Prof. Dr. Waibel,
Universitidt Karlsruhe (TH)

Entwicklungskoordinator HR-Norwegen, SAP AG, Walldorf

110

